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Chapter 2
Signals and Systems

The concepts covered in this chapter form the basis for modeling and analyzing
communication systems. We start by defining some common signals and studying
their properties. In the sequel we address the time and the frequency representa-
tion of such signals through the Fourier analysis. The sampling theory is briefly
discussed, and linear systems are then put into focus, with emphasis in linear, time-
invariant (LTI) systems. The complex representation of signals and systems is also
covered and the chapter ends with an analysis of the power spectral density and
bandwidth of signals, complementing the study started in Chap. 1.

2.1 Signals

In communications systems, a signal is usually a function of time. In other words,
the evolution of a communication signal manifests in the time-domain. Moreover,
a communication signal is usually a current or, more frequently, a voltage signal.
Signals derived from these two can also arise, though less frequently.

In this section we review the signal classification and present some signals typi-
cally encountered in the study of communication systems.

2.1.1 Classification of Signals

There are several ways of classifying a signal. In what follows we present a brief
overview of the classifications most frequently used in the study of communication
systems.

2.1.1.1 Continuous and Discrete Signals

In a continuous-time signal, the independent variable, time, is continuous and the
signal is defined continuously in time. Discrete-time signals are defined only at
specific time instants. In other words, the independent variable of a discrete-time
signal assumes only discrete integer values.
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88 2 Signals and Systems

Signals can also be continuous or discrete in their values, leading to the combined
classifications: continuous-times, continuous-valued; discrete-time, continuous-
valued; discrete-time, discrete-valued or continuous-time, discrete-valued. These
classifications are illustrated in Fig. 2.1.

Fig. 2.1 Signal classification: continuous-time, continuous-valued a(t); discrete-time, continuous-
valued b[n]; discrete-time, discrete-valued c[n] and continuous-time, discrete-valued d(t)

Note that, for a discrete-time signal, there is no need to have an explicit associa-
tion between a value of the discrete time n and a value of the continuous real time t .
In practice, this association is made when a discrete-time signal is generated from
samples of a continuous-time signal. This association also arises when the result of
some signal processing task is used in a real-time application.

Note also that the signal d(t) in Fig. 2.1 is indeed a continuous-time signal, no
matter how steep is the transition between the amplitude levels, since in a given
instant t there will be a one-to-one correspondence with an amplitude level. This
statement comes from the fact that neither a voltage nor a current signal can exhibit
a zero transition time, which would correspond to an infinite slew-rate.

2.1.1.2 Periodic and Non-periodic Signals

A continuous-time periodic signal exhibits the same value at integer multiples of
T , where T is called the period of the signal. Analogously, a discrete-time periodic
signal does not change its value for any discrete-time shift N . Mathematically, for
any t and N we have, respectively,

x(t) = x(t + T ) and

x[n] = x[n + N ].
(2.1)

When (2.1) is not satisfied for a continuous-time and a discrete-time signal,
respectively, we say that the signal is non-periodic (or aperiodic).
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2.1.1.3 Even and Odd Signals

A continuous-time signal and a discrete-time signal are said to be even if they satisfy,
respectively,

x(−t) = x(t) and

x[−n] = x[n].
(2.2)

Analogously, a continuous-time signal and a discrete-time signal are said to be
odd if they satisfy, respectively,

x(−t) = −x(t) and

x[−n] = −x[n].
(2.3)

The classification of even and odd functions can be extended to any domain. We
shall also find such classification, for example, when dealing with the frequency
content of a communication signal.

2.1.1.4 Deterministic and Random Signals

In a deterministic signal a future value can be precisely predicted. Normally a
deterministic signal is described in terms of a deterministic expression, like x(t) =
A cos(2πft), in which for any value of t it is possible to know the value of x(t).

Random signals can not be predicted precisely. A future value or range of values
can be predicted only in probabilistic terms, as we have seen in Chap. 1.

When dealing with random communication signals, we normally refer to x(t) as
a sample-function of the random process X (t).

2.1.1.5 Baseband and Passband Signals

According to [8, p.60], a baseband signal is “a signal that is not modulated onto a
carrier”. As we shall see later on in this chapter, a baseband signal has its frequency
content located around f = 0, but not necessarily having a non-zero DC component.

A passband signal is a signal whose frequency content is located around a sinu-
soidal carrier with frequency fc. Passband signals are commonly associated to the
process of modulation in which the information, usually a baseband signal, changes
some characteristics of the carrier prior to transmission.

The transmission of information through baseband signals will be discussed in
Chap. 4, and in Chap. 6 a number of passband signals generated by means of digital
modulations will be studied.

2.1.1.6 Energy and Power Signals

The time-average power of a continuous-time signal is defined by

P = lim
T→∞

1

2T

∫ T

−T
|x(t)|2 dt. (2.4)
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For a discrete-time signal we have an analogous definition:

P = lim
N→∞

1

2N + 1

N∑

n=−N

|x[n]|2. (2.5)

In (2.4) and (2.5) the modulus operation takes into account that x(t) or x[n]
can be complex signals. Note that if x(t) or x[n] are voltage or current signals, the
average power obtained from (2.4) and (2.5) will be measured in watts, normalized
to a 1 ohm load resistance.

For periodic signals, (2.4) and (2.5) need to be evaluated only in the interval or
number of samples corresponding to the period of the signal.

An energy signal has a finite total energy and, as a consequence, has a zero
average power. All signals confined in some time interval can be considered energy
signals. From (2.4) and (2.5), the energy of a continuous-time and a discrete-time
signal confined in [−T , T ] or [−N , N ] can be determined respectively by

E =
∫ T

−T
|x(t)|2 dt and

E =
N∑

n=−N

|x[n]|2.
(2.6)

As an example, a pulse with amplitude A and duration T is an energy signal with
zero power and energy E = A2T .

A power signal is a signal that has finite average power and, as a consequence,
its energy is infinite. For example, the signal x(t) = A cos(2πft), −∞ < t < +∞
has average power P = A2/2 and infinite energy.

There are signals that have both P and E infinite, although they are not com-
monly found in communication systems. As an example we have x(t) = t .

2.1.2 Typical Deterministic Signals

In this subsection we present the definitions of some deterministic signals com-
monly encountered in the study of communication systems.

2.1.2.1 Unit-Step Function

When defined in the time-domain, the continuous-time and discrete-time unit-step
functions are given respectively by

u(t) =
{

1, t > 0

0, t < 0
and

u[n] =
{

1, n ≥ 0

0, n < 0
.

(2.7)
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The unit-step function is also know as heaviside step function. It is defined by
some authors also for t = 0.

2.1.2.2 Dirac Delta and Kronecker Delta Functions

The first derivative of the continuous-time unit-step function gives rise to the Dirac
delta function, as shown by:

δ(t) = d

dt
u(t). (2.8)

The Dirac delta is a mathematical abstraction consisting of an impulse of infi-
nite amplitude and zero width, and having an area of unity. This abstraction occurs
because u(t) is in fact not differentiable, since it is not continuous at t = 0. Then we
must think of (2.8) as the derivative of a step function with progressive smaller rise
time Δ. As Δ decreases, the derivative δΔ(t) becomes higher in amplitude, smaller
in duration and always with unit area. For Δ → 0, δΔ(t) → δ(t).

The first difference1 of the discrete-time unit-step function gives rise to the
Kronecker delta function, that is,

δ[n] = u[n] − u[n − 1] =
{

1, n = 0

0, n �= 0
. (2.9)

Without loss of their particularities, the Dirac and the Kronecker delta functions
are usually referred to as unit impulses.

The sifting property applied to the unit impulses yields, respectively,

x(t) =
∫ ∞

−∞
x(τ )δ(τ − t)dτ and

x[n] =
∞∑

k=−∞
x[k]δ[k − n].

(2.10)

The term sifting comes from the fact that, in the discrete-time case, the sum in
(2.10) goes through the sequence {x[k]}, retaining or sifting the values where k = n
as if we had a special sieve for these values when k = n. The interpretation for the
continuous-time case is analogous and follows immediately.

The sifting property can be interpreted alternatively as follows: the integral of
a continuous-time function multiplied by a unit impulse results in the value of the
function where the impulse exists. An alternative form of the integral in (2.10) illus-
trates this interpretation:

1 The difference operation on a discrete-time signal is equivalent to the derivative operation on
a continuous-time signal. Analogously, a difference equation in the discrete-time domain corre-
sponds to a differential equation in the continuous-time domain.
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∫ ∞

−∞
x(t)δ(t − t0)dt = x(t0). (2.11)

A similar interpretation follows immediately for the discrete-time case.
The unit impulses play a major role in the characterization of linear systems, as

we shall see later on in this chapter. Unit impulses are also important in the study of
the sampling theory, a subject also treated later on in this chapter.

Below we have other properties of the unit impulse function. For the sake of
brevity, only the continuous-time Dirac delta function is considered. Similar prop-
erties hold for the discrete-time impulse.

1. Scaling :
∫ ∞

−∞
δ(αx)dx =

∫ ∞

−∞
δ(u)

du

|α| = 1

|α| ⇒ δ(αx) = δ(x)

|α|
2. Generalized scaling : δ[g(x)] =

∑

i

δ(x − xi )

|g′(xi )| ⇒ δ[αg(x)] = δ[g(x)]

|α|

3. Integral/scaling :
∫ ∞

−∞
f (x)δ[g(x)]dx =

∑

i

f (xi )

|g′(xi )|
4. Convolution : f (t) ∗ δ(t − T ) = f (t − T ).

(2.12)

Due to the abstraction in the definition of the Dirac delta function, its mathe-
matical treatment becomes difficult. To overcome this difficulty, the delta function
is sometimes represented as approximations of other functions. For example, if we
take a Gaussian probability density function fX (x) and make the standard deviation
σ progressively small, in the limit as σ → 0, fX (x) → δ(t). There are several other
functions that, in the limit of a given parameter, tend to the unit impulse. See for
example [39].

2.1.2.3 Rectangular Function

The rectangular continuous-time and discrete-time functions can be defined respec-
tively by

rect

(
t

T

)
= u

(
t + T

2

)
− u

(
t − T

2

)
=
{

1, |t | ≤ T/2

0, |t | > T/2
and

rect
[ n

N

]
= u

[
n + N

2

]
− u

[
n − N

2

]
=
{

1, |n| ≤ N/2

0, |n| > N/2
.

(2.13)

Although the continuous-time version of the rect function can be defined differ-
ently from the first equation in (2.13), the definition above is commonly encountered
in references on communication systems. On the other hand, it is not so common
the association of the term rect with the discrete-time version of the rectangular
function. In this case it is simply defined by
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x[n] =
{

1, |n| ≤ N

0, |n| > N
. (2.14)

2.1.2.4 Sinc Function

The sinc function is defined according to

sinc(x) = Sa(x) =
{

sin(πx)
πx , x �= 0

1, x = 0
. (2.15)

The name sinc comes from the function full name: sine cardinal. The less usual
name Sa comes from the word sample, as a resemblance of the use of the sinc
function as an optimum interpolation function to restore an analog signal from its
samples. This topic will be treated in the section on sampling theory.

Some authors do not explicitly define the value of sinc(x) at x = 0, since from
the L’Hôpital’s rule,

lim
x→0

sin(πx)

πx
= lim

x→0

π cos(πx)

π
= 1. (2.16)

Some mathematical software tools like Mathcad need the definition of the sinc
function according to (2.15). For these software tools, sinc(x) at x = 0 is zero.
VisSim/Comm assumes that sinc(x) at x = 0 is undefined, since it is interpreted as
a division by zero.

Some properties and relations involving the sinc function are given below:

1. Infinite product : sinc(x) = lim
m→∞

m∏

n=1

(
1 − x2

n2

)

2. Gamma function : sinc(x) = 1

Γ(1 + x)Γ(1 − x)

3. Dirac delta : lim
a→0

1

a
sinc

( x

a

)
= δ(x).

(2.17)

Note in the last line of (2.17) that the sinc function is also an approximation or
alternative definition for the Dirac delta function.

As mentioned above, the sinc function has applications in the sampling theory.
It is also one of the most frequently used functions in the study of communication
systems, both in the time and in the frequency domains.
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2.2 Fourier Analysis of Signals

Jean Baptiste Joseph Fourier was a French mathematician and physicist. He was
born on March 21, 1768 and died on May 16, 1830. He is known mainly for the
application of the so-called Fourier series in the analysis of heat flow.

In fact, the contributions by Joseph Fourier entered into scene in a very controver-
sial discussion around trigonometric sums, that is, the sums of harmonically related
sines and cosines and its applications. This subject has gained attention almost a
century before Fourier was born, and most of Fourier’s discoveries were put into
practice only after his lifetime [24].

Today, the broader field of Fourier analysis goes beyond the Fourier series and
encounters many applications, ranging from physics and signal processing to prob-
ability, statistics, random processes and telecommunications, only to mention a few
examples.

In this section we review some of the main concepts related to the Fourier anal-
ysis of signals, with focus on its applications in digital transmission systems. This
review was based on the books by S. Haykin and B. V. Veen [11], H. P. Hsu [13],
B. P. Lathi [15–17], and A. V. Oppenheim, A. V. Willsky and S. H. Nawab [24].

Complementary to the analysis of signals, the Fourier analysis of systems will be
addressed in Sect. 2.4, where linear systems are put into focus.

2.2.1 Fourier Series

The Fourier series is the representation of a periodic signal by a linear combination
of sines and cosines or complex exponentials. When sines and cosines are combined
we have the trigonometric Fourier series. When complex exponentials are combined
we have the complex exponential Fourier series.

Both of these complex exponentials or sines and cosines are harmonically related,
which means that their frequencies are integer multiples of the fundamental angu-
lar frequency. For a continuous-time signal, the fundamental angular frequency (in
radians per second) is ω0 = 2π f0 = 2π/T , where T is the period of the sig-
nal. For a discrete-time signal, the fundamental angular frequency (in radians) is
Ω0 = 2π f0 = 2π/N , where N is the period of the signal.

In what follows we consider only the complex exponential form of the Fourier
series representation.

2.2.1.1 Fourier Series for Continuous-Time Periodic Signals

For a continuous-time periodic signal, the Fourier series is given by

x(t) =
∞∑

k=−∞
ake jk(2π/T )t , (2.18)

where T is the period of x(t) and the Fourier series coefficients are determined by
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ak = |ak |e jφk = 1

T

∫

T
x(t)e− jk(2π/T )t dt. (2.19)

The set of (possibly complex) coefficients {ak} measure the value of each of the
frequency components of x(t). The special value of a0 is the DC component of x(t),
that is, the frequency portion of x(t) at f = 0.

As we shall see later on in this section, the frequency spectra given by the Fourier
series coefficients is plotted as lines or bars in a single graph if {ak} is real or in two
graphs if {ak} is complex.

2.2.1.2 Convergence of the Fourier Series for Continuous-Time Periodic
Signals

A periodic signal x(t) has a Fourier series representation if it satisfies the Dirichlet
conditions:

• It is absolute integrable in one period, that is
∫

T |x(t)|dt < ∞.
• It has a finite number of maxima and minima and a finite number of finite dis-

continuities within a period.

Fortunately, a very few signals do not satisfy the Dirichlet conditions, so that the
convergence of the Fourier series usually will not be of main concern.

The Fourier series can be truncated so as to consider 2N + 1 terms:

xN (t) =
N∑

k=−N

ake jk(2π/T )t . (2.20)

In this case, if we define an error signal as

eN (t) = x(t) −
N∑

k=−N

ake jk(2π/T )t , (2.21)

the convergence of the Fourier series means that as N → ∞ the energy in the error
signal tends to zero, that is,

lim
N→∞

∫

T
|eN (t)|2 dt = 0. (2.22)

Special attention must be directed to the convergence of the Fourier series for
discontinuous signals. The example below aims at clarifying this matter.

Example 2.1 – Consider the square wave x(t) depicted in Fig. 2.2. First let us find
the Fourier series coefficients and then analyze the convergence of the Fourier series
for a finite number of terms, as determined by (2.20).
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From (2.19), the DC level of x(t) is

a0 = 1

T

∫ T/2

−T/2
x(t)dt = 1

T

∫ Th/2

−Th/2
1dt = Th

T
. (2.23)

By definition, the duty-cycle of a square wave is the ratio between the high level
pulse (or mark) duration and the period. Then, the DC value of a square wave signal
can be determined by the multiplication of the duty-cycle by the amplitude of the
signal, which is a quite obvious result.

