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Chapter 2
Theory and Model

2.1 Theory

The barotropic free oscillations of the global ocean are defined through the lin-
earized homogeneous shallow water equations (e.g. [57]).

∂v
∂ t

+ f×v+
r′

D
v+F+g∇ζ +Lsek = 0

∂ζ

∂ t
+∇ · (Dv) = 0, (2.1)

where ζ denotes the sea surface elevation with respect to the moving sea bottom,
v = (u,v) the horizontal current velocity vector. The undisturbed ocean depth is D,
the vector of Coriolis acceleration f = 2ω sinφz, the coefficient of linear bottom
friction r′ and the gravitational acceleration g. F denotes the vector defining the
second-order eddy viscosity term (Fλ ,Fφ ) = (−Ah∆u,−Ah∆v) and (λ ,φ) a set of
geographic longitude and latitude values. Lsek is the vector of the secondary force
of the loading and self-attraction (LSA), it is derived in section 2.1.1.
In spherical coordinates this system of equations is written as:

∂u
∂ t
−2ω sinφ · v+

r′

D
·u−Ah∆Hu+

g
Rcosφ

∂ζ

∂λ
+Lsek,λ = 0 (2.2)

∂v
∂ t

+2ω sinφ ·u+
r′

D
· v−Ah∆Hv+

g
R

∂ζ

∂φ
+Lsek,φ = 0 (2.3)

∂ζ

∂ t
+

1
Rcosφ

(
∂ (Du)

∂λ
+

∂ (Dvcosφ)
∂φ

) = 0 (2.4)
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Fig. 2.1 (a) A sketch explaining the used variables z, D, and ζ : the negative z-axis is in downward
direction starting from the undisturbed sea-level (z=0), the sea surface deformation ζ is in upward
direction also starting from (z=0). The ocean depth D is the distance between the undisturbed
sea-level down to the ocean bottom. (b) left: Sea surface deformation ζ without a deformation
of the ocean bottom. right: The deformation δ of the sea bottom through mass loading. ζ0 is the
geocentric sea level . The distance from the undisturbed sea level to the ocean bottom is now D−δ .

2.1.1 Secondary Forces: The Loading and Self-Attraction Effect

External forces are e.g. tidal forces, atmospheric pressure and wind stress. They
have in common that they do not interact in the first order with the ocean dynamics
and thus are controlled independently. Against that, the secondary forces have their
origin in the dynamics of the water masses and interact with them. In this study
the focus is on the secondary forces of loading and self-attraction. The loading-
effect results from the deformation of the elastic earth due to the variations of the
vertical extension of the water column. The self-attraction is due to the gravitational
interaction of the watermasses with themselves. All in all this effect is called the
loading and self-attraction effect. This secondary force is derived in terms of the
variation of a potential:
Both components of the LSA-effect depend on the sea surface elevation ζ related
to the undisturbed sea level and to the actual ocean bottom, i.e. being defined as
the variation of the height of the water column (Fig. 2.1a). ζ is written in spherical
harmonics:

ζ =
∞

∑
n=0

ζn =
∞

∑
n=0

n

∑
s=0

Pn,s [Cn,s cossλ +Sn,s sinsλ ] (2.5)

There,

Pn,s =
(

2(2n+1)
δs

(n− s)!
(n+ s)!

) 1
2

Pn,s; δs = 2(s = 0),δs = 1(s > 0)

are the associated Legendre Functions. Cn,s and Sn,s are time dependent coefficients.
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Self-Attraction Effect

Firstly, the elasticity of the earth is neglected, in order to derive solely the expression
of the potential of the self-attraction effect. The potential of a spherical layer is given
through (Fig. 2.2):

Φ(M) = γ

∫ ∫
δKR

ρ(M′)
MM′

dS

There, δKR is a spherical layer and ρ(M′) is the area density. The distance of the
masses M and M′ to the center of the sphere is r and R, respectively. Transformation
of the reciprocal distance MM′

−1
in spherical harmonics [45] yields:

1
MM′

= (R2−2Rr cosα + r2)−
1
2 =

∞

∑
n=0

Pn(cosα)
rn

Rn+1 ,with r < R

Using the notation f (λ ′,φ ′) := ρ(M′) and considering the area elements
dS = R2 sinφ ′dφ ′dλ ′ yields

Φ(M) = γ

∞

∑
n=0

rn

Rn+1

∫ ∫
δKR

f (λ ′,φ ′)Pn(cosα)dS.