The remaining coefficients for k �= 0 can be computed as follows:

ak = 1

T

∫ T/2

−T/2
x(t)e− jk(2π/T )t dt = 1

T

∫ Th/2

−Th/2
e− jk(2π/T )t dt

= − 1

jk2π
[e− jk(2π/T )t ]

∣∣Th/2
−Th/2 = − 1

jk2π
[e− jkπ(Th/T ) − e jkπ(Th/T )]

= 1

kπ

[
e jkπ(Th/T ) − e− jkπ(Th/T )

2 j

]
= 1

kπ
sin

[
kπ

Th

T

]
.

(2.24)

Observe that the set of Fourier series coefficients are real in this case and they
will be real in all cases where x(t) is an even function of t . In these cases we need
just one graph to depict {ak}, as illustrated in Fig. 2.3 for a duty-cycle of 30%.

Fig. 2.2 A square wave with duty-cycle Th/T %

By using a set with 2N + 1 coefficients in (2.20) we have the so-called trun-
cated Fourier series approximation. The synthesis of xN (t) for some values of N

Fig. 2.3 Fourier series coefficients for a square wave with 30% duty-cycle and unit amplitude
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are shown in Fig. 2.4. Observe that as N becomes larger, the resultant waveform
approaches the original signal x(t). Nevertheless, no matter how large we make N ,
there will always be the overshoot and undershoot spikes nearby the signal transi-
tions. For a square wave, these peaks have a maximum overshoot and undershoot
of about 9% of the signal excursion [17, p. 204; 19, p. 800] and this value does not
decrease as N increases. This is known as the Gibbs phenomenon, and it will appear
whenever the original signal has discontinuous transitions.

The Gibbs phenomenon seems to contradict the convergence properties of the
Fourier series, but in fact it does not. As N becomes larger, the overshoots and
undershoots remain unchanged in amplitude, but they are shortened in duration.
Then, for N → ∞ the energy of the error signal eN (t) given in (2.21) tends to zero
as it should.

Fig. 2.4 Synthesis of xN (t) using 2N + 1 Fourier series coefficients

The reasons for the appearance of the Gibbs phenomenon are briefly discussed
in [17, p. 204]. A deeper mathematical treatment on the convergence of the Fourier
series and on the Gibbs phenomenon is given in [9].

Simulation 2.1 – Gibbs Phenomenon

File – CD drive:\Simulations\Signals\Gibbs.vsm.

Default simulation settings: Frequency = 10,000 Hz; End = 1 second.
Number of coefficients in the synthesis of x(t) by its truncated Fourier
series: 2N + 1 = 33 ⇒ N = 16.

In this experiment we complement the concepts presented above on the Fourier
series for continuous-time periodic signals, mainly in what concerns the Gibbs
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phenomenon. Three reference signals x(t) are generated, along with their approxi-
mate synthesis by the truncated Fourier series xN (t). These signals are: 1) a single
period of a 30% duty-cycle square wave, 2) two periods of a saw-tooth wave and 3)
two periods of a triangular wave. All signals have unitary peak-to-peak value.

The energy of the error signal eN (t), as defined by (2.22), is calculated for each
reference and synthesized signals. Additionally, a meter is used to measure the
overshoots and undershoots, if any, in order to permit a quantification of the Gibbs
phenomenon. Furthermore, the value of N in (2.20) can be adjusted from 1 to 512 in
integer powers of 2. The visual similarities between the original and the synthesized
signals can be visualized through plots A, B and C.

For each of the signals x(t), vary the value of N and observe the waveforms of
x(t) and xN (t). Note that as the value of N is increased, these waveforms become
progressively more similar to one another. Note also that the energy of the error
signal reduces progressively as N increases.

Now, while visualizing x(t) and xN (t) for several values of N , note that the Gibbs
phenomenon appears only for the square and the saw-tooth waveforms, a result that
is in agreement to what was stated before: the Gibbs phenomenon only happens if
the waveform has discontinuities in it.

Pay attention to the overshoot measurements for the square and the saw-tooth
waves for several values of N . Note that as soon as the Gibbs phenomenon can be
clearly identified, which happens for N > 8, the overshoot of xN (t) referenced to
x(t) remains approximately constant in about 9%, confirming the theoretical expla-
nation given before.

The energy of the error signal for the triangular wave, as happens to the other
two waveforms, also diminishes as N increases. Since the Gibbs phenomenon does
not happens, this energy reduces faster as compared to the error signals produced
by the synthesis of the square and the saw-tooth waveforms.

Explore inside the individual blocks. Try to understand how they were imple-
mented. Create and investigate for yourself new situations and configurations of
the simulation parameters and try to reach your own conclusions. Specifically,
magnify the waveforms near the transitions or peaks for a better view of details.
As an exercise, try to explain the operation of the “overshoot meters” used in the
simulation.

2.2.1.3 Power of a Continuous-Time Periodic Voltage or Current Signal

The Parseval’s theorem applied to the Fourier series allows for the computation of
the average power of a voltage or current waveform x(t) according to

P = 1

T

∫

T
|x(t)|2 dt =

∞∑

k=−∞
|ak |2. (2.25)

The average power in each harmonic component of x(t) can be determined by
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Pk = 1

T

∫

T
|ak |2 dt = |ak |2. (2.26)

The above average powers are said to be normalized, in the sense that their com-
putation implicitly assumes that the load resistance is 1 Ω.

2.2.1.4 Properties of Fourier Series for Continuous-Time Periodic Signals

The most important properties of the Fourier series for continuous-time periodic
signals are listed in Table 2.1. For proofs and further details, please refer to [24].

Table 2.1 Properties of the continuous-time Fourier series

Property Periodic signal Coefficients

Linearity Ax(t) + By(t) Aak + Bbk

Time shifting x(t − τ ) ak exp[− jk(2π/T )τ ]
Frequency shift x(t) exp[ j M(2π/T )t] ak−M

Conjugation x∗(t) a∗
−k

Time reversal x(−t) a−k

Time scaling x(αt), α > 0 ak

Periodic convolution
∫

T x(τ )y(t − τ )dτ T akbk

Multiplication x(t)y(t)
∞∑

j=−∞
a j bk− j

Differentiation d
dt x(t) jk(2π/T )ak

Integration
∫ t
−∞ x(t)dt [ jk(2π/T )]−1ak

Symmetry If x(t) is real, then:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ak = a∗
−k

Re{ak} = Re{a−k}
Im{ak} = −Im{a−k}

|ak | = |a−k |
arg{ak} = −arg{a−k}

Real and even signals If x(t) is real and even, then: ak is real and even
Real and odd signals If x(t) is real and odd, then: ak is imaginary and odd
Decomposition of real signals xe(t) is the even part of x(t): Re{ak}

in even and odd parts. xo(t) is the odd part of x(t): jIm{Ak}

2.2.1.5 Fourier Series for Discrete-Time Periodic Signals

For a discrete-time periodic signal, the Fourier series is determined by

x[n] =
i+N−1∑

k=i

ake jk(2π/N )n, ∀i, (2.27)

where N is the period of x[n] and the summation in k from i to (i + N − 1), ∀i
means that k starts in any value and varies successively in the range of N samples.
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The corresponding Fourier series coefficients are computed from

ak = |ak |e jφk = 1

N

i+N−1∑

n=i

x[n]e− jk(2π/N )n, ∀i. (2.28)

Similarly to the continuous-time Fourier series, the set of (possibly complex)
coefficients {ak} measure the value of each of the harmonically-related frequency
components of x[n]. The frequency spectra given by the Fourier series coefficients
is plotted as lines or bars in one graph if {ak} is real or in two graphs if {ak} is
complex.

An important difference between the Fourier series coefficients for discrete-time
aperiodic sequences and for discrete-time periodic sequences is that the former are
aperiodic and the later are periodic with period N , that is,

ak = ak+N . (2.29)

2.2.1.6 Convergence of the Fourier Series for Discrete-Time Periodic Signals

In contrast to the continuous-time case, convergence aspects of the discrete-time
Fourier series are not of concern, since the periodic signal x[n] is precisely synthe-
sized by the linear combination in (2.27), using N harmonically-related complex
exponentials and N coefficients determined via (2.28).

2.2.1.7 Power of a Discrete-Time Periodic Voltage or Current Signal

The Parseval’s theorem also applies to the calculation of the normalized average
power of a voltage or current discrete-time signal x[n] according to

P = 1

N

i+N−1∑

n=i

|x[n]|2 =
i+N−1∑

k=i

|ak |2. (2.30)

From (2.30), the average power in the k-th harmonic component of x[n] is |ak |2.

2.2.1.8 Properties of Fourier Series for Discrete-Time Periodic Signals

The properties of the discrete-time Fourier series are similar to those corresponding
to the continuous-time case. Some of these properties are listed in Table 2.2. Again,
the reader is referred to [24] for further details and proofs.

2.2.2 Continuous-Time Fourier Transform

In terms of concept, we can interpret the Fourier transform of an aperiodic
continuous-time signal x(t) as the limit of its Fourier series for its period tending to
infinite. For a better understanding of this concept, revisit Fig. 2.3 in Example 2.1,
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Table 2.2 Properties of the discrete-time Fourier series

Property Periodic signal Coefficients

Linearity Ax[n] + By[n] Aak + Bbk

Time shifting x[n − n0] ak exp[− jk(2π/N )n0]
Frequency shift x[n] exp[ j M(2π/N )n] ak−M

Conjugation x∗[n] a∗
−k

Time reversal x[−n] a−k

Time scaling x[n/m], n multiple of m. (1/m)ak

Periodic convolution
i+N−1∑

r=i
x[r ]y[n − r ], ∀i Nakbk

Multiplication x[n]y[n]
i+N−1∑

r=i
ar bk−r , ∀i

First difference x[n] − x[n − 1] {1 − exp[− jk(2π/N )]}ak

Running sum
n∑

k=−∞
x[k] {1 − exp[− jk(2π/N )]}−1ak

Symmetry If x[n] is real, then:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ak = a∗
−k

Re{ak} = Re{a−k}
Im{ak} = −Im{a−k}

|ak | = |a−k |
arg{ak} = −arg{a−k}

Real and even signals If x[n] is real and even, then: ak is real and even
Real and odd signals If x[n] is real and odd, then: ak is imaginary and odd
Decomposition of real signals xe[n] is the even part of x[n]: Re{ak}

in even and odd parts. xo[n] is the odd part of x[n]: jIm{ak}

recalling also that the frequency spacing between any pair of spectral lines is equal
to the fundamental ordinary frequency f0 = 1/T hertz.

Let us rewrite expression (2.24) for these Fourier series coefficients:

ak = 1

kπ
sin

(
kπ

Th

T

)
= Th

T

sin[kπ (Th/T )]

kπ (Th/T )
= Th

T
sinc

(
k

Th

T

)
. (2.31)

Note that the first null coefficient, if any, will happen for

kπ
Th

T
= π ⇒ k = T

Th
. (2.32)

This value of k corresponds to the frequency

fk = k
1

T
= T

Th

1

T
= 1

Th
, (2.33)

which is independent of T . A continuous function of f that has the same shape of
the envelope of (2.31) is the sinc function

X ( f ) = Thsinc( f Th). (2.34)



102 2 Signals and Systems

This function is plotted in Fig. 2.5, along with the Fourier series coefficients
of Example 2.1, multiplied by T . This multiplication is made to guarantee that the
continuous envelope is kept attached to the values of the coefficients for different
values of T . Note in this figure that the horizontal axis was modified to permit the
matching between the index of a coefficient and its ordinary frequency.

Fig. 2.5 Fourier series coefficients and its envelope for a square wave

If we let T increase in Fig. 2.2, keeping Th unchanged, the spectral lines in
Fig. 2.5 becomes closer. In the limit of T → ∞, the square wave x(t) will tend to a
single rectangular pulse of duration Th and the modified Fourier series coefficients
T ak will tend to the function X ( f ). As we shall see later, (2.34) is indeed the Fourier
transform of a unit amplitude rectangular pulse of duration Th and centered about
the origin (see Table 2.4 a littler further ahead).

This is the reasoning behind the Fourier transform: we create an aperiodic signal
by letting the period of a periodic signal tend to infinity. Then we apply a modified
version of the Fourier series, as we shall see in the sequel.

The continuous-time Fourier transform plays a major role in the study of com-
munication systems and, for this reason, a special attention is devoted to it here.

2.2.2.1 Definition of the Continuous-Time Fourier Transform

Let us apply the reasoning constructed above to the expressions of the Fourier series
for periodic signals. We shall use x p(t) to identify the periodic signal and x(t) to
identify the aperiodic signal constructed from x p(t) by letting T → ∞. From (2.19),
the value of T ak is given by

T ak =
∫

T
x p(t)e− jk(2π/T )t dt. (2.35)

When T → ∞, T ak will tend to the function X ( f ), x p(t) becomes x(t) and
k(2π/T ) becomes 2π f . With these results in (2.35) we obtain
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X ( f ) =
∫ ∞

−∞
x(t)e− j2π f t dt. (2.36)

From (2.18), with ak = X ( f )/T and f0 = 1/T we have

x p(t) =
∞∑

k=−∞
X ( f )e jk(2π/T )t f0. (2.37)

When T → ∞, x p(t) becomes x(t), f0 will tend to zero, k(2π/T ) becomes 2π f
and the summation in (2.37) becomes an integral. As a result we obtain

x(t) =
∫ ∞

−∞
X ( f )e j2π f t d f. (2.38)

Equations (2.36) and (2.38) form the Fourier transform pair of a continuous-time
aperiodic signal. The frequency content of x(t) is obtained via (2.36), which is called
simply the Fourier transform of x(t). The time function x(t) is recovered from its
Fourier transform by applying the inverse Fourier transform (2.38). We shall denote
the Fourier transform of x(t) as �{x(t)}.

Note that if x(t) is a voltage signal, then the Fourier transform will give the
voltage of the frequency components of x(t) through a continuum function of the
ordinary frequency f .

2.2.2.2 Convergence of the Continuous-Time Fourier Transform

The sufficient conditions for the convergence of the Fourier transform of a continuous-
time aperiodic signal x(t) are similar to those presented for the Fourier series. They
are also called Dirichlet conditions:

• x(t) must be absolute integrable, that is,
∫∞
−∞ |x(t)|dt < ∞.

• It must have a finite number of maxima and minima and a finite number of finite
discontinuities within a finite interval.

2.2.2.3 Continuous-Time Fourier Transform for Periodic Signals

The Fourier transform of a continuous-time periodic signal x(t) can be obtained
from its Fourier series coefficients according to

X ( f ) =
∞∑

k=−∞
akδ

(
f − k

T

)
. (2.39)

This result means that the Fourier transform of a periodic signal is a train of
impulses located in multiples of the fundamental frequency f0 = 1/T Hz, and
whose areas are equal to the values of the Fourier series coefficients.

The values of the coefficients are, as before,
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ak = |ak |e jφk = 1

T

∫

T
x(t)e− jk(2π/T )t dt. (2.40)

The signal x(t) can be recovered from its Fourier transform by applying

x(t) =
∫ ∞

−∞
X ( f )e j2π f t d f

=
∫ ∞

−∞

∞∑

k=−∞
akδ

(
f − k

T

)
e j2π f t d f

=
∞∑

k=−∞
ak

∫ ∞

−∞
δ

(
f − k

T

)
e j2π f t d f

=
∞∑

k=−∞
ake jk(2π/T )t ,

(2.41)

where the last line was determined from the preceding line by applying the sifting
property of the Dirac delta function.

2.2.2.4 Energy of a Continuous-Time Aperiodic Voltage or Current Signal

The Parseval’s theorem applied to the Fourier transform allows for the computation
of the normalized average energy of a voltage or current waveform x(t) according
to

E =
∫ ∞

−∞
|x(t)|2 dt =

∫ ∞

−∞
|X ( f )|2d f. (2.42)

The function |X ( f )|2 is called the energy spectral density of x(t). It shows how
the energy of x(t) is distributed in a continuum of the ordinary frequency f .

2.2.2.5 Properties and Pairs of the Continuous-Time Fourier Transform

Tables 2.3 and 2.4 present some Fourier transform properties and pairs, respectively.
For additional details and proofs, please refer to [11, 13, 17, 24].

Table 2.3 Properties of the Fourier transform

Property Aperiodic signal Fourier transform

Linearity Ax(t) + By(t) AX ( f ) + BY ( f )
Time shifting x(t − τ ) X ( f ) exp[− j2π f τ ]
Frequency shift x(t) exp[ j2π f0t] X ( f − f0)
Conjugation x∗(t) X∗(− f )
Duality X (t) x(− f )
Time reversal x(−t) X (− f )

Time scaling x(αt)
1

|α| X

(
f

α

)

Convolution x(t) ∗ y(t) X ( f )Y ( f )
Multiplication x(t)y(t) X ( f ) ∗ Y ( f )
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Table 2.3 (continued)

Property Aperiodic signal Fourier transform

Differentiation in time dn

dtn x(t) ( j2π f )n X ( f )

Differentiation in frequency tn x(t)

(
j

2π

)n dn X ( f )

d f n

Integration
∫ t
−∞ x(u)du

1

j2π f
X ( f ) + X (0)

2
δ( f )

Area under x(t)
∫∞
−∞ x(t)dt X (0)

Area under X ( f )
∫∞
−∞ X ( f )d f g(0)

Symmetry If x(t) is real, then:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X ( f ) = X∗(− f )
Re{X ( f )} = Re{X (− f )}

Im{X ( f )} = −Im{X (− f )}
|X ( f )| = |X (− f )|

arg{X ( f )} = −arg{X (− f )}
Real and even signals If x(t) is real and even, then: X ( f ) is real and even
Real and odd signals If x(t) is real and odd, then: X ( f ) is imaginary and odd
Decomposition of real signals xe(t) is the even part of x(t): Re{X ( f )}

in even and odd parts. xo(t) is the odd part of x(t): jIm{X ( f )}
Table 2.4 Continuous-time Fourier transform pairs

Signal Fourier transform

Arect

(
t

T

)
=
{

A, |t | < T/2

0, |t | ≥ T/2
AT

sin(π f T )

(π f T )
= AT sinc( f T )

⎧
⎨

⎩
1 − |t |

T
, |t | < T

0, |t | ≥ T
T

sin2(π f T )

(π f T )2
= T sinc2( f T )

sinc(2BT )
1

2B
rect

(
f

2B

)

exp(−αt2), Re(α) > 0

√
π

α
exp

[
− (π f )2

α

]

exp(−αt)u(t), α > 0
1

α + j2π f
exp( jαt) δ

(
f − α

2π

)

u(t) (unit step function) 1
2

(
1

jπ f
+ δ( f )

)

exp(−α|t |), α > 0
2α

α2 + 4π2 f 2
1
π t − jsgn( f ),

where sgn( f ) = u( f )−u(− f )
1 δ( f )
δ(t) 1

cos(αt) 1
2

[
δ
(

f − α

2π

)
+ δ

(
f + α

2π

)]

sin(αt) 1
2 j

[
δ
(

f − α

2π

)
− δ

(
f + α

2π

)]

cos(αt2)

√
π

α
cos

(
π2 f 2

α
− π

4

)

sin(αt2) −
√

π

α
sin

(
π2 f 2

α
− π

4

)

∑∞
n=−∞ δ(t − nT )

1

T

∑∞
k=−∞ δ

(
f − k

T

)
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2.2.3 Discrete-Time Fourier Transform

The discrete-time Fourier transform also plays an important role in the study of
communication systems. For this reason, special attention is devoted to it here.

2.2.3.1 Definition of the Discrete-Time Fourier Transform

Let x[n] be an aperiodic discrete-time sequence and X (Ω) its Fourier transform,
where Ω is the angular frequency, measured in radians. These functions are related
thorough the discrete-time Fourier transform pair:

X (Ω) =
∞∑

n=−∞
x[n]e− jΩn and

x[n] = 1

2π

∫

2π

X (Ω)e jΩndΩ.

(2.43)

The upper expression in (2.43) is the analysis equation and the lower is the syn-
thesis equation. Note that these equations are the counterparts of (2.36) and (2.38),
respectively, with some remarkable differences:

• First, the angular frequency Ω is measured in radians, in contrast to the ordinary
angular frequency ω = 2π f , measured in radians per second. This is because no
time measurement is attached to the discrete-time signal x[n].

• Secondly, note that the integration in (2.43) is limited to the angular frequency
interval of 2π . This happens because X (Ω) is periodic with period 2π , as we
shall see in what follows.

Later on in this chapter we shall map the angular frequency Ω into the ordinary
frequency f , by attaching a time-scale to the sequence x[n].

2.2.3.2 Periodicity of the Discrete-Time Fourier Transform

The discrete-time Fourier transform is periodic with period 2π , as shown by:

X (Ω + 2π ) =
∞∑

n=−∞
x[n]e− j(Ω+2π)n = e− j2πn

∞∑

n=−∞
x[n]e− jΩn

= [
cos(2πn)︸ ︷︷ ︸

1

− j sin(2πn)︸ ︷︷ ︸
0

] ∞∑

n=−∞
x[n]e− jΩn (2.44)

=
∞∑

n=−∞
x[n]e− jΩn = X (Ω).
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2.2.3.3 Convergence of the Discrete-Time Fourier Transform

The convergence of X (Ω) in (2.43) demands that x[n] is absolutely summable, i.e.,

∞∑

n=−∞
|x[n]| < ∞. (2.45)

The expression of synthesis in (2.43) is not of concern in terms of convergence,
since the integration interval is finite.

2.2.3.4 Discrete-Time Fourier Transform for Periodic Signals

Let x[n] be a discrete-time periodic sequence with period N . Its Fourier series is
given by

x[n] =
i+N−1∑

k=i

ake jk(2π/N )n, ∀i. (2.46)

The Fourier series coefficients are known to be

ak = 1

N

i+N−1∑

n=i

x[n]e− jk(2π/N )n,∀i. (2.47)

The discrete-time Fourier transform of the periodic sequence x[n] can be deter-
mined from the knowledge of the Fourier series coefficients according to

X (Ω) =
∞∑

k=−∞
2πakδ

(
Ω − 2πk

N

)
. (2.48)

2.2.3.5 Energy of a Discrete-Time Aperiodic Voltage or Current Signal

The Parseval’s theorem applied to the discrete-time Fourier transform allows for the
computation of the normalized average energy of an aperiodic voltage or current
discrete-time signal x[n] according to

E =
∞∑

n=−∞
|x[n]|2 = 1

2π

∫

2π

|X (Ω)|2 dΩ. (2.49)

The function |X (Ω)|2 is the energy spectral density of x[n]. It shows how the
energy of x[n] is distributed in a continuum of values of the angular frequency Ω.
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2.2.3.6 Properties and Pairs of the Discrete-Time Fourier Transform

In what follows we list some of the properties and pairs of the discrete-time Fourier
transform. Again, the reader is referred to [24] for further details and proofs.

Table 2.5 Properties of the discrete-time Fourier transform

Property Aperiodic signal Fourier transform

Linearity αx[n] + βy[n] αX (Ω) + βY (Ω)
Time shifting x[n − n0] X (Ω) exp[− jΩn0]
Frequency shift x[n] exp[ jΩ0n] X (Ω − Ω0)
Conjugation x∗[n] X∗(−Ω)
Time reversal x[−n] X (−Ω)
Time scaling x[n/m], n multiple of m. X (mΩ)
Convolution x[n] ∗ y[n] X (Ω)Y (Ω)

Multiplication x[n]y[n]
1

2π

∫
2π

X (θ)Y (Ω − θ)dθ

First time difference x[n] − x[n − 1] [1 − exp(− jΩ)]X (Ω)

Running sum
n∑

k=−∞
x[k] [1 − exp(− jΩ)]−1 X (Ω) +

π X (0)δ(Ω), |Ω| ≤ π

Differentiation in frequency nx[n] j
d X (Ω)

dΩ

Symmetry If x[n] is real, then:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

X (Ω) = X∗(−Ω)
Re{X (Ω)} = Re{X (−Ω)}

Im{X (Ω)} = −Im{X (−Ω)}
|X (Ω)| = |X (−Ω)|

arg{X (Ω)} = −arg{X (−Ω)}
Real and even signals If x[n] is real and even, then: X (Ω) is real and even
Real and odd signals If x[n] is real and odd, then: X (Ω) is imaginary and odd
Decomposition of real signals xe[n] is the even part of x[n]: Re{X (Ω)}

in even and odd parts. xo[n] is the odd part of x[n]: jIm{X (Ω)}
Periodicity x[n] X [Ω] = X [Ω + 2π ]

2.2.4 Discrete Fourier Transform

The discrete Fourier transform (DFT) of a finite discrete-time sequence x[n] pro-
duces a finite discrete-frequency sequence X [k] according to

X [k] =
N−1∑

n=0

x[n]e− jkn(2π/N ) =
N−1∑

n=0

x[n]W kn
N , k = 0, 1, . . . , N − 1, (2.50)

where WN is a N -th root of unity2 and is defined by

WN = e− j(2π/N ). (2.51)

2 In mathematics, the N -th roots of unity are all the complex numbers that yield 1 when raised to
the power N .
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Table 2.6 Discrete-time Fourier transform pairs

Signal Fourier transform

x[n] =
{

1, |n| ≤ N1

0, |n| > N1

sin[Ω(N1 + 1
2 )]

sin(Ω/2)

sin(W n)

πn
, 0 < W < π

{
1, 0 ≤ |Ω| ≤ W

0, W < |Ω| ≤ π

δ[n] 1
1 2πδ(Ω), |Ω| ≤ π

δ[n − n0] exp(− jΩn0)
exp( jΩ0n) 2πδ(Ω − Ω0), |Ω|, |Ω0| ≤ π

cos(Ω0n) π [δ(Ω − Ω0) + δ(Ω + Ω0)], |Ω|, |Ω0| ≤ π

sin(Ω0n) − jπ [δ(Ω − Ω0) − δ(Ω + Ω0)], |Ω|, |Ω0| ≤ π

u[n] (unit step function) πδ(Ω) + 1

1 − exp(− jΩ)
, |Ω| ≤ π

−u[−n − 1] −πδ(Ω) + 1

1 − exp(− jΩ)
, |Ω| ≤ π

anu[n], |a| < 1
1

1 − a exp(− jΩ)

−anu[−n − 1], |a| > 1
1

1 − a exp(− jΩ)

(n + 1)anu[n], |a| < 1
1

[1 − a exp(− jΩ)]2

a|n|, |a| < 1
1 − a2

1 − 2a cos Ω + a2

∞∑
k=−∞

δ[n − k N0]
2π

N0

∞∑
k=−∞

δ
(
Ω − k 2π

N0

)

The inverse discrete Fourier transform (IDFT) is given by

x[n] = 1

N

N−1∑

k=0

X [k]e jkn(2π/N ) = 1

N

N−1∑

k=0

X [k]W−kn
N , n = 0, 1, . . . , N − 1. (2.52)

Note that the discrete Fourier transform produces a discrete-frequency result, as
opposed to the continuous-frequency result produced by the discrete-time Fourier
transform. The DFT of a sequence x[n] with length N is usually referred to as an
N -point DFT. Similarly, the IDFT of a sequence X [k] with length N is usually
referred to as an N -point IDFT.

The DFT and IDFT are very attractive Fourier representations of a signal since
they are both finite and, being discrete, they can be operated naturally by computers.
In fact, the DFT and the IDFT have very fast algorithms for their computation: the
FFT (fast Fourier transform) and IFFT (inverse fast Fourier transform). Furthermore,
the DFT and IDFT have a direct relationship with the discrete-time Fourier series
and the Fourier transform. We shall briefly discuss these concepts in the sequel.
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2.2.4.1 The DFT and the Discrete-Time Fourier Series

Comparing (2.50) and (2.52) with (2.27) and (2.28) we notice that the values of X [k]
for a finite sequence x[n] can be determined from the Fourier series coefficients of
the periodic extension of x[n], with period N , according to

X [k] = Nak . (2.53)

2.2.4.2 The DFT and the Fourier Transform

Comparing the Fourier transform in (2.43) with (2.50) we notice that the DFT X [k]
corresponds to samples of X (Ω) spaced by 2π/N radians apart, that is,

X [k] = X (Ω)|Ω=k 2π
N

= X

(
k

2π

N

)
. (2.54)

2.2.4.3 Mapping the Discrete-Frequency Index k into the Ordinary
Frequency f

As we shall see in the study of linear systems, the angular frequency Ω (in radians)
is mapped into the ordinary frequency f (in hertz) according to

f = Ω

2πTs
, (2.55)

where Ts is the time interval between the samples in the sequence x[n].
Then, a value of the DFT in the discrete-frequency k can be mapped into a fre-

quency fk (in hertz) by combining (2.55) and (2.54), yielding

fk = Ωk

2πTs
= (k2π/N )

2πTs
= k

N Ts
. (2.56)

2.2.4.4 Parseval’s Relation for the DFT

The Parseval’s relation applied to the DFT can be written as

N−1∑

n=0

|x[n]|2 = 1

N

N−1∑

k=0

|X [k]|2. (2.57)

If x[n] is a discrete-time voltage or current signal, the Parseval’s relation allows
for the computation of the normalized average energy of x[n] in the time or in the
frequency domain. By dividing both sides of (2.57) per N , an estimate of the aver-
age power in the discrete-time signal x[n] is obtained. Nevertheless, for aperiodic
sequences with large lengths, the precision of the result will be governed by the
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value of N : the greater the value, the better the precision of the estimated average
power will be.

2.2.4.5 Direct and Inverse Numerical Fast Fourier Transforms (FFT
and IFFT)

The numerical computations of the DFT and the IDFT of a finite sequence are usu-
ally referred to as fast Fourier transform (FFT) and inverse fast Fourier transform
(IFFT) algorithms.

The FFT algorithm was motivated by the fact that a direct evaluation of the sums
in (2.50) would lead to arithmetic operations with complexity O(N 2).3 Some FFT
algorithms compute (2.50) with complexity O(N log2 N ).

One of the most common FFT algorithms is the Cooley-Tukey [5]. It recursively
divides an N -point DFT into DFTs of smaller sizes, an approach known as divide-
and-conquer. Although the development of this algorithm is credited to J. W. Cooley
and J. W. Tukey, it was later discovered that those authors have independently rein-
vented the algorithm already known to Carl Friedrich Gauss around 1805 [39, 40].

The most used form of the Cooley-Tukey algorithm divides the N -point DFT
into pieces of size N/2 at each step. For this reason this form of the algorithm is
limited to power-of-two sizes, but other sizes can be used in general.

A detailed analysis about the particular structures of FFT and IFFT algorithms is
beyond the scope of this book. The interested reader can obtain a formal treatment
on the general aspects of the computation of the DFT in Chap. 9 of [23]. Several
FFT algorithms are discussed in [4].

It is worth mentioning that VisSim/Comm makes an extensive use of FFT algo-
rithms to internally compute the frequency content of the signals in a given diagram.
Moreover, VisSim/Comm computes the mapping between the discrete-frequency
index k to the ordinary frequency f by taking into account the size of the FFT, N ,
and the simulation frequency, fs = 1/Ts , according to (2.56). The result is then
presented in the ordinary frequency f , in the range [0, fs/2] Hz or [− fs/2 to fs/2]
Hz, depending on the specifics of the frequency plot.

Simulation 2.2 – The FFT via VisSim/Comm

File – CD drive:\Simulations\Signals\FFT.vsm.

Default simulation settings: Frequency = 10,000 Hz; End = 0.4
second. Sinusoidal x[n] period: N0 = 20. Input signal selector:
Random x[n].

3 The “big O” notation is commonly used to identify the complexity of algorithms in terms of
computational time or memory resources used. A complexity O(N 2) means that the computational
resources grows with the square of N or, alternatively, means that N squared dominates the com-
plexity aspects.
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This experiment aims at illustrating a realistic computation of the FFT for a peri-
odic and an aperiodic sequence x[n] with length NT = 4,000, as performed by the
simulation software VisSim/Comm.

The aperiodic sequence was generated from samples of a band-limited voice
sample-function and the periodic signal is a sinusoidal sequence with configurable
period. One of these signals is selected by the user for analysis.