The area density is now written in spherical harmonics f (λ ,φ) = ∑
∞
n=0 fn(λ ,φ) with

fn(λ ,φ) = 2n+1
4π

∫ ∫
δKR

f (λ ′,φ ′)Pn(cosα)dS. Thus, the potential is rewritten in

Φ(M) = 4πγ

∞

∑
n=0

rn

Rn−1 fn(λ ,φ).

Fig. 2.2 The potential of a spherical layer: The mass M in the potential of the surrounding masses
M′ (Φ(M) = γ

∫ ∫
δKR

ρ(M′)
MM′

dS).
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Since the radius of the earth R is large compared to the ocean depth, for the radius r
holds r→ R and the area density can be approximated through f (λ ,φ) = ρζ (λ ,φ)
with constant distance to the earth’s center R. Finally, the potential can be written as

Φ(φ ,λ ) = g ·
∞

∑
n=0

3
2n+1

ρ0

ρe
ζn(φ ,λ ) =:

∞

∑
n=0

Φn(φ ,λ ) (2.6)

ρ0 and ρe are the mean densities of the sea water and the solid earth, respectively.
This potential describes the so called self-attraction effect. The gradient of this po-
tential is the gravitative force of the watermasses on themselves.

Loading-Effect

Hereafter it is assumed that the earth is fully elastic. Thus, the ocean bottom gets
deformed through forces acting on it. In the present study only inner forces can de-
formate the ocean bottom, external forces are excluded in the homogeneous problem
of determining free oscillations. The surface elevation ζ gives rise to two forces; on
the one hand the changing weight of the water column, on the other hand the chang-
ing gravitational attraction on the ocean bottom.
The spherical harmonic of degree n of the geocentric sea surface elevation is (ζ0)n
(compare 2.5), and the deformation of the ocean bottom is described through δ

(Fig. 2.1b).
Compared to the undisturbed sea level (ζ = 0), the additional body of water

gρζn = gρ(ζ0−δ )n

deformates the ocean bottom due to the two abovementioned inner forces. [9]
showed that the vertical displacement of the ocean bottom δn is proportional to the
vertical expansion of the water column. The factor of proportionality is h′n:

δn = h′n ·
3

2n+1
ρ0

ρe
ζn = h′nΦn/g (2.7)

Since the pressure through the loading overbalances the gravitational attraction, the
h′n are negative for all degrees n. The mass displacement through the deformation
of the ocean bottom results additionally in a variation of the potential. This can be
described by the factor of proportionality k′n:

V ′n = k′n ·Φn (2.8)

These parameters, h′n and k′n, depend on the characteristics of the elasticity of the
earth and are called the loading Love-numbers . They describe the interaction of the
ocean with the solid earth in terms of spherical harmonics.
The loading Love-numbers used in this study are taken from [10]. They determined
the Love-numbers values taking the Preliminary Reference Earth Model (PREM) [5]
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Fig. 2.3 The Green’s function depending on the angular distance a between the two points (φ ,λ )
and (φ ′,λ ′). It holds for the angular distance: (cos(a) = sinφ sinφ ′ + cosφ cosφ ′ cos(λ − λ ′)),
(Data from [10]).

as a basis. The Love-numbers of [9], he utilized the Gutenberg-Bullen-Earth-Model,
differ distinctly for large degrees n, from the above ones.