The selected signal first goes to average power estimation blocks. One of these
blocks belongs to the VisSim/Comm block set and computes the running power
estimation

Pk = 1

k

k−1∑

n=0

|x[n]|2. (2.58)

At the end of the simulation, the value of Pk produced by (2.58) for k = NT will
correspond to the result obtained by the left-side of (2.57), divided by NT .

The other average power estimation is an explicit realization of the left-side of
(2.57), the result being divided by NT .

In the lower part of the experiment the selected signal goes through an FFT com-
putation block. This block is performing an FFT with N = 2, 048 points (2k-point
FFT) of x[n]. Since the input data has NT = 4, 000 points in the simulation interval,
the remaining (NT − N ) points are not used for the FFT computation. Note that if
we had NT = 4, 096 points, a 4k-point FFT would be possible, yielding a more
precise estimation of the frequency content of x[n].

The transform calculated by the FFT block corresponds to (2.50). Then, to obtain
the correct frequency content of x[n] we must divide the values of X [k] by N ,
according to (2.53). The result is plotted in linear and logarithmic scales.

The values of the FFT result X [k] are exported to the file “c:\FFTdata.dat”, so
that you are able to use it in another application or experiment as desired.

The average power of x[n] is also estimated in the frequency domain by applying
the right-side of (2.57), divided by N . Running the simulation you can verify that
all three average power estimations are approximately equal to one another.

Run the simulation while observing Plot A. Note that the FFT block gives a
bilateral FFT result in the ordinary frequency f . In other words, VisSim/Comm
computes the mapping between the discrete-frequency index k to the ordinary fre-
quency f by tanking into account the size of the FFT, N , and the simulation fre-
quency, fs = 1/Ts , according to (2.56). The result is then presented in the ordinary
frequency f in the range [− fs/2 to fs/2] Hz. Note also that the magnitude fre-
quency spectrum is an even function of f , since x[n] is a real sequence.

Now, in the “selector” block, select the sinusoidal x[n] and, while observing
Plot A, run the simulation. Since the sinusoid has a default period N0 = 20, its
angular frequency is Ω0 = 2π/N0 radians and its ordinary frequency, as deter-
mined via (2.55) is f0 = Ω0/(2πTs) = 500 Hz. The amplitude of each discrete
frequency component will be 0.5, since the amplitude of the sinusoidal sequence is
unitary. However, observe that this amplitude is below 0.4, corresponding to a large
error. This error was in fact expected, since a 2k-point FFT is being performed in a
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periodic signal with period N0 = 20. As a result, we do not have an integer number
of periods in the summation (2.50), which produces the error.

The preceding paragraph is intended to serve as a warning: care must be taken
when analyzing the frequency content of a periodic signal via FFT. In practical
situations, increasing the FFT size, if possible, will reduce the error. Nevertheless,
the error will be completely eliminated if N0 divides N . To confirm this, change the
period of the sinusoidal sequence to N0 = 16. Now the summation in (2.50) will
consider an integer number of 2, 048/16 = 128 periods of x[n]. Run the simulation
and observe Plot A. Note that the magnitude of the discrete frequency components,
now located in f0 = Ω0/(2πTs) = 625 Hz, is exactly 0.5, as expected.

In fact, only one period of a periodic signal suffices for the DFT computation.
However, when the signal is composed by several spectral lines, an increased N
will increase the frequency resolution of the frequency plot.

The logarithmic values in Plot A were determined by multiplying the logarithm
to base 10 of the original amplitude value by 20.

Explore inside the individual blocks. Try to understand how they were imple-
mented. Create and investigate for yourself new situations and configurations of the
simulation parameters and try to reach your own conclusions.

2.2.5 Laplace and Z-Transforms

The Laplace transform [17, p. 361] extends the capabilities of the Fourier transform
by considering not only the imaginary axis (as Fourier transform does), but also the
real axis. It has a wide range of applications, from circuit analysis to the solution
of differential equations and the analysis of feedback systems. In communications,
its major application is in the analysis of linear systems [13, p. 110; 24, p. 573; 11,
p. 401].

The Z-transform [17, p. 669], likewise the discrete-time Fourier transform, con-
verts a discrete time-domain signal into a complex frequency-domain represen-
tation. Nevertheless, Z-transform is capable of extending the capabilities of the
discrete-time Fourier transform. Its main application is in the digital (discrete-time)
signal processing [23, p. 149] area.

In what follows we present some brief comments restricted to the correspondence
between the Laplace and the Fourier transform and between the Z-transform and the
discrete-time Fourier transform. The interested reader is encouraged to consult the
references cited throughout this subsection for further details.

The bilateral Laplace transform of a continuous-time signal x(t) is given by

X (s) =
∫ ∞

−∞
x(t)e−st dt. (2.59)

Recalling the continuous-time Fourier transform of x(t), which is given by
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X ( f ) =
∫ ∞

−∞
x(t)e− j2π f t dt, (2.60)

we notice that it is a special case of the Laplace transform in which s = j2π f . Then
we can write

X (s)|s= j2π f = �{x(t)} = X ( f ). (2.61)

Since the algebraic expression for the Laplace transform of a given function can
be equal to the expression related to a different function, the complete specifica-
tion of the Laplace transform demands the determination of the range of values of
s for which the transform converges. This range of values is called the region of
convergence (ROC) of the Laplace transform. As an example, consider the Laplace
transform of x(t) and y(t), as shown below [13, p. 111]:

1. x(t) = eat u(t), a real ⇒ X (s) =
∫ ∞

−∞
x(t)e−st dt = 1

s + a
, Re(s) > −a

2. y(t) = −e−at u(−t), a real ⇒ Y (s) =
∫ ∞

−∞
y(t)e−st dt = 1

s + a
, Re(s) < −a.

(2.62)

Observe that the algebraic expressions of the Laplace transform of x(t) and y(t)
are equal, but they differ in their ROC.

The bilateral Z-transform of the discrete-time sequence x[n] is defined by

X (z) =
∞∑

n=−∞
x[n]z−n . (2.63)

Now, recall that the discrete-time Fourier transform of x[n] is given by

X (Ω) =
∞∑

n=−∞
x[n]e− jΩn . (2.64)

From (2.63) and (2.64) we see that the discrete-time Fourier transform is equal
to the Z-transform for z = e jΩ, that is,

X (z)|z=e jΩ = �{x[n]} = X (Ω). (2.65)

Similarly to the Laplace transform, the algebraic expression of the Z-transform
of a given function can be equal to the expression corresponding to a different func-
tion. Then, Z-transform also demands the specification of the range of values of the
complex quantity z for which the transform converges. This range of values is called
the region of convergence (ROC) of the Z-transform. As an example, consider the
Z-transform of x[n] and y[n], as shown below [13, p. 166]:
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1. x[n] = anu[n], a real ⇒ X (z) =
∞∑

n=−∞
x[n]z−n = z

z − a
, |z| > |a|

2. y[n] = −anu[−n − 1], a real ⇒ Y (z) =
∞∑

n=−∞
y[n]z−n = z

z − a
, |z| < |a|.

(2.66)

Observe that, similarly to the Laplace transforms in (2.62), the algebraic expres-
sions of the Z-transform of x[n] and y[n] are equal, but they differ in their ROC.

2.3 Sampling of Deterministic and Random Signals

Sampling is an essential operation for converting a continuous-time signal into a
sequence, enabling digital processing of this sequence. In this section we review the
main concepts associated to the sampling theory when applied to deterministic and
stochastic signals.

2.3.1 Ideal Sampling of Deterministic Signals

A continuous-time (possibly complex) deterministic signal x(t) is considered to be
band-limited if the magnitude of its Fourier transform |X ( f )| = 0 for | f | > B,
where B is the highest frequency component of x(t). From a practical perspective,
it suffices that X ( f ) is approximately zero for | f | > B.

Let a sequence of unit impulses and its Fourier transform be written as

∞∑

k=−∞
δ(t − kTs) � 1

Ts

∞∑

k=−∞
δ

(
f − k

Ts

)
. (2.67)

Now let us construct the sampled version of x(t), which we call xs(t), by multi-
plying x(t) by the sequence of unit impulses, according to

xs(t) = x(t)
∞∑

k=−∞
δ(t − kTs). (2.68)

Since a multiplication in the time-domain corresponds to a convolution in the
frequency-domain, the Fourier transform of xs(t) will be given by

Xs( f ) = 1

Ts

∞∑

k=−∞
X

(
f − k

Ts

)
. (2.69)
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Figure 2.6 illustrates the ideal sampling process just described. Note that the
spectrum of a sampled signal corresponds to replications of the original spectrum at
multiples of the sampling rate 1/Ts , scaled by 1/Ts .

The original signal can be completely recovered from its samples if xs(t) is fil-
tered by an ideal low-pass reconstruction filter with gain Ts between −B and +B
and zero otherwise, as long as the sampling rate is greater than 2B samples per
second. This is the so-called Nyquist sampling criterion. If the sampling rate is 2B
samples per second we say that we are sampling at the Nyquist rate.

For a sampling rate less than 2B samples per second, the spectral replicas in
Xs( f ) are superimposed, causing a phenomenon called aliasing. Aliasing clearly
causes distortion and the original signal can not be recovered.

Fig. 2.6 Illustration of the ideal sampling process

The impulse response of the ideal reconstruction filter is given by

h(t) = sinc(2Bt) = sin(2π Bt)

2π Bt
. (2.70)

Then we have a perfectly reconstructed signal

x(t) =
∞∑

k=−∞
x

(
k

2B

)
sinc

[
2B

(
t − k

2B

)]
, (2.71)

where {x(k/2B)} are the samples of x(t) taken in integer multiples of 1/(2B) sec-
onds. This reconstruction is said to be perfect since

x(t) −
∞∑

k=−∞
x

(
k

2B

)
sinc

[
2B

(
t − k

2B

)]
= 0. (2.72)

Equation (2.72) shows the reason for the name ideal interpolating function usu-
ally given to the sinc function in the context of sampling. In other words, the samples
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Fig. 2.7 Illustration of the ideal reconstruction of x(t) from its samples

are connected according to the sinc functions that are added in-between them.
Figure 2.7 illustrates this ideal reconstruction process.

2.3.2 Ideal Sampling of Stochastic Processes

Let X (t) be a band-limited stationary random process, such that |SX ( f )| = 0 for
| f | > B, where B is the highest frequency component of X (t). If this process is
sampled at a rate greater than 2B samples per second, it can be reconstructed from
its samples by using the ideal interpolating function, as shown by

Y (t) =
∞∑

k=−∞
X

(
k

2B

)
sinc

[
2B

(
t − k

2B

)]
. (2.73)

The reconstruction above is not perfect as in the case of a deterministic signal and
the equality between X (t) and Y (t) occurs in the mean square sense, which means
that

E

⎧
⎨

⎩

∣∣∣∣∣X (t) −
∞∑

k=−∞
X

(
k

2B

)
sinc

[
2B

(
t − k

2B

)]∣∣∣∣∣

2
⎫
⎬

⎭ = 0. (2.74)

2.3.3 Practical Sampling

The ideal sampling process considered previously is not realizable in practice due
to the fact that the sequence of Dirac delta impulses is not realizable. Addition-
ally, the ideal reconstruction process is not realizable due to the fact that the ideal
interpolating filter is not realizable.

Another problem arises due to the fact that, in practice, most of the signals of
interest do not have their spectrum strictly confined in the (−B, +B) range. Then,
some residual aliasing will always occur.
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Figure 2.8 shows a block diagram of a typical discrete-time processing of a
continuous-time signal. The signal x(t) enters an anti-aliasing filter, whose objec-
tive is to attenuate as much as possible the frequency components of x(t) that can
be disregarded. This will reduce the effect of aliasing, also permitting the reduction
of the sampling rate.

Fig. 2.8 A common digital signal processing of a continuous-time signal

At the output of the anti-aliasing filter, the signal x1(t) is sampled and held, which
means that the value of x1(t) at the sampling instant is maintained until the next
sample instant. This process is also known as a zeroth-order hold [35, p. 46].

The signal at the output of the S&H block will look like the one shown in Fig. 2.9.
Note that x2(t) can be written in terms of the ideal sampling as

x2(t) = p(t) ∗ x1(t)
∞∑

k=−∞
δ(t − kTs), (2.75)

where p(t) is a rectangular pulse of unit amplitude and duration Ts < 1/(2B)
seconds. In the frequency-domain we have

Fig. 2.9 The sample and hold (S&H) process

X2( f ) = P( f )
1

Ts

∞∑

k=−∞
X1

(
f − k

Ts

)

=
[

Ts
sin(π f Ts)

π f Ts
e− jπ f Ts

]
1

Ts

∞∑

k=−∞
X1

(
f − k

Ts

)
(2.76)

= sinc( f Ts)e− jπ f Ts

∞∑

k=−∞
X1

(
f − k

Ts

)
.



2.3 Sampling of Deterministic and Random Signals 119

For a better understanding of (2.76), assume that no digital processing is being
performed and that no error is produced by the analog-to-digital (A/D) conversion.
In this case x3(t) will be equal to x2(t). If we additionally want y(t) = x1(t), the
reconstruction filter must compensate for the distortion caused by the multiplication
between the replicas of X1( f ) by the sinc( f Ts) function in (2.76). Then, the sig-
nal x1(t) can be reconstructed from its zeroth-order samples if the signal x2(t) go
through an ideal low-pass filter whose magnitude response is given by

|H2( f )| =
⎧
⎨

⎩

π f Ts

sin(π f Ts)
, | f | ≤ B

0, | f | > B.

(2.77)

This filter is called a x/ sin(x)-type correction filter. In practice, the ideal filtering
given in (2.77) can be relaxed by adopting a realizable filter having the x/ sin(x)
behavior for | f | ≤ B and a high attenuation beyond B Hz. The phase response of
this filter is not of concern, as long as it is linear for | f | ≤ B. Figure 2.10 synthesizes
the above concepts.

Fig. 2.10 The use of a x/ sin(x)-type correction filter when a zeroth-order sampling is performed

In the upper part of Fig. 2.10, observe the effect of the multiplication between
P( f ) and Xs( f ), caused by the use of the zeroth-order sampling. Observe the
distortion in P( f )Xs( f ) when compared to the original X ( f ). To compensate for
this distortion, the x/ sin(x)-type reconstruction filter |H2( f )| is used. In the lower
part of Fig. 2.10 it is shown the ideal and a realizable magnitude response of this
filter.

In real cases in which some error is introduced by the A/D conversion and some
digital signal processing is performed, the x/ sin(x)-type reconstruction filter must
be used as long as some digital-to-analog (D/A) conversion is needed.
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The error in the A/D conversion is mainly caused by the quantization process,
giving rise to the so called quantization error. This topic will be addressed in more
detail in the next subsection.

Simulation 2.3 – Sampling

File – CD drive:\Simulations\Signals\Sampling.vsm.

Default simulation settings: Frequency = 20, 000 Hz; End = 0.4
second. Sampling rate: 2,000 samples/second.

This experiment aims at illustrating the main concepts related to the sampling the-
ory. A high-bandwidth signal is low-pass filtered so that it can be sampled and pro-
duce low aliasing. Most of the power in the filtered signal is concentrated within a
bandwidth of 400 Hz.

The filtered signal is sampled in two ways: (1) “ideal” sampling, which approxi-
mates the ideal sampling process realized by a sequence of impulses, and (2) zeroth-
order sampling. The sampling rate can be configured simultaneously for both sam-
pling processes.

In a situation where the discrete-time processing must provide a continuous-time
result, a digital-to-analog conversion must take place. To simulate this process, the
zeroth-order samples are low-pass filtered in two ways: (1) using a simple low-pass
filter with flat magnitude response and linear phase within the signal bandwidth,
and (2) using a low-pass filter with linear phase and a magnitude response with the
x/ sin(x)-type equalization. The resultant waveforms are compared against the orig-
inal continuous-time waveform, using as a criterion the mean-square error between
the reconstructed and the original signals.

The simulation also permits the visualization of the frequency response of the
reconstruction filters, along with several other plots.

Using the default settings, run the simulation while observing Plot A, just to see
the bandwidth limitation imposed by the anti-aliasing filter.

Now open Plot B. The upper graph shows the “ideal” samples of the signal and
the lower graph shows the frequency spectrum of these samples. Notice that the
ideal sampling generates replicas of the original signal in multiples of the sampling
rate, which in this case is 2,000 samples/second. Compare these results with those
shown in Plot C, which refers to the sample and hold process. Observe that the
frequency spectrum is now modified by the sin(x)/x shape of P( f ), the Fourier
transform of the rectangular zeroth-order pulse. Since this pulse has a duration of
Ts = 1/(2,000) s, the spectral nulls of P( f ) occurs in multiples of 2,000 Hz, as can
be observed via Plot C.

As a simple exercise, justify the appearance of negative amplitudes in the fre-
quency spectrum of P( f )X ( f ) shown in Fig. 2.10 and the absence of such negative
amplitudes in the spectrum shown via Plot C.
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Plot D shows the reconstructed waveforms along with the original waveform.
The outputs of the reconstruction filters were adjusted so that all three signals have
the same average power. This allows for a fair comparison among these signals, as
shown below.

Observe the mean square error (MSE) between the reconstructed signals and
the filtered continuous-time signal. Note that their values are both small, but the
x/ sin(x) equalization has produced a better result. The difference between the
mean square errors is not higher because of the small slope of P( f ) in the band-
width of X ( f ). Moreover, the intensity of X ( f ) in the region of greater distortion
(next to its bandwidth edge) is also small. As a result, the overall distortion is
small. The closer the sampling rate to the Nyquist rate and the higher the inten-
sity of X ( f ) in its edged, the greater the distortion caused by the zeroth-order
sampling. For a better understanding of these comments, please refer again to
Fig. 2.10.

Now open Plot E so that you can compare the frequency responses of the recon-
struction filters. Note that they have approximately the same cutoff frequency, but
slightly different stop-band attenuations. Magnify their pass bands so that you can
observe the flat response of one filter and the x/ sin(x) equalization curve of the
other. The difference in the pass bands can be more easily observed if you uncheck
the log scale for the y-axis of the plot. You will have to rescale the plot after that in
order to have a good visualization.

To see the effect of the sampling rate, change its value to 1,000, then 500 and
250 samples/second and observe plots B, C and D. Note that above 1,000 sam-
ples/second aliasing is practically zero. Note also that the MSE between the recon-
structed and the original signals becomes progressively higher as the sampling fre-
quency becomes smaller. For 250 samples/second it attains its maximum value of 1,
which is equivalent to the comparison of the original signal with 0.

Explore inside the individual blocks. Try to understand how they were imple-
mented. Create and investigate for yourself new situations and configurations of the
simulation parameters and try to reach your own conclusions.

As a complement, in what follows we present some short additional comments
related to deployments of the sampling theory.

2.3.3.1 Aliasing as a Desired Effect

We have seen that aliasing is an undesired effect, since it distorts the signal recon-
structed from its samples. However, there are situations in which aliasing is desired
and, in fact, it is the easiest way of solving some specific problems.

When a signal is under-sampled (1/Ts ≤ 2B), some of its frequency components
are aliased to lower frequencies and this fact can be explored favorably. As an exam-
ple, if a 2 MHz cosine signal is sampled at 3 Mega-samples/second, a frequency
component in 1 MHz will appear due to aliasing. This is the principle behind the
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sampling oscilloscopes, permitting that the equipment extends its capabilities of
showing periodic signals with high frequency components.

2.3.3.2 Sampling of Discrete-Time Signals

Discrete-time signals can also be sampled through methods called up-sampling
(or interpolation) and down-sampling (or decimation). Along with the variation
of the sampling rate of a continuous-time signal, up-sampling and down-sampling
represent useful tools for controlling the time and frequency characteristics of a
signal. Applications of up-sampling and down-sampling include the relaxation in
the design of filters operating in the discrete-time domain, the so-called digital
filters.

For more information on the applications of a controlled aliasing and on the
up-sampling and down-sampling processes, the interested reader is encouraged to
consult classical references on signals and systems and discrete-time signal process-
ing, for example [11], [23] and [24].

2.3.3.3 Sampling of Passband Signals

Finally, it is worth mentioning that the sampling rate of a passband signal does not
need to be twice higher than its highest frequency component. The Nyquist sampling
theorem applied to passband signals states that if a real passband signal has nonzero
frequency content in a range of B = f2 − f1 Hz, the signal can be reconstructed
from its samples if the sampling rate is greater than 2B samples per second. The
restriction for the lower limit of 2B samples per second is that f2 must be an integer
multiple of B [27, pp. 742–746].

The reconstruction process of a sampled passband signal is a little bit more intri-
cate than that used for baseband signals, as indicated in [6, p. 245] and references
therein.

2.3.4 Analog-to-Digital Conversion

Digital signal processing techniques are used today in the majority of functions per-
formed in digital communication system hardware. Since the concept of software-
defined radio (SDR)4 was born, analog-to-digital (A/D) and digital-to-analog (D/A)
conversions have being moved towards the receiving and transmitting antennas,
respectively, thus becoming more critical tasks due to the high frequencies
involved.

Because of its importance in the discrete-time processing of continuous-time
signals, A/D conversion will be studied in more detail in this subsection. Digital-to-
analog (D/A) conversion is also an important part of this processing. Nevertheless,
the most critical errors are caused by the A/D conversion.

4 For an overview about the SDR concept, see [38]. For other aspects of the SDR, see [3].
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A/D conversion is realized in two steps: first the levels of the input samples are
approximated to a finite number of levels in a process called quantization. Then,
each of the N quantized values is converted into a word of log2(N ) bits. If the
quantization levels are equally-spaced we have a uniform quantization. If they are
not equally-spaced, we have a non-uniform quantization.

The quantization process produces an error between the quantized and the non-
quantized signals, which is called quantization error.

2.3.4.1 Uniform Quantization

Figure 2.11 illustrates a uniform quantization process. In this illustration the error
is limited in the range [−q/2, +q/2], as long as the input signal does not exceed
the A/D conversion dynamic range of 2Xm . When the input signal exceeds 2Xm

the quantization error increases progressively because the quantized signal remains
unchanged. This effect is called clipping and it is also illustrated in Fig. 2.11.

Fig. 2.11 The uniform quantization process and the quantization error

The quantization error can be reduced by increasing the resolution of the A/D
converter. This resolution can be specified in terms of the quantization step-size q
or in terms of the number of bits that represents each sample value.

For the majority of signals having complex excursions, like voice signals and
other random signals, the quantization error will be uniformly-distributed in the
range [−q/2, +q/2]. Since it has zero mean, its variance (which in this case corre-
sponds to its average power) is computed according to

σ 2
e =

∫ +q/2

−q/2
z2 1

q
dz = q2

12
. (2.78)
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The relation between the quantization step-size and the dynamic range of the
A/D converter is given by

q = 2Xm

2b
, (2.79)

where b is the number of bits (or resolution) of the A/D converter. With the above
results at hand we are able to define the signal-to-quantization noise ratio (SNRQ),
as shown by:

SNRQ = 10 log

(
σ 2

X

σ 2
e

)
= 10 log

(
12σ 2

X

q2

)
= 10 log

[
3

(
σX

Xm

)2

22b

]

= 6.021b + 4.771 − 20 log

(
Xm

σX

)
dB.

(2.80)

For a signal to be represented by the majority of the quantization levels, its excur-
sion must fit within the dynamic range of the A/D converter. In this case no clipping
will occur. However, if a signal has a large peak-to-average value, high peaks will be
relatively rare. In this situation, permitting some clipping might be a better choice.
Let us investigate this subject more carefully: the peak-to-rms ratio or crest factor
of a waveform is the ratio between the peak amplitude of the waveform and its root
mean square value:

CF = |X |max

σX
. (2.81)

Without loss of generality, we adopt the peak of the waveform as being Xm , such
that its rms value is modified to keep the crest factor unchanged. In this case the
crest factor can be written as

CF = Xm

σX
. (2.82)

With this result in (2.80), the signal-to-quantization noise ratio becomes

SNRQ = 6.021b + 4.771 − 20 log(CF ) dB. (2.83)

The signal-to-quantization noise ratio does depend on the resolution of the A/D
converter, since it is improved by 6 dB for each bit added to the word length. Nev-
ertheless, the SNRQ also depends on the crest factor of the signal to be quantized.
If CF is high, the SNRQ and the occurrence of clipping decrease. If CF is low, the
SNRQ and the occurrence of clipping increase.

Some typical values of −20 log(CF ) are: −3 dB for a sinusoidal signal; −15 dB
for a telephony voice signal and −12 dB for a typical music signal.

The dependence of the SNRQ on the crest factor of the signal to be quantized
is translated by (2.80) into a long-term average. In other words, (2.80) does not
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Fig. 2.12 The effect of uniform quantization in the short-term SNRQ

reveal the short-term influence of the quantization error. To illustrate this, suppose
that a signal with high crest factor is to be uniformly quantized. Due to the high
crest factor, low level amplitudes are frequent and, when this occurs, the short-term
SNRQ decreases. This happens due to the fact that uniformly-spaced quantization
levels are not able to represent with enough resolution the small variations in the
signal amplitude, as illustrated in Fig. 2.12. A solution to this problem is the use of
non-uniform quantization, as shown in what follows.

2.3.4.2 Non-uniform Quantization

With non-uniform quantization, the region of lower amplitudes is quantized with
higher granularity. This granularity decreases as the signal amplitude increases. In
other words, the quantization step-size is small in the region of lower amplitudes and
increases in higher amplitudes. As a consequence, short-term (and also long-term)
SNRQ can be kept approximately constant.

Figure 2.13 shows the same unquantized signal shown in Fig. 2.12, but now a
non-uniform quantization process is illustrated. Note that lower signal amplitudes
are quantized with a higher granularity and that higher amplitudes are quantized
with far apart quantization levels.

Fig. 2.13 The effect of non-uniform quantization in the short-term SNRQ
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One way of achieving the effect of a non-uniform quantization is to compress the
input signal using some logarithmic rule, and then apply the compressed signal to a
uniform quantizer. The resultant continuous-time output signal is then expanded by
using the complementary behavior of the compression curve. The combination of
the compression and expansion characteristics is usually referred to as companding.

Typical compression rules are the μ-law and the A-law. The μ-law is used mainly
in the USA and the A-law is used mainly in Europe [34, pp. 621, 625]. In what
follows we consider only the A-law as a case study.

The relation between the input (x) and the output (y) of an A-law compression
curve is given by

y =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ymax
A(|x |/xmax)

1 + ln A
sgn x, 0 < |x |/xmax < 1/A

ymax
1 + ln[A(|x |/xmax)]

1 + ln A
sgn x, 1/A < |x |/xmax < 1,

(2.84)

where sgn(x) is the sign function or signum function, defined by

sgn(x) =

⎧
⎪⎨

⎪⎩

1, x > 0

0, x = 0

−1, x < 0.

(2.85)

The parameter A in (2.84) governs the compression ratio, as illustrated in
Fig. 2.14. In practice, the compression curve is implemented as linear piecewise
chords, facilitating the realization of the A-law compression [34, p. 625].

The signal-to-quantization noise ratio will become independent of the crest factor
and the level of the input signal, as shown by [6, p. 150]:

SNRQ = 6.021b + 4.771 − 20 log(1 + ln A) dB. (2.86)

Fig. 2.14 Compression characteristics of the A-law
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A typical value of A is 87.56. With this value and an 8-bit A/D converter, the
average SNRQ obtained from (2.86) is approximately 38 dB.

The next simulation aims at exploring more details about the uniform and non-
uniform quantization processes. For a comprehensive and very didactical treatment
on the subject, see Chap. 11 of [34].

Simulation 2.4 – Uniform and Non-uniform Quantization

File – CD drive:\Simulations\Signals\Quantization.vsm.

Default simulation settings: Frequency = 200 Hz; End = 20 seconds.
Half of the dynamic range: 3.161 volts. Gain: 1.3.

This experiment aims at confirming some theoretical results and complementing the
concepts related to the uniform and non-uniform quantization methods.

Open the simulation file indicated in the header and notice that the experiment is
composed by two independent parts:

• In the upper part, a ramp signal is applied to uniform and non-uniform quantizers.
The non-uniform quantizer is an A-law quantizer with A = 87.56. The output
signal and the quantization noise produced by these quantizers are analyzed via
plots A and B.

• In the lower part of the experiment a sample-function of a voice signal is quan-
tized by a 6-bit uniform quantizer and by a 6-bit non-uniform quantizer. The
A-law quantizer with A = 87.56 is also used in this part of the experiment. The
dynamic range of these quantizers can be configured via the “half of the dynamic
range” block. The signals and quantization errors are analyzed through plots C,
D, E and F. The voice signal can have its amplitude configured in the “gain”
block, and the signal crest factor can be computed through the estimates of its
peak and rms values. The corresponding signal-to-quantization noise ratios are
also estimated.

Using the default configurations, run the simulation while observing Plot A. Note
that it reproduces the behavior shown in Fig. 2.11. Here the input signal is a ramp
going from −10 to +10 volts. The quantizer has 8 levels, so it is part of a 3-bit A/D
converter. The dynamic range is 2Xm = 8 V, from −4 to +4 V and the quantization
step-size is, according to (2.79), q = 8/8 = 1 volt. Note that beyond the limits
imposed by the dynamic range the quantized signal is clipped to the extreme quan-
tization levels of −3.5 or +3.5 V. Observe also that the quantization error is limited
to ±q/2, except when the input signal exceeds the dynamic range.

Now, while observing Plot B, run the simulation again. Compare the plots with
those in Plot A and note that the quantization step-sizes are not equally spaced
anymore. In fact, they are smaller for small input signal amplitudes and larger for
large input signal amplitudes. Recall that this behavior is characteristic of a non-
uniform quantization. Observe also that the quantization error is smaller for small
input signals and larger for large input signals.
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Now let us move our attention to the lower part of the experiment. Run the
simulation while looking at Plot D. Observe the time plot and the histogram of
the quantization error. Note that we are using the default gain of 1.3 and, in this
case, the peak of the voice signal is Xm = 3.161 volts. Then, according to (2.79),
q = 2 × 3.161/(26) ∼= 0.1 volts. Since we are analyzing the uniform quantizer,
these plots show to us that, in fact, the quantization error is uniformly-distributed in
the range [−q/2, +q/2]. Note also that the voice signal seems to have a Laplace
distribution. From Chap. 1 we recall that a Laplace PDF and its root mean square
value are

fX (x) = 1

2r
e−|x |/r , r > 0

σX = r
√

2.

(2.87)

By plotting a Laplace PDF with scale parameter r ∼= 0.56 and mean μ = 0 over
the voice signal histogram, as shown in Fig. 2.15, we observe a good agreement
between them. From (2.87), the theoretical rms value of the voice signal is σX

∼=
0.792 volts. This result agrees with the rms value estimated in the simulation.

Since the peak of the voice signal is Xm = 3.161 volts, the crest factor is CF
∼=

3.16/0.79 = 4. With this result in (2.83) we obtain

SNRQ = 6.021 × 6 + 4.771 − 20 log(4) ∼= 28.94 dB. (2.88)

Verify that this result is approximately equal to the long-term average signal-to-
quantization noise ratio estimated in the simulation.

Now, run the simulation while observing Plot C. With a right-click over each
plot, configure them using the following limits for the X and Y axis:

• Y upper bound: 0.7
• Y lower bound: −0.4
• X upper bound: 18.14
• X lower bound: 17.14

Fig. 2.15 Normalized histogram of the voice signal and an over-plotted Laplace PDF
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After this configuration is done, click the OK button. You will see exactly the
same waveforms shown in Fig. 2.12. Of course, the comments related to that figure
also apply here.

We now move to the analysis of the non-uniform quantization. Run the simula-
tion while observing Plot F. First, notice that the quantization error is not uniformly-
distributed anymore. Coincidentally, it seems to be Laplace-distributed. Secondly,
note that the quantization error is smaller when the voice signal has lower ampli-
tudes, a characteristic that is intrinsic to the non-uniform quantization.

Open Plot E and configure the graphs according to the axis limits given above.
Click the OK button and note that the waveforms are exactly the same as the ones
shown in Fig. 2.13. Again, the comments concerning that figure also apply here.