2.1.2 The Equations of Motion and the Equation of Continuity

The loading and self-attraction effect is described through the potential (2.8 and 2.6)

Φ
∗ = V ′+Φ =

∞

∑
n=0

(1+ k′n)Φn =
∞

∑
n=0

g(1+ k′n)αnζn (2.9)

with αn = 3
2n+1

ρ0
ρe

, and the displacement of the ocean bottom δ (2.7).
The secondary force is given by the horizontal gradient ∇H of this potential (2.9):

Lsek = ∇HΦ
∗ =: g∇Hζ (2.10)

There, ζ is the equilibrium representation of the secondary potential. The sea level
ζ relative to the moving sea bottom is described through the vertical displacement
δ of the sea bottom and the geocentric sea level ζ0:
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Fig. 2.4 The Love-number combination (1 + k′n−h′n)αn . The abscissa shows the degree n of the
spherical harmonic (Data from [9]). The value (1 + k′n−h′n)αn = 0.085 is marked, which is often
used for the parameterization of the LSA-effect [1].

ζ0 = ζ +δ (2.11)

Putting (2.10) and (2.11) in (2.2)- (2.4), results in

∂u
∂ t
−2ω sinφ · v+

r′

D
u−Ah∆u+

g
Rcosφ

∂ζ

∂λ
=

g
Rcosφ

∂ (ζ −δ )
∂λ

(2.12)

∂v
∂ t

+2ω sinφ ·u+
r′

D
v−Ah∆v+

g
R

∂ζ

∂φ
=

g
R

∂ (ζ −δ )
∂φ

(2.13)

To obtain a system of equations with the three state variables u, v and ζ , the spherical
harmonics ζn must be expressed through ζ . Transformation of (2.5) results in

Cn,s
Sn,s

=
1

4π

∫ ∫
ζ (t,λ ′,φ ′)Pn,s(sinφ

′)
cos(sλ ′)
sin(sλ ′) dλ

′dφ
′ cosφ

′

Finally, by substituting this into (2.12) and (2.13), the system of equations is rewrit-
ten as:

∂u
∂ t
−2ω sinφ · v+

r′

D
u−Ah∆u+

g
Rcosφ

∂ζ

∂λ
= (2.14)
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g
Rcosφ

∫ ∫
ζ (t,λ ′,φ ′)

∂G(λ ,φ ,λ ′,φ ′)
∂λ

dλ
′dφ
′ cosφ

′

∂v
∂ t

+2ω sinφ ·u+
r′

D
v−Ah∆v+

g
R

∂ζ

∂φ
= (2.15)

g
R

∫ ∫
ζ (t,λ ′,φ ′)

∂G(λ ,φ ,λ ′,φ ′)
∂φ

dλ
′dφ
′ cosφ

′

∂ζ

∂ t
+

1
Rcos(φ)

(
∂ (Du)

∂λ
+

∂ (Dvcosφ)
∂φ

) = 0 (2.16)

This is an integro-differential equation system. The function

G(λ ,φ ,λ ′,φ ′) :=
1

4π ∑
∞
n=0(1+ k′n−h′n)αn ∑

n
s=0 Pn,s(sinφ)Pn,s(sinφ ′)cos(s(λ ′−λ ))

(2.17)

contains the loading Love-numbers. This function is often called the Green’s func-
tion of loading and self-attraction. An important characteristic of this Green’s func-
tion is that its dependency on the four variables (λ ,φ ,λ ′,φ ′) can be reduced to that
on the angular distance a, given through

cosa = sinφ sinφ
′+ cosφ cosφ

′ cos(λ −λ
′).