The theoretical signal-to-quantization noise ratio considering the A-law com-
pression rule is given by (2.86). Using the simulation parameters we obtain

SNRQ = 6.021 × 6 + 4.771 − 20 log[1 + ln(87.56)] ∼= 26.13 dB. (2.89)

Observe that this result is also approximately equal to the long-term average
signal-to-quantization noise estimated in the simulation. Note that the SNRQ for the
uniform quantizer is slightly higher than the SNRQ for the non-uniform quantizer.
This seems to be unconditionally good, but it is not. The lower long-term SNRQ

produced by the non-uniform quantizer is compensated by the fact that it is almost
independent of the input signal amplitude. This is an effect that is desired mainly in
cases where the crest factor is high, since in these cases the probability of occurrence
of lower amplitude levels increases.

Now open Plot G. This plot is recording the short-term variation of the signal-
to-quantization noise ratio for both the uniform and the non-uniform quantizers.
This short-term SNRQ is being estimated through a sliding window average. In this
form of estimation the signal power and the noise power are measured during a
shorter time compared to the entire simulation time. Specifically, we are using a
window with 100 simulation steps, which corresponds to the following time interval:
(number of steps) × (1/simulation frequency) = 100× (1/200) = 0.5 seconds. This
means that a window of 0.5 seconds slides over the signal and the quantization noise
while their powers are estimated.

As previously mentioned, non-uniform quantization produces a short-term SNRQ

that is approximately constant, while uniform quantization produces low values of
SNRQ when the input signal has lower amplitudes and high values of SNRQ when
the input signal has higher amplitudes. This can be clearly observed through Plot G,
confirming the theoretical expected behavior.

Finally, change the amplitude of the voice signal via the “gain” block. If you
modify the value of the dynamic range accordingly, everything happens as before,
except by the fact that the quantization step-size is changed to keep the number of
quantization levels in 64, which corresponds to a 6-bit A/D converter. If the dynamic
range is set with a value lower than the peak amplitude of the voice signal, clipping
will occur, leading to a severe degradation in the signal-to-quantization noise ratios
for both the uniform and the non-uniform quantizers. This happens due to the fact
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that the quantization error increases dramatically when clipping occurs. Implement
these tests and analyze the resultant SNRQ.

Explore inside the individual blocks. Try to understand how they were imple-
mented. Create and investigate for yourself new situations and configurations of the
simulation parameters and try to reach your own conclusions.

2.3.4.3 Other A/D Conversion Techniques

We can say that the approach for the digital-to-analog conversion adopted as ref-
erence for the study in this book is a classical or conventional approach. There are
several others A/D conversion techniques in which the quantization error always
exists, but it manifests differently from that we have presented before. Examples of
these alternative methods are [20]: the parallel or flash, the successive approxima-
tion, the pipeline and the cyclic A/D conversions. One of the most used techniques,
mainly in telecommunications and audio, is the oversampled single-bit (or 1-bit)
A/D converter. In this converter a higher sampling rate is traded for a lower number
of bits. Most of the single-bit A/D converters are based on the delta modulation [6]
and, for this reason, they are also known as delta-sigma or sigma-delta converters
[2, 20, 25, 30, p. 2227].

2.4 Linear Systems

A system is a process that transforms the input, called excitation, into an output,
called response, through some mapping function.

In this section we present an important class of systems called linear systems.
They play a major role in the modeling and analysis of communication systems and
the related concepts will be extensively used throughout the rest of the book.

We start by characterizing linear systems in the time-domain and later we move to
the frequency-domain characterization. We end the section by addressing the main
properties of linear systems.

2.4.1 Time-Domain Characterization of Linear Systems

Consider the system model depicted in Fig. 2.16, which represents a continuous-
time or a discrete-time system, depending on the nature of the inputs and outputs
and of the system itself. It is assumed that this system is time-invariant, that is, if
y(t) is the system response to an input x(t), the response to a delayed input x(t − τ )
will be the corresponding delayed version of y(t), that is, y(t − τ ).

In the context of communication theory, we are particularly interested in a class
of systems called linear systems. These systems satisfy the properties of superposi-
tion and scaling, as shown in the sequel.
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Fig. 2.16 Linear system model

Let x(t) = x1(t) + x2(t) and let y1(t) be the system response when x1(t) is
the excitation and y2(t) be the system response when x2(t) is the excitation. Also
let y(t) = T [x(t)], where T (·) is a function that maps the system input into the
system output. The superposition and scaling properties applied to this scenario can
be written respectively as follows:

1. T [x1(t) + x2(t)] = y1(t) + y2(t)

2. T [αx(t)] = αy(t).
(2.90)

We can interpret (2.90) in the following way: the superposition property is asso-
ciated to the fact that, if x(t) = x1(t) + x2(t), the response y(t) can be determined
by applying x1(t) to the input, obtaining the output y1(t) and then applying x2(t) to
the input, obtaining the output y2(t). The total output y(t) will be given by the sum
of the individual responses y1(t) and y2(t). The scaling property states that if we
multiply the input signal by a given constant, the output is multiplied by the same
amount. These properties can be generalized according to:

If x(t) =
∑

k

αk xk(t), then y(t) =
∑

k

αk yk(t). (2.91)

A system that does not satisfy (2.91) is said to be a nonlinear system. The mathe-
matical treatment of nonlinear systems is usually more complicated than for the case
of linear systems. We devote our attention to linear systems due to their frequent use
to model communication systems.

The output signal y(t) or y[n] in the linear system of Fig. 2.16 is mapped from
the input signal x(t) or x[n] through the impulse response of the system, h(t) or
h[n]. The term impulse response means that if we apply a Dirac delta function to
the input of a continuous-time linear system and a Kronecker delta function to the
input of a discrete-time linear system, the outputs are h(t) and h[n], respectively.
Then, from (2.10) we can write

x(t) =
∫ ∞

−∞
x(τ )δ(t − τ )dτ. (2.92)

Applying the mapping operator we obtain

y(t) = T [x(t)] = T

[∫ ∞

−∞
x(τ )δ(t − τ )dτ

]
. (2.93)
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Due to the linearity property we can rewrite (2.93) as

y(t) =
∫ ∞

−∞
x(τ )T [δ(t − τ )]dτ. (2.94)

But if the impulse response h(t) does not vary with time and, by definition
T [δ(t)] = h(t), then T [δ(t − τ )] = h(t − τ ). With this result in (2.94) we finally
obtain

y(t) =
∫ ∞

−∞
x(τ )h(t − τ )dτ. (2.95)

This operation is the convolution integral between the input signal x(t) and the
system impulse response h(t). It is represented by

y(t) = x(t) ∗ h(t) =
∫ ∞

−∞
x(τ )h(t − τ )dτ =

∫ ∞

−∞
h(τ )x(t − τ )dτ. (2.96)

Similarly, for a discrete-time system we have

y[n] = x[n] ∗ h[n] =
∞∑

k=−∞
h[k]x[n − k] =

∞∑

k=−∞
x[k]h[n − k]. (2.97)

In (2.97) we have the convolution sum between the discrete-time input signal
x[n] and the discrete-time system impulse response h[n]. The operations in (2.96)
and (2.97) describe the system’s input/output relationship in the time-domain. Let
us move to the frequency-domain analysis.

2.4.2 Frequency-Domain Characterization of Linear Systems

Now we focus our attention to the frequency-domain description of linear systems,
which is built on the Fourier analysis theory. First we define the frequency response
of a linear system as the Fourier transform of its impulse response, as shown below
for a continuous-time and for a discrete-time system, respectively:

H ( f ) =
∫ ∞

−∞
h(t)e− j2π f t dt and

H (Ω) =
∞∑

n=−∞
h[n]e− jΩn.

(2.98)

We must recall that, for continuous-time systems, the angular frequency (in radi-
ans per second) is ω = 2π f , where f is measured in hertz. As we shall see later,
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for discrete-time systems the angular frequency (in radians) is Ω = 2π f Ts , where
Ts is the interval between discrete-time samples.

In general, H ( f ) and H (Ω) are complex functions and the frequency responses
in (2.98) can be written as

H ( f ) = |H ( f )|e jΘ( f ) and

H (Ω) = |H (Ω)|e jΘ(Ω),
(2.99)

where |H ( f )| and |H (Ω)| are the magnitude of the frequency responses, or sim-
ply the magnitude responses, and Θ( f ) and Θ(Ω) are the phase of the frequency
responses, or simply the phase responses of the system.

The convolution integral and the convolution sum were used to determine the
output of a linear system in the time-domain. In the frequency-domain, these oper-
ations are converted into multiplications, as shown by:

Y ( f ) = X ( f )H ( f ) and

Y (Ω) = X (Ω)H (Ω).
(2.100)

Sometimes it is easier to perform a frequency-domain multiplication than to per-
form a time-domain convolution. The time-domain functions y(t) and y[n] can be
determined from the inverse Fourier transforms of Y ( f ) and Y (Ω).

Since the frequency response of a discrete-time system, H (Ω), is determined by
the discrete-time Fourier transform of h[n] via the second expression in (2.98), it is
periodic with period 2π , that is,

H (Ω + 2π ) = H (Ω). (2.101)

Then, we must consider the values of Ω (in radians) only over [0, 2π ) or [−π , π )
in H (Ω). In the continuous-time case, the frequency f (in hertz) can be considered
in the infinite range (−∞, +∞). Later on in this section we shall consider the map-
ping between these two frequency measures in a way that a discrete-time system
can be used to model a continuous-time system.

2.4.2.1 Distortion-Free Linear System

The condition for distortion-free transmission through a linear system can be written
as

y(t) = x(t) ∗ h(t) = κx(t − τ ), (2.102)

where y(t) is the signal at the system output, x(t) is the input signal, h(t) is the sys-
tem impulse response and κ �= 0 is an arbitrary constant. In words, if the output of
the system is only a scaled and delayed version of the input waveform, no distortion
has occurred. Writing (2.102) in the frequency domain we obtain
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Y ( f ) = X ( f )H ( f ) = κ X ( f ) exp(− j2π f τ ), (2.103)

from where we can determine the frequency response of the system in order to cause
no distortion to the signal, as shown by:

H ( f ) = Y ( f )

X ( f )

= κ X ( f ) exp(− j2π f τ )

X ( f )

= κ exp(− j2π f τ ),

(2.104)

from where we can write

|H ( f )| = κ and

Θ( f ) = −2π f τ.
(2.105)

From (2.105) we conclude that, for distortion-free transmission through a linear
system, the magnitude of its frequency response must be constant and its phase
response must be a linear function of f . The constant frequency response means
that all frequency components of the signal are affected by the same gain. The linear
behavior of the phase response means that each frequency component of the signal
is affected by the same delay from the system input to the system output.

2.4.2.2 Group Delay

The phase response of a linear system can reveal another important parameter for
system characterization: the group delay. For a continuous-time system, it is defined
as the negative of the derivative of the phase response with respect to the ordinary
frequency f , or to the angular frequency ω = 2π f :

τ ( f ) = − d

d f
Θ( f ). (2.106)

As the name suggests, the group delay is the delay experienced by a small group
of frequencies around a given value of f . Note that if the phase response is linear,
the group delay is constant, that is, the delay imposed by the system is the same for
all frequencies. We then conclude that a non-constant group delay is characteristic
of a system that causes distortion.

The group delay is sometimes referred to as the envelope delay. However, this
term seems to fit better in a distortionless scenario. For example, suppose that the
signal x(t) = a(t) cos(2π fct) is applied to a distortion-free linear system, where
a(t) is a modulating signal that imposes envelope variations in the carrier signal
cos(2π fct). With x(t) in (2.102) we obtain
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y(t) = κx(t − τ ) = κa(t − τ ) cos(2π fct =−2π fcτ )

= κa(t − τ ) cos(2π fct + θ ),
(2.107)

from where we clearly see that the envelope of the signal has been delayed by τ

from the input to the output of the linear system. Additionally, this delay has caused
the phase of the carrier to be changed in θ = −2π fcτ radians, which corresponds
to the value of the system phase response for f = fc.

2.4.3 Classifications and Properties of Linear Systems

Linear systems have many interesting and useful properties that reveal their multiple
facets and expand the spectrum of their applications. In what follows we discuss
some of these properties, as well as the main classifications of such systems.

We concentrate on the continuous-time linear systems. The concepts apply to the
discrete-time systems, with the adequate interpretation and change in the mathe-
matical notation. Sometimes the nomenclature also changes slightly to distinguish
a discrete-time from a continuous-time case.

2.4.3.1 Linear Time-Invariant (LTI) Continuous-Time Systems5

A linear time-invariant (LTI) system has an impulse response that does not vary with
time. For an LTI system, if y(t) is the system response to an input x(t), the response
to a delayed input x(t − τ ) will be the corresponding delayed version of y(t), that
is, y(t − τ ). The theory developed so far has assumed an LTI system.

2.4.3.2 Linear Time-Variant (LTV) Continuous-Time Systems

As the name indicates, a linear time-variant system has an impulse response that
varies with time. The output of this system can be determined by the convolution

y(t) =
∫ ∞

−∞
h(t, τ )x(t − τ )dτ. (2.108)

Physically, the time-variant impulse response h(t, τ ) can be interpreted as the
response of the system at time τ due to a Dirac delta function that excited the system
at the time t − τ .

As a consequence of its time-varying nature, an LTV system has also a time-
varying frequency response which is given by

H ( f, t) =
∫ ∞

−∞
h(t, τ )e− j2π f τ dτ. (2.109)

5The term shift-invariant is the discrete-time counterpart of the time-invariant term used to char-
acterize continuous-time systems.
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An LTV system characterizes an important class of communication channel: the
mobile wireless channel. As we shall see in Chap. 3, the time-variant nature of the
mobile wireless channel and its consequences represent one of the main problems
to be overcome in a mobile communication system design.

2.4.3.3 Causal Continuous-Time LTI Systems

A causal linear system produces no response before the excitation is applied, which
means that, for an LTI system to be causal it must satisfy

h(t) = 0, t < 0. (2.110)

2.4.3.4 Stable Continuous-Time LTI Systems

An LTI system is said to be stable if a finite maximum absolute value of the input
x(t) produces a finite maximum absolute value of the output y(t). In other words,
the system output does not diverge for limited inputs. Mathematically, if we have a
bounded-input such that

|x(t)| < V1 < ∞, ∀t, (2.111)

a stable LTI system produces a bounded-output such that

|y(t)| < V2 < ∞, ∀t, (2.112)

where V1 and V2 are constants. A system that satisfies (2.111) and (2.112) is said to
be BIBO (bounded-input, bounded-output) stable.

A necessary and sufficient condition for a system to be BIBO stable is that the
absolute value of its impulse response must be integrable, that is,

∫ ∞

−∞
|h(t)|dt < ∞. (2.113)

In the frequency-domain, the necessary and sufficient condition for a system to
be BIBO stable is that the region of convergence (ROC) must contain the imaginary
axis (see Sect. 2.2.5).

It is worth mentioning that, even if an LTI system does not satisfy (2.113), it may
not go into an unstable situation, as long as the input condition that leads to the
instability does not manifests. In other words, a system does not enter an unstable
condition if the input that yields this condition is not present.

2.4.3.5 Eigenfunctions of Continuous-Time LTI Systems

An eigenfunction is a function that, when applied to the input of an LTI sys-
tem produces the same function as the response, maybe scaled by some amount.
Mathematically, a function x(t) satisfying
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T [x(t)] = λx(t) (2.114)

is said to be an eigenfunction of the LTI system. The constant λ is called the eigen-
value corresponding to the eigenfunction x(t).

An important eigenfunction is the complex exponential x(t) = exp( j2π f0t). The
response of an LTI system to this function is determined from (2.96) as follows:

y(t) =
∫ ∞

−∞
h(τ )e j2π f0(t−τ )dτ = e j2π f0t

∫ ∞

−∞
h(τ )e− j2π f0τ dτ. (2.115)

Provided that the last integral in (2.115) converges, it represents the system fre-
quency response H ( f ) for f = f0, which is a constant. Then we can write

y(t) = H ( f0)e j2π f0t = λx(t). (2.116)

In words, if we apply a complex exponential to the input of an LTI system, the
output is a complex exponential, with the magnitude affected by |H ( f0)| and with
the phase affected by arg[H ( f0)].

This important result can be interpreted as follows: first, recall that a cosine
or a sine function can be written in terms of complex exponentials through the
Euler relations. Then, if we apply a cosine function to the input of an LTI sys-
tem, the output is a cosine function, maybe with modified amplitude and phase.
Since the cosine and sine functions can be considered as elementary functions
of a signal, we conclude that an LTI system does not produce frequency compo-
nents in addition to the frequency components of the input signal, which is an
intuitively satisfying interpretation. Secondly, the response of an LTI system to a
signal that can be resolved into a summation of complex exponentials can be deter-
mined by using the eigenfunction concept and the superposition property of a linear
system.

2.4.3.6 LTI Systems With and Without Memory

An LTI system is said to have memory if its output at a given time instant depends on
present and past values of the input. An LTI system is memoryless if its output in a
given time instant depends only on the input applied at that instant. The memoryless
condition for a continuous-time and a discrete-time LTI system implies respectively
that

h(t) = Aδ(t) and

h[n] = Aδ[n],
(2.117)

where A = h(0) or A = h[0] is a constant.
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2.4.3.7 Frequency Response for Systems Characterized by Linear
Differential Equations

The input–output relationship of some LTI systems can be characterized by linear
constant coefficient differential equations in the form [24, p. 330]:

N∑

k=0

ak
dk y(t)

dtk
=

M∑

k=0

bk
dk x(t)

dtk
. (2.118)

For these systems, the frequency response can be determined by

H ( f ) = Y ( f )

X ( f )
=
∑M

k=0 bk( j2π f )k

∑N
k=0 ak( j2π f )k

. (2.119)

If the impulse response h(t) of the system has to be determined, a typical rule is
to apply a partial-fraction expansion to (2.119) so that the inverse Fourier transform
can be found in a simpler way [24, p. 332]. In fact, partial-fraction expansion is
very useful for inverting Fourier, Laplace and Z-transforms in the cases where the
transform can be written in terms of rational functions, i.e. in terms of the ratio
between two polynomials. For an applied treatment of the partial-fraction expansion
in the characterization of linear systems, refer to [11, p. 671; 13, p. 120; 17, p. 24].

2.4.3.8 Frequency Response for Systems Characterized by Linear
Difference Equations

Similar to the case of continuous-time LTI systems, the input-output relationship of
some LTI discrete-time systems can be characterized by linear constant coefficient
difference equations in the form [24, p. 397]:

N∑

k=0

ak y[n − k] =
M∑

k=0

bk x[n − k]. (2.120)

For these systems, the frequency response can be determined by

H (Ω) = Y (Ω)

X (Ω)
=
∑M

k=0 bke− jkΩ

∑N
k=0 ake− jkΩ

. (2.121)

Again, if the impulse response h[n] of the system has to be determined, a typical
rule is to apply a partial-fraction expansion to (2.121) so that the inverse Fourier
transform can be found in a simpler way [24, p. 398].
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2.4.4 Mapping a Discrete-Time into a Continuous-Time Frequency

When analyzed in the time-domain, a continuous-time signal or system can be
converted into their discrete-time equivalents by sampling the corresponding time
functions at a rate greater than the Nyquist rate. This process is relatively easy,
since the time-domain samples can be derived from a given discrete-time sequence
by considering them spaced by Ts , the sampling interval.

In the frequency domain, we must also be able to map the discrete-time results
into useful continuous-time results. For example, besides considering only the fre-
quency range [0, 2π ) or [−π , π ) in the frequency response H (Ω) of a discrete-time
system, we should also be able to convert the values of the frequency Ω (in radi-
ans) into values of the ordinary frequency f , in hertz. To do so, assume that the
continuous-time signals x(t) and y(t) are sampled at a rate 1/Ts . Assume also that
x(t) is a complex exponential. Then we have

x(t) = e− j2π f0t ⇒ x[n] = x(nTs) = e− j2π f0nTs . (2.122)

Using the eigenfunction property, from (2.116) we can write

y(t) = Hc( f0)e j2π f0t ⇒ y(nTs) = Hc( f0)e j2π f0nTs . (2.123)

The eigenfunction property applied to the discrete-time system is given by

y[n] = Hd (Ω0)e jΩ0n. (2.124)

In (2.123) and (2.124) we have used the subscripts “c” and “d” in Hc( f0) and
Hd (Ω0) to identify the continuous-time and discrete-time frequency responses at
f = f0 and Ω = Ω0, respectively.

By sampling the signal y(t) and taking into account that we want the equality
between y[n] and y(nTs), from (2.123) and (2.124) we obtain

y(nTs) = y[n] ⇒ Hc( f0)e j2π f0nTs = Hd (Ω0)e jΩ0n. (2.125)

Since Hc( f0) must be equal to Hd (Ω0) in (2.125), we must have

2π f0Ts = Ω0. (2.126)

Then, for any value of f and Ω, the following mapping rule applies:

f = Ω

2πTs
. (2.127)

Example 2.2 – Consider that a continuous-time sample-function x(t) of a white
Gaussian noise is sampled at a rate 1/Ts = 100 samples per second, resulting in the
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discrete-time independent and identically-distributed (i.i.d.) sequence {x[n]}. These
signals are shown in Fig. 2.17 for a 1 second interval.

Now consider a linear time-invariant discrete-time system whose impulse response
is given by

h[n] = 1

M

M−1∑

k=0

δ[n − k]. (2.128)

This impulse response is plotted in Fig. 2.18 for M = 10. A system with impulse
response given by (2.128) is one of the variants of the moving average filter, a device
that smoothes the output sequence as compared to the input by forming each output
sample from the average of the present and the M − 1 preceding input samples, that
is,

y[n] =
∞∑

k=−∞
h[k]x[n − k] = 1

M

M−1∑

k=0

x[n − k]. (2.129)

Fig. 2.17 Discrete-time signal x[n] generated by sampling the continuous-time signal x(t)

The signal at the output of the moving average filter, as it is determined via
(2.129), is plotted in Fig. 2.19. Note that, in fact, this filter smoothes the signal. It
is a low-pass filter, as we shall see from its frequency response. Note also that the
filter has produced a time-correlated sequence, that is, each value in the sequence is
not anymore independent from the previous ones.

From (2.98) and (2.128), the frequency response of the moving average filter can
be determined from



2.4 Linear Systems 141

Fig. 2.18 Impulse response h[n] of a moving average filter for M = 10

H (Ω) =
∞∑

n=−∞
h[n]e− jΩn = 1

10

9∑

n=0

e− jΩn
9∑

k=0

δ[n − k] = 1

10

9∑

n=0

e− jΩn . (2.130)

This frequency response is plotted in Fig. 2.20 in terms of its magnitude and
phase. Note that, as mentioned before, the frequency response of a discrete-time
system is periodic with period 2π . Then, in Fig. 2.20 we must consider only the
portion of the graphs between −π and +π . Note also that, in fact, the moving
average filter is a low-pass filter.

Fig. 2.19 Filtered discrete-time signal y[n]

Now, let us map the frequency response of the moving average filter according
to the sampling rate given at the beginning of this example. From (2.127) we have

Fig. 2.20 Frequency response of the moving average filter
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f = Ω

2πTs
⇒ f = Ω

2π × 0.01
= 50Ω

π
. (2.131)

Then, the first spectral null of the magnitude response given in Fig. 2.20 corre-
sponds to the frequency

fnull = 50Ωnull

π
= 50 × π/5

π
= 10 Hz. (2.132)

Note that this result is consistent with an equivalent continuous-time system,
since the duration of the impulse response h[n] is T = 10 × Ts = 0.1 s and the first
null is happening at f = 1/T .

Simulation 2.5 – Moving Average Filter

File – CD drive:\Simulations\Signals\Moving average.vsm.

Default simulation settings: Frequency = 1,000 Hz; End = 1 second.
Signal source: fixed noise sample-function. Moving average filters:
10-tap.

This experiment aims at complementing the previous example. We have three
selectable signal sources: a fixed noise sample-function identical to that shown in
the upper part of Fig. 2.17, a random noise sample function that changes at each
simulation run and a variable-mean random noise sample-function. The selected
signal source is sampled at 100 samples per second and the resulting sequence is
applied to a moving average filter. This filter has a configurable impulse response
length, which is associated to its number of taps, according to the structure shown in
Fig. 2.21. In this figure z−1 is a unit-sample delay and hn , n = 0, 1, . . . , M − 1 is a
shorthand notation for h[n]. Three filter lengths are implemented in this simulation:
10-tap, 20-tap and 40-tap.

At the lower part of the simulation worksheet a unit impulse is applied to an
identical moving average filter, aiming at analyzing its frequency response.

Open and run the simulation file indicated in the header using its default settings
and observe the time plot. Note that the signals are equal to those shown in Fig. 2.17
and Fig. 2.19.

Now observe the frequency plot and compare the estimated frequency response
magnitude with Fig. 2.20. Note that they are plotted in different scales, but are
related to the same frequency response. Observe also that it is periodic with period
100 Hz, a value that, from (2.131), corresponds to 2π rd. Note also that the first
spectral null is happening at f = 10 Hz, as computed in (2.132).

In the signal source block, select the random noise sample-function and, while
observing the time plot, run the simulation. This situation was created only to per-
mit that you visualize a more dynamic operation of the moving average filter. Still
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using this signal source, change the number of taps of the moving average filter and
observe the filtered sequence. Note that the smoothing effect of the filter becomes
more evident as the length of its impulse response increases (which means that its
cutoff frequency decreases). Note also that the filtered sequence is progressively
approaching an all-zero sequence, which is consistent with the fact that the input
signal has a zero mean.

Fig. 2.21 Block diagram of a moving average filter

Now select the variable-mean noise sample-function and increase the simulation
end time to 5 seconds. Increase also the number of taps of the filter to 40. Run
the simulation while observing the time plots. Note that the input signal clearly
represents a variable mean signal. Note also from the filtered sequence that the filter
has smoothed-out the noisy component in the input signal, retaining its mean. This
is one of the applications of the moving average filter: to extract the variation of the
mean value of a random signal.

Finally, analyze the frequency response of the 20-tap and the 40-tap filters. Note
that the response becomes narrower as the filter length increases. In other words, an
increased filter length increases the duration of the impulse response and, as a con-
sequence, reduces the cutoff frequency of the filter. Try to make calculations con-
cerning the first spectral null and compare your results with the simulation results.

Explore inside the individual blocks. Try to understand how they were imple-
mented. Create and investigate for yourself new situations and configurations of the
simulation parameters and try to reach your own conclusions.

2.4.4.1 A Note on Discrete-Time Filtering

The diagram shown in Fig. 2.21 is a generic representation of a finite impulse
response (FIR) discrete-time system, known as a transversal filter. By using dif-
ferent lengths and the tap coefficients {hn} we are able to implement a variety of
filters with a variety of frequency responses. The moving average filter considered
before is just an example of a FIR filter.
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A system whose impulse response is nonzero for infinite time is said to be an
infinite impulse response (IIR) system. The example below considers an IIR filter.

Example 2.3 – A low-pass RC is one of the simplest analog filters. Its frequency
response H ( f ) and the −3 dB cutoff frequency f0 are given respectively by:

H ( f ) = 1

1 + j2π fRC
and

f0 = 1

RC
,

(2.133)

where R is the value of the resistor, in ohms (Ω), and C is the value of the capacitor,
in farads (F). Figure 2.22 shows the RC filter and the squared magnitude of its
frequency response.

Fig. 2.22 A low-pass RC filter and the squared magnitude of its frequency response

One of the techniques for converting an analog filter into its discrete-time equiv-
alent is called bilinear transformation [32, p. 287]. Using this technique, let us con-
struct a discrete-time low-pass filter equivalent to the analog RC filter, for a −3 dB
cutoff frequency of π/4 rd. This frequency corresponds to f = 0.828/Ts Hz, a value
that does not follow the mapping given by (2.127) due to the frequency warping [32,
p. 292] caused by the bilinear transformation method. We omit further details of this
conversion method and present the final frequency response of the RC-equivalent
discrete-time filter:

H (Ω) = 0.293(1 + e− jΩ)

1 − 0.414e− jΩ
. (2.134)

Note that H (0) = 1 and |H (π/4)|2 = 1/2, as desired. The diagram of this IIR
filter is presented in Fig. 2.23. Note that it is quite different from a transversal FIR
filter, since it is the result of the bilinear transformation applied to an analog RC
filter. Different transformation methods can lead to different filter structures.

It is left as an exercise to the reader to find that the difference equation that
describes the input-output relationship of this filter is given by

y[n] = 0.293x[n] + 0.293x[n − 1] + 0.414y[n − 1]. (2.135)
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Fig. 2.23 An RC-equivalent IIR discrete-time low-pass filter

A hint on the above exercise: find how the frequency response given in (2.134)
can be converted into a transfer function in the Z-domain. Then, find a general
expression for the difference equation of an IIR filter. Finally, find how to write
the input-output difference equation based on the Z-domain transfer function.

The project of a digital filter has several approaches, depending on the available
initial data and the final application. Some of these approaches are:

• Approximation of a discrete-time filter from an analog filter.
• Discrete-time filter design from a given frequency response mask.
• Choice of available FIR or IIR filters and configuration of their parameters.

The first and second approaches demand a deep knowledge on FIR and IIR fil-
ter structures and design criteria. They also demand some specific mathematical
background, mainly based on sampling theory and manipulation of discrete-time
signals and systems, Fourier, Laplace and Z-transforms and solution of differential
and difference equations.

The third approach is the simpler one, since what we need is to choose a
given discrete-time filter available in the literature to math our specifications.
VisSim/Comm users normally adopt this approach, since several discrete-time fil-
ter blocks are already available and the user only need to find the best one for its
application. Nevertheless, the deeper the knowledge of the user in what concerns
digital filters, the greater will be his ability to find and configure a better filter.
VisSim/Comm also permits that user-defined filters are implemented from “.DAT”
files. Both impulse and magnitude responses can be stored in a file and synthesized
by the so-called “file FIR filters”. In this case, the first two approaches listed above
can be used for a proper design of these filters.

There are also several computer tools for developing digital filters. National
Instruments has an Add-on to its LabVIEW6 software, called Digital Filter Design

6 LabVIEW is a trademark of National Instruments Corporation. It is a graphical developing soft-
ware with capabilities of a programming language, data acquisition and analysis, mainly used for
development of scalable tests, measurement, and control applications.
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Tookit [22]. It is a powerful tool that extends LabVIEW with functions and interac-
tive tools for design, analysis, and implementation of digital filters.

2.5 Complex Representation of Signals and Systems

The complex representation of signals and systems is of great importance for the
study of communication systems. In summary, its attributes are:

• It is an alternative representation of signals and systems that, in most cases,
reduces the complexity of mathematical treatments.

• It provides an alternative way of representing a passband signal without having
to consider the carrier frequency. This is particularly useful in simulations, since
the sampling rate can be reduced.

• The power spectral density of a passband signal can be obtained from its complex
representation. In most cases, this will lead to a significantly simpler mathemati-
cal treatment.

We start by reviewing the concept of the Hilbert transform, from which the com-
plex representation is built. Following [10] and [29], let x(t) be a signal with Fourier
transform X ( f ). The Hilbert transform of x(t) and the corresponding inverse trans-
form are defined respectively by

x̂(t) = 1

π

∫ ∞

−∞

x(τ )

t − τ
dτ =

∫ ∞

−∞
x(τ )

1

π (t − τ )
dτ and

x(t) = − 1

π

∫ ∞

−∞

x̂(τ )

t − τ
dτ.

(2.136)

In (2.136) we can identify that the Hilbert transform of x(t) is the convolution
between x(t) and the function 1/π t , whose Fourier transform is

�
(

1

π t

)
= − jsgn( f ), (2.137)

where sgn( f ) is the sign function or signum function already defined in (2.85).
By recalling that a convolution in the time domain corresponds to a multiplication

in the frequency domain, then we can write

X̂ ( f ) = − jsgn( f )X ( f ). (2.138)

From (2.138) we see that the Hilbert transform of x(t) corresponds to a phase
shift of −90 degrees for the positive frequencies of X ( f ) and to a phase shift of
+90 degrees for the negative frequencies.

Another important definition is the analytic signal or pre-envelope of the signal
x(t), which is given by
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x+(t) = x(t) + j x̂(t), (2.139)

and from where, using (2.138) and the definition of the signum function given in
(2.85), we obtain

X+( f ) = X ( f ) + sgn( f )X ( f ) =

⎧
⎪⎨

⎪⎩

2X ( f ), f > 0

X (0), f = 0

0, f < 0.