This is possible since the Love-numbers, which are forming the basis of the Green’s
function are only depending on the degree of the spherical harmonics and not on
their order. The proof is given through the so called addition-theorem of Legendre-
polynomials ( [45], page 427):

Pn(cosa) =
n

∑
s=0

(n− s)!2
(n+ s)!δs

Pn,s(sinφ
′)Pn,s(sinφ)cos(s(λ ′−λ )) (2.18)

Putting this expression in (2.17), the Green’s function is rewritten in the form

G(a) =
1

4π

∞

∑
n=0

(1+ k′n−h′n)αnPn(cosa). (2.19)

The Green’s function, determined by the loading Love-numbers of [10], is displayed
in Figure (2.3).
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2.1.3 Energy Balance

The equations of motion (2.2- 2.4) are transformed into the following energy equa-
tion (e.g. [56])1:

∂

∂ t [
1
2

D(u2 + v2)]︸ ︷︷ ︸
Kinetic Energy

− 1
2

∂ζ

∂ t
(u2 + v2)︸ ︷︷ ︸

Correction Term

+ r′D(u2 + v2)
3
2︸ ︷︷ ︸

Dissip. Bottom Friction

+

g∇ · (Duζ0,Dvζ0)︸ ︷︷ ︸
Energy Flux

−DAh((∇u)2 +(∇v)2)+DAh(∇ · (u∇u+ v∇v))︸ ︷︷ ︸
Dissipation T hrough Eddy Viscosity

+

∂

∂ t (
1
2

gζ
2 +gδζ )︸ ︷︷ ︸

Potential Energy

=

∇ · (DuΦ
∗,DvΦ

∗)+Φ
∗ ∂ζ

∂ t︸ ︷︷ ︸
Work Done T hrough LSA−e f f ect

+ gζ
∂δ

∂ t︸ ︷︷ ︸
Work Done T hrough Bottom De f ormation

(2.20)

The terms on the right hand side of this equation, originating from the LSA-effect,
are zero in the time-mean energy budget [57].
Now, a particular free oscillation with the frequency iσ = σ1 + iσ2 and its complex
constituents u,v and ζ is considered. The real part of iσ , i.e. σ1, determines the
damping rate of the mode, with the energy decay time 1

2σ1
[64]. The eigenperiod

T2 = 2π

σ2
is given through the imaginary part σ2.

In order to evaluating in (2.20) the potential and kinetic energy contents as well as
the energy flux term, the real parts of the constituents u,v and ζ of the complex
eigenfunction are used in the form

u = |u|e−σ1t cos(−σ2t +Ψ +φu) (2.21)
v = |v|e−σ1t cos(−σ2t +Ψ +φv) (2.22)
ζ = |ζ |e−σ1t cos(−σ2t +Ψ +φζ ). (2.23)

There, Ψ is an arbitrary phase shift.
The ocean bottom deformation δ is obtained from the sea surface elevation mak-
ing use of the corresponding Green’s function and is likewise represented by the
amplitudes and phases

δ = |δ |e−σ1t cos(−σ2t +Ψ +φδ ).

1 In order to obtain energies the equation has to be multiplied by ρ .
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The Averaging Method

Considering the time-mean of a product of two periodic functions, e.g. u and
ζ (2.21)- (2.23)

Mζ u :=
1
T

∫ T

0
dt(ζ u).

Substituting the real functions and integrating over the time results in

Mζ u =
1

8π((α

σ
)2 +1)

(
1− e

−4πα
σ

)
[
2α

σ
cos(φu +Ψ)cos(φζ +Ψ)︸ ︷︷ ︸

depending on Ψ

+

σ

α
cos(φu−φζ )− sin(φu +φζ +2Ψ)︸ ︷︷ ︸

depending on Ψ

]|ζ ||u| (2.24)

The eigenfrequency has here the notation α := σ1 and σ := σ2. Obviously, the two
marked terms in the equation for Mζ u, depend on the arbitrary phase shift Ψ . Of
course, this is due to the damping factor. In case of no dissipation (α = 0) these two
terms would disappear:

M(without dissipation)
ζ u =

1
2

cos(φu−φζ )|ζ ||u|

Averaging the resulting Mζ u (2.24) over the interval (0,2π) with respect to the phase
Ψ makes it independent of Ψ :

Mζ u =
1

2π

∫ 2π

0
dΨMζ u = B · cos(φu−φζ )|ζ ||u| (2.25)

B : =
1

8π((α

σ
)2 +1)

(
1− e

−4πα
σ

)(
α

σ
+

σ

α

)

Potential and Kinetic Energy

Using (2.20) and (2.25) the time-mean of the potential and kinetic energy surrenders
to

E p = B · (1
2

ρg|ζ |2 +ρg|δ ||ζ |cos(φδ −φζ )) (2.26)

Ek = B · 1
2

ρD(|u|2 + |v|2), (2.27)

The total energy is given through:

Et = E p +Ek (2.28)
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Energy Flux

The time-mean of the two components Ju and Jv of the energy flux, is determined
through (2.20) and (2.25):

Ju = ρgD(Muζ −Muδ ) = B ·ρgD|u|(|ζ |cos(φu−φζ )−|δ |cos(φu−φδ ))(2.29)

Jv = ρgD(Mvζ −Mvδ ) = B ·ρgD|v|(|ζ |cos(φv−φζ )−|δ |cos(φv−φδ ))(2.30)

2.1.4 Parameterization of the LSA - An Analytical Approach

Considering the shallow water equations (2.1) without friction and the LSA-effect,
the so called Laplace-equations are given by:

∂vH

∂ t
+(f×v)H = −g∇Hζ (2.31)

∂ζ

∂ t
+∇H · (DvH) = 0 (2.32)

vH ·n|Γ = 0 (2.33)

With the Operator L0

L0 =
(

f× g∇H
∇H ·D 0

)
(2.34)

and with the vector w =
(

vH
ζ

)
, the above equation system (2.31, 2.32) can be

rewritten as:

∂w
∂ t

= −L0w (2.35)

The loading and self-attraction effect is now defined by a perturbation operator
δL . [23] showed with this perturbation formalism, that the variation of the fre-
quency of a free oscillation through the LSA-effect is

δσ

σ
=
−
∫

dSζLSAζ ∗∫
dS|ζ |2

·
Ep

Et
=−β ·

Ep

Et
(2.36)

where Ep/Et is the ratio of the potential energy to the total energy, σ the frequency
and ζ ∗ the conjugate complex sea surface elevation of the free oscillation deter-
mined without the LSA-effect. ζLSA is defined by the LSA-term (compare 2.17):

∇ζLSA = ∇

∫ ∫
S

ζ (t,λ ′,φ ′)G(λ ,φ ,λ ′,φ ′)R2 cos(φ ′)dλ
′dφ
′. (2.37)
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Since ζ and ζLSA are not exactly in phase the proportional constant β , defined
through (2.36), has a complex value. However, the imagenary part is considerably
smaller than the real part (the factor is less than 0.001). Therefore β is treated as a
real value in the following. As will be shown later, the sign of β is positive and thus
the consideration of the LSA-effect results in a decrease of the frequencies of the
free oscillations. The relative magnitude of this frequency shift depends on the ratio
of potential energy to the total energy and on the factor β =

∫
dSζLSAζ ∗∫

dS|ζ |2 .

Parameterization of LSA

This β -value is the same, which [1] introduced for parameterizing the LSA-effect in
tidal models. There, the LSA-term of equation (2.37) is approximated by: [1] ob-
tained for M2 constituent β = 0.085. [33] gave different values for the most impor-
tant semidiurnal and diurnal tidal constituents (see Table 2.1) and [41] recommends
a higher value for the M2 with β = 0.12.
The LSA-term is still interactive with ζ when represented in this simple form.
Howewer, it is a massive simplification since it does mean for all Love-numbers
that (1+ k′n−h′n)αn = β (compare Fig. 2.4). Analysis of the local distribution of β

shows that there are large differences of β between the open ocean and the coastal
region [41, 48]. The values of β are small near land, and are getting large in open
ocean areas. Further, [48] introduce a local βL(λ ,φ) = ζLSA(λ ,φ)

ζ (λ ,φ) and discuss its de-
pendency on ocean depth and on latitude for different time scales generated through
various forcings (tidal, atmospheric wind, atmospheric pressure) of their barotropic
ocean model. For a detailed analysis of the β -values of the gravitational modes see
Sections (3.1.1) and (3.1.2), and of the vorticity modes see Section (3.2).

∇ζLSA ≈ β ·∇ζ (2.38)

Table 2.1 β -values (2.36) for the most important semidiurnal and diurnal tidal constituents [33].

diurnal semidiurnal

K1 0.121 M2 0.082
O1 0.115 S2 0.083
P1 0.119 N2 0.079
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2.2 Model

The physical model for the global free oscillations is described through the eigen-
value problem

−iL w̄ = σw̄ (2.39)
vH ·n|r = 0 (2.40)

here, the periodic function w(λ ,φ) =
(

vH
ζ

)
=
(

v̄H

ζ̄

)
·exp(−iσt) , with the com-

plex valued frequency iσ = σ1 + iσ2 is introduced. The operator L , derived from
the system of equations (2.14- 2.16), is

L =
(

f×+ r′
D −Ah∆H g∇H −g∇HI

∇H ·D 0

)
, (2.41)

where I is defined through I ζ =
∫

G(λ ,φ ,λ ′,φ ′)ζ (λ ′,φ ′)dλ ′dφ ′ cosφ ′.
Properly replacing the derivatives by finite differences and the integral by a finite
expression [61] makes (2.39) turn into a system of algebraic equations

(A−λ I)x = 0 (2.42)

where λ = iσ = σ1 + iσ2 represents the eigenvalue of the Matrix A with the cor-
responding eigenvector x = xe−iσt depending on space as well as on time, i.e.
x = x(t,λ ,φ).
The system of equations (2.42) has, in the present case of a spatial resolution of one
degree, approximately 120,000 unknowns. Since LSA is taken fully into account the
entries of the matrix A are generally nonzero. However, since the Green’s function
depends only on the angular distance a, symmetries in the arrangement of the en-
tries can be utilized to reduce the working memory of the model to less than 1GB
(compare equation 2.19). Taking advantage of this memory reduction, three single
free oscillations were computed with a special modification of the Wielandt Method
Wielandt Method [64] and four with the standard Wielandt method [29]. In the first
case the model was time optimized with respect to the method itself, whereas in the
latter one it was distributed with OpenMP on 8 cpus and optimized for the HLRE2.
Both approaches make use of the Wielandt Method (or inverse iteration), as de-
scribed in [13] and as originally having been developed by [55], see also [17]. Start-
ing from a first guess eigenvalue σ0, the method yields the free oscillation with the
eigenvalue λ closest to σ0. The advantage of this method is that single free oscilla-
tions are determined with comparable low computational costs due to the possibil-
ity of the above mentioned memory reduction. The main disadvantage is the time
consuming procedure when allowing for the full LSA-effect and that not all free
oscillations are captured by this method.

2 HLRE - High Perfomance Computing Centre for Earth System Research, Hamburg.
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2.2.1 The Implicitly Restarted Arnoldi Method

In the present study the Implicitly Restarted Arnoldi Method is used for solving the
eigenvalue problem (2.39). It is provided by the software package ARPACK [20].
The original Arnoldi Method [2] is an orthogonal projection method, belonging
to the class of Krylov subspace methods. In case of a symmetric Matrix A, it re-
duces to the Lanczos Method [19]. Below, only a short summary of the Arnoldi
method is given. A more comprehensive treatment of the subjects of Krylov sub-
spaces, Arnoldi factorization, and Arnoldi method can be found in [43].

The k-th Krylov subspace associated with the matrix A and the vector v is defined
through

Kk(A,v) = span{v,Av,A2v, ...,Ak−1v}. (2.43)

Obviously, it is defined through the sequence of vectors produced by the power
method (e.g. [13]). This method utilizes the fact that with k increasing the vector
Akv converges to the eigenvector with the largest eigenvalue. Like all Krylov sub-
space methods, the Arnoldi method takes advantage of the structure of the vectors
produced by the power method, and information is extracted to enhance conver-
gence to additional eigenvectors. For this purpose, the Arnoldi method determines
an orthonormal basis span{u1,u2, ...uk} for Kk(A,v). This basis is defined through
the relation

AUk = UkHk + fkeT
k (2.44)

where A ∈ Cn×n, the matrix Uk = (u1,u2, ...uk) ∈ Cn×k (has orthogonal columns),
UH

k fk = 0, ek ∈Ck and Hk ∈Ck×k is upper Hessenberg with non-negative subdiago-
nal elements. This is called a k-step Arnoldi factorization and its algorithm is shown
in Fig. 2.5. Alternatively, the factorization (2.44) can be written as

AUk = (Uk,uk+1)
(

Hk
βkeT

k

)
, (2.45)

where βk = ‖fk‖ and uk+1 = 1
βk

fk. If Hks = sθ then the vector x = Uks satisfies

‖Ax−xθ‖= ‖(AUk−UkHk)s‖= |βkeT
k s|. (2.46)

The so called Ritz-pair (x,θ) is an approximate eigenpair of A, with the Ritz-
estimate as the residual r(x) = |βkeT

k s| (assuming ‖x‖= 1).
Unfortunately, the Arnoldi Method has large storage and computational require-
ments. Large memory is used to store all the basis vectors uk, if the number of
iteration steps k is getting large before the eigenvalues and eigenvectors of interest
are well approximated through the Ritz-pairs. Additionally, the computational cost
of solving the Hessenberg eigenvalue subproblem rises with O(k3). To overcome
these difficulties, methods have been developed to implicitly restart the method [47].
This efficient way to reduce the storage and computational requirements makes the
Arnoldi Method suitable for large scale problems. Further, implicit restarting pro-
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Input (A,v)

Put u1v/‖v‖; w = Au1; α1 = uH
1 w;

Put f1← w−u1α1; U1← (u1); H1← (α1)

For j = 1,2,3, ...k−1

(1) β j = ‖f j‖; u j+1← f j/β j;

(2) U j+1← (U j,u j+1); Ĥ j ←
(

H j
β jeT

j

)
;

(3) w← Au j+1;

(4) h←UH
j+1w; f j+1← w−U j+1h;

(5) H j+1← (Ĥ j,h);

End For

Fig. 2.5 Algorithm: The k-step Arnoldi Factorization.

vides a means to determine a subset of the eigensystem. Hence, the ARPACK inter-
face allows the user to specify the number l of eigenvalues sought.
When the Matrix A is considered in the Arnoldi method its l largest eigenvalues are
determined. But in the case of the present study the interest lies in specific eigen-
values, e.g. those in the diurnal and semidiurnal spectrum. Therefore the shifted
and inverted problem (A−σ0I)−1is considered. Thus the convergence of eigenval-
ues near the selected point σ0 is enhanced. This approach is closely related to the
inverse iteration techniques (e.g. [13]). Considering this spectral transformation in
detail yields

Ax = xλ ⇐⇒ (A−σ0I)x = x(λ −σ0). (2.47)

and
(A−σ0I)−1x = xν , where ν =

1
λ −σ0

. (2.48)

Hence, the eigenvalues λ that are close to σ0 will be transformed into eigenvalues
ν = 1

λ−σ0
, which are at the extremes of the transformed spectrum. The correspond-

ing eigenvectors remain unchanged.
In case of the shifted and inverted approach of the Arnoldi Method, linear systems
of the form (A−σ0I)x = b have to be solved. The algorithms of ARPACK are pro-
vided with a so called reverse communication interface. This interface allows the
user to transfer the solution x into the algorithm, and in this way the solver can be
chosen independently from ARPACK. In the present study the LU-solver provided
by ScaLAPACK [4] is used (see next section). The LU-solver puts itself forward
since the time consuming LU-factorization of (A−σ0I) need to be performed only
once.
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2.2.2 The Parallelization with MPI

To enable the use of routines of mathematical libraries for computing linear sys-
tems, it is necessary to store the complex matrix (A−σ0I) in a general form. Thus
the advantages of the symmetries of the matrix are getting lost. Since more than
500 GB of memory are required, it is necessary to parallelize the ocean model and
distribute the matrix on different nodes. The parallization is done with MPI3, per-
fect for large problems needing access to large amounts of memory on distributed
memory architectures [46].
The linear systems are solved with a parallelized version of a LU-solver of the
ScaLAPACK software package [4]. Since the Matrix (A−σ0I) is kept preserved
during the whole iteration process of the Arnoldi algorithm, the LU-factorization,
the most time consuming part, is only performed once. The choice of MPI and the
ScaLAPACK LU-solver gives the user a high degree of freedom, in adapting the
ocean model to the features of the computer architecture. The number of CPUs and
nodes can freely be chosen, and is only restricted through the memory used to store
the matrix.

2.2.3 The Performance of the Model

The model-runs have been performed on two distinct supercomputers, the HLRE4

and the HLRS5, equipped with NEC SX-6 nodes and NEC SX-8 nodes, respec-
tively.
The number of free oscillations sought is set to l = 150 for each model-run. So

Table 2.2 Data of the performance of the fastest model-run on 12 NEC SX-6 nodes of the HLRE:
First two rows shows values from one single cpu; last row are mean global values of all 96 cpus.

Frequency Time Performance
in [s] in [MFlops]

LU-factorization 1 6872.6 6766.8
(of cpu no. 1)
LU-solver 500 444.7 1373.1
(of cpu no. 1)

Mean global values 8181.2 608.7·103

of 96 cpus

3 Message-Passing Interface.
4 HLRE - High Perfomance Computing Centre for Earth System Research, Hamburg.
5 HLRS - High Performance Computing Centre, Stuttgart.
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75 free oscillations and the corresponding complex conjugated ones are computed.
At the HLRE it is possible to run the program on 12 and 16 nodes. Each SX-6 is
equipped with 8 cpus. The overall performance is up to 609 and 632 GFlops, re-
spectively, being one of the fastest single-application running on the HLRE. The
computation time is between 2 and 3 hours, mostly depending on the actual state
of the supercomputer and on the condition of the matrix, which changes through
changing σ0 value. Although the LU-factorization is highly optimized (Table 2.2),
it alone needs more than two third of the total time used by the model (in some cases
up to 80%), the LU-solver uses 5-8%. The total memory of the model amounts to
630GBytes.
Furthermore, model-runs have been performed on the HLRS supercomputer. It is

Table 2.3 Data of the performance of model-runs on 4, 8, 16, 32 and 64 NEC SX-8 nodes of the
HLRS.

Number of nodes 4 8 16 32 64
Number of cpus 32 64 128 256 512
Real Time in [s] 11421 6850 4463 3251 2766
Performance in [GFlops] 416 737 1269 2108 3394

one of the TOP 100 Supercomputers of the world6, and ranked 48th in July 20067.
The model was distributed on up to 512 cpus (64 nodes). On this computer architec-
ture the good performance of the model is kept preserved (Table 2.3), using only 45
minutes to determine 150 normal modes, with a mean performance of 3.4TFlops.

6 http://www.top500.org/.
7 The date when these model-runs have been performed.