(2.140)

Now, consider a passband signal x(t) whose bandwidth is essentially confined in
2B Hz and is small compared to the carrier frequency fc. According to (2.140), the
analytic spectrum X+( f ) is centered about fc and contains only positive frequency
components. Then, using the frequency-shifting property of the Fourier transform
we can write

x+(t) = x̃(t) exp( j2π fct), (2.141)

where x̃(t) is a low-pass signal called the complex envelope of the signal x(t).
Since x+(t) is a passband signal, we can determine the low-pass signal x̃(t) by

a frequency translation of x+(t) back to about f = 0. Using again the frequency-
shifting property of the Fourier transform we can write

x̃(t) = x+(t) exp(− j2π fct)

= [x(t) + j x̂(t)] exp(− j2π fct),
(2.142)

or, equivalently,

x(t) + j x̂(t) = x̃(t) exp( j2π fct). (2.143)

Since the passband signal x(t) is the real part of the left side of (2.143), we can
obtain the so-called complex representation of x(t) as

x(t) = Re[x̃(t) exp( j2π fct)]. (2.144)

The complex envelope x̃(t) can be expressed in the Cartesian form by

x̃(t) = xI (t) + j xQ(t), (2.145)

where the subscripts I and Q stand for in-phase and quadrature, respectively. Then,
by substituting (2.145) in (2.144) we shall have, after some simplifications,

x(t) = xI (t) cos(2π fct) − xQ(t) sin(2π fct). (2.146)
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Both xI (t) and xQ(t) are low-pass signals and are called, respectively, the in-
phase component and the quadrature component of the passband signal x(t). This
is why we call x̃(t) the equivalent low-pass version of the passband signal x(t).

Rewriting expression (2.145) in its polar form we obtain another useful represen-
tation for the complex envelope:

x̃(t) = a(t) exp[ jθ (t)], (2.147)

from where, using (2.144), we obtain

x(t) = Re[x̃(t) exp( j2π fct)]

= Re{a(t) exp[ jθ (t)] exp( j2π fct)}
= a(t) cos[2π fct + θ (t)].

(2.148)

In (2.148), a(t) = |x̃(t)| is the envelope of the passband signal x(t), which can
be interpreted as the amplitude modulated component of x(t). Also in (2.148), θ (t)
is the phase of the passband signal x(t), or the phase-modulated component of x(t).

Simulation 2.6 – Real Versus Complex Simulation

File #1 – CD drive:\Simulations\Signals\Real simulation.vsm

Default simulation settings: Frequency = 7,200 Hz; End = 833
seconds. Channel SNR: 5 dB.
File #2 – CD drive:\Simulations\Signals\Cplx simulation.vsm

Default simulation settings: Frequency = 1 Hz; End = 1,000,000
seconds. Channel SNR: 5 dB.

This experiment aims at illustrating the use of the complex representation as a
means to speed-up simulations of communication systems. It comprises two sim-
ulation files: “Real simulation.vsm” (file #1) simulates a digital modulator and
demodulator (modem) implemented in a way very close to a real system. File
“Cplx simulation.vsm” (file #2) simulates a digital modem using the complex rep-
resentation of the modulated signal and, thus, it does not use any carrier signal.

Since we still may not be able to completely understand the structure of a digital
modem, we focus our attention to the basic aspects sufficient to show the application
of the complex representation in a communication system simulation.

Both modems are using one of the simplest digital modulations: the BPSK
(binary phase-shift keying). In the case of file #1, the modulated signal x(t) is
generated according to

x(t) = b(t) cos(2π fct), (2.149)



2.5 Complex Representation of Signals and Systems 149

where b(t) is a binary random wave associated to the information bits, such that a
binary “1” is represented by a rectangular pulse of amplitude +1 and duration Tb

and a binary “0” is represented by a rectangular pulse of amplitude −1 and duration
Tb. The carrier signal responsible for translating the baseband sequence to passband
is the cosine function with frequency fc Hz. Then, a bit “1” generates a transmitted
pulse with frequency fc and zero phase and a bit “0” generates a transmitted pulse
with frequency fc and phase π radians.

Comparing (2.149) with (2.146) we see that xI (t) = b(t) and xQ(t) = 0. Then,
the complex envelope of the BPSK signal is

x̃(t) = a(t). (2.150)

The basic difference between the simulation files considered in this experiment
is that file #1 generates the real modulated signal according to (2.149) and file #2
generates the “modulated” signal according to (2.150). Since in file #1 we are sim-
ulating a 1,200 bit/s transmission with a 1,800 Hz carrier frequency, the simulation
frequency must be at least around 6,000 Hz. We are using 7,200 Hz to have four
samples per carrier period.

By observing inside the “BPSK modulator” block in file #2, we see that the
modulated signal is being generated by a built-in block of VisSim/Comm. In fact,
this block generates the transmitted signal using the complex representation given
by the term between brackets in (2.144), which is the complex envelope x̃(t) multi-
plied by the complex exponential exp( j2π fct). From this observation we notice that
if the carrier frequency is set to zero, the transmitted signal is the low-pass signal
x̃(t), which is indeed the case in file #2. In other words, the complex representation
approach does not need to use any carrier signal. Moreover, the simulation using
x̃(t) does not demand the sequence b(t) to be generated at 1,200 bit/s. As long as
we recalibrate the signal-to-noise ratio (SNR) per bit, we can do the simulation at 1
bit/s and, thus, save additional computational resources.

In both approaches the communication channel is an additive white Gaussian
noise (AWGN) channel with adjustable SNR per bit.

The understanding of the receiver structures is beyond our reach by this moment,
but it suffices to know that both are optimum in the sense that they minimize the
probability of a decision error upon the received bits.

Now run file #1 using its default settings. Wait for the end of the simulation and
note that 1,000,000 bits were transmitted and around 6,000 were received in error,
yielding a bit error rate (BER) of 6 × 10−3. Run the simulation again and try to
compute the approximate simulation time. Now run the simulation file #2 and also
try to compute the simulation time. Maybe you will not be able to do this, since the
simulation with file #2 is very fast as compared to the simulation using file #1. Note
that the second simulation is also generating 1,000,000 bits and producing around
6,000 bit errors, also resulting in a BER of 6 × 10−3.

The systems in files #1 and #2 are completely equivalent from the point of
view of the performance evaluation, but the complex representation approach saves
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computational resources and, as a consequence, can lead to faster simulations than
the real representation approach.

Vary the SNR in both cases and compare the performances of both systems. Note
that they produce essentially the same BER. Create and investigate for yourself some
new situations and configurations of the simulation parameters and try to reach your
own conclusions.

2.6 The Power Spectral Density Revisited

In this section we revisit the concept of the power spectral density, complementing
the presentation initiated in Chap. 1. First we apply the concept to the complex
representation of a passband signal. In addition, we study the periodogram, one of
the simplest and most used techniques for estimating the PSD of a signal. We also
address the general expression for the PSD of multilevel signals with arbitrary corre-
lation between pulses, arbitrary mean and arbitrary pulse shape. This last topic will
be particularly useful when analyzing the PSD of digital communication signals,
mainly in Chaps. 4 and 6.

2.6.1 The PSD of Passband Signals

Let us assume that the Fourier transform of the signal x(t) in (2.144) exists and is
exact. If x(t) is a voltage signal, then the magnitude of its Fourier transform will
result in a voltage spectral density. Then, from (2.144) we obtain

X ( f ) = �{x(t)} =
∫ ∞

−∞

{
Re
[
x̃(t)e j2π fct

]}
e− j2π f t dt. (2.151)

Using the identity Re[C] = 1
2 [C + C∗] in (2.151) and applying the Fourier

transform properties z∗(t) � Z∗(− f ) and z(t) exp( j2π fct) � Z ( f − fc), we obtain

X ( f ) = 1

2

∫ ∞

−∞
[x̃(t)e j2π fct + x̃∗(t)e− j2π fct ]e− j2π f t dt

= 1

2
[X̃ ( f − fc) + X̃∗(− f − fc)].

(2.152)

Then, the power spectral density SX ( f ) can be determined as the squared-
modulus of X ( f ), that is,

SX ( f ) = |X ( f )|2 = 1

4

[|X̃ ( f − fc) + X̃∗(− f − fc)|2] . (2.153)
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Using the simplified notation X̃ ( f − fc) ≡ Z ( f ), and the fact that |C |2 = CC∗,
where C is a complex quantity, we can rewrite (2.153) as follows:

SX ( f ) = 1

4

[|Z ( f ) + Z∗(− f )|2]

= 1

4

{
[Z ( f ) + Z∗(− f )][Z∗( f ) + Z (− f )]

}

= 1

4

[
Z ( f )Z∗( f ) + Z∗(− f )Z (− f )
+Z ( f )Z (− f ) + Z∗(− f )Z∗( f )

]

= 1

4

[ |Z ( f )|2 + |Z (− f )|2
+Z ( f )Z (− f ) + Z∗(− f )Z∗( f )

]
.

(2.154)

By recognizing that Z ( f ) and Z (− f ) are band-limited, passband signals, the
products Z ( f )Z (− f ) and Z∗( f )Z∗(− f ) in (2.154) vanish to zero. Going back to
the normal notation, we finally obtain

SX ( f ) = 1

4

[∣∣X̃ ( f − fc)
∣∣2 + ∣∣X̃ (− f − fc)

∣∣2
]

= 1

4
[SB( f − fc) + SB(− f − fc)].

(2.155)

Equation (2.155) represents an important result and states that we can easily
obtain the power spectral density SX ( f ) of a passband signal by translating the
power spectral density SB( f ) of the low-pass equivalent, and its mirror image, to
the frequencies fc and − fc, respectively, and multiplying the result by 1/4.

Example 2.4 – A random binary wave with equally-likely rectangular pulses of
duration T = 0.2 second and amplitudes ±1 volt is the baseband signal that rep-
resents the information bits in a communication system according to the mapping
rule: bit “0” → −1, bit “1” → +1. In a process called modulation, this binary signal
multiplies a sinusoidal carrier with frequency fc = 25 Hz and random initial phase,
generating the modulated random process

Y (t) = X (t) cos(2π fct + Θ), (2.156)

where Θ is the random variable representing the random initial phase of the carrier,
assumed uniformly-distributed in (0, 2π ].

Our task here is to determine SY ( f ), the power spectral density of Y (t).
Comparing (2.156) with (2.146), we can conclude that the quadrature component

of the resultant passband process Y (t) does not exist. Furthermore, by intuition we
would be tempted to conclude that the random phase will not affect the PSD of the
resultant process and then, to simplify matters, we would let Θ = 0 and, in light of
(2.145), we would say that the equivalent low-pass process is
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S̃(t) = X (t). (2.157)

Then, the problem of finding the theoretical PSD of Y (t) would be reduced to
finding the PSD of X (t) and applying (2.155).

Intuition sometimes works, but a better solution is to do a more formal analysis.
We start this analysis by identifying that the phase of the carrier is independent of
the random binary wave. In other words, bits generated by the information source
are independent of the phase of the carrier that they will modulate. Then, the auto-
correlation function of the process Y (t) is determined according to

RY (τ ) = E[Y (t)Y (t + τ )]

= E[X (t) cos(2π fct + Θ)X (t + τ ) cos(2π fct + 2π fcτ + Θ)]

= E[X (t)X (t + τ )]E[cos(2π fct + Θ) cos(2π fct + 2π fcτ + Θ)].

(2.158)

Using the identity cos(a) cos(b) = 1
2 cos(a − b) + 1

2 cos(a + b) we obtain

RY (τ ) = 1

2
RX (τ )E[cos(2π fcτ ) + cos(4π fct + 2π fcτ + 2Θ)]

= 1

2
RX (τ ) cos(2π fcτ ).

(2.159)

Taking the Fourier transform of both sides of (2.159) and recalling that a multi-
plication in the time-domain corresponds to a convolution in the frequency-domain,
we obtain

SY ( f ) = 1

2

{
SX ( f ) ∗

[
1

2
δ( f − fc) + 1

2
δ( f + fc)

]}

= 1

4
[SX ( f − fc) + SX ( f + fc)] .

(2.160)

Note that our initial intuition was correct (in this case). Our problem is in fact
reduced to finding the PSD of X (t) and applying (2.155).

When comparing (2.160) with (2.155) we must remember that the PSD of a real-
valued process is an even function of f , so that SX ( f + fc) = SX (− f − fc).

The autocorrelation function and the power spectral density of a random binary
wave were already found in Chap. 1, Examples 1.8 and 1.9. For pulses with ampli-
tudes ±1, the PSD of X (t) will be given by

SX ( f ) = �{RX (τ )} = T
sin2(π f T )

(π f T )2
= T sinc2( f T ). (2.161)

Finally, with (2.161) in (2.160), the PSD of Y (t) is given by

SY ( f ) = 1

4

[
T sinc2[( f − fc)T ] + T sinc2[( f + fc)T ]

]
. (2.162)
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This PSD, in dBm/Hz, is plotted in Fig. 2.24 for T = 0.2 s and fc = 25 Hz.

Fig. 2.24 PSD of the random process Y (t) considered in Example 2.4

Anticipating a result that will be considered later on in this chapter, the PSD of a
binary antipodal7 random wave having equally-likely pulses ±g(t) can be obtained
by dividing the squared-modulus of the Fourier transform of g(t) by the pulse dura-
tion, that is,

S( f ) = |�{g(t)}|2
T

. (2.163)

Note that |�{g(t)}|2 is the energy spectral density of the shaping pulse g(t).
In this example g(t) is a rectangular pulse of duration T = 0.2 s and unit ampli-

tude. With the Fourier transform of g(t) obtained from Table 2.4, the PSD of a
random sequence of these pulses is given by

SX ( f ) = |�{g(t)}|2
T

= |T sinc( f T )|2
T

= T sinc2( f T ). (2.164)

Note that this result is in agreement with the result in (2.161).

Simulation 2.7 – Estimating the PSD of Passband Signals

File – CD drive:\Simulations\Signals\Passband PSD.vsm

Default simulation settings: Frequency = 100 Hz; End = 1,000
seconds. Probability of a pulse “+1” in the random binary wave
source: 0.5.

7 An antipodal signal is composed by a sequence of passband or baseband pulses having shape
g(t) and opposite polarities. Then, for example, if an antipodal signal represents a sequence of bits,
we may have the mapping rule: bit “0” → −g(t); bit “1” → +g(t), or vice-versa.
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This simple experiment complements Example 2.4, illustrating the estimation of
the PSD of a passband signal from the knowledge of the PSD of its equivalent low-
pass representation. The computation of the PSD is made by VisSim/Comm using
a method called periodogram, a topic that will be covered in more detail in the next
subsection. For now it suffices to know that this method computes the PSD as an
average of Fourier transform results obtained from finite duration sample functions
of the signal under analysis.

A random antipodal binary wave is generated at 5 pulses per second and with
configurable probability of a pulse “+1”. This wave modulates a sinusoidal carrier
with frequency fc = 25 Hz.

A time plot and a histogram plot are connected to the output of the binary source
to permit a better analysis of the random binary signal. The power spectral densities
of the binary (baseband) and modulated (passband) signals are estimated through
periodograms. The estimation is made via an 8k-point FFT and 12 FFT averages,
using a rectangular window.8 The results are displayed in dBm/Hz.

Using the default settings, run the simulation and compare the PSD of the binary
wave with the one obtained theoretically in Chap. 1, Sect. 1.14.2 (Example 1.9).
Compare the PSD of the passband modulated signal with that illustrated in Fig. 2.24.
Note that the theoretical and the estimated PSDs are approximately equal to one
another. Try to measure the peaks of the binary wave PSD and of the modulated
signal. Note that the PSD peak of the modulated signal is approximately 6 dB below
the PSD peak of the binary wave, a consequence of the multiplication by 1/4 in
(2.155), since 10 log(1/4) ∼= −6 dB.

Now run the simulation while observing the time and histogram plots. Note that
these plots are in agreement with the configured pulse probability. Make changes
in the distribution of the probabilities of the pulses and rerun the simulation, while
observing again the time plot and the histogram. Note the correspondence between
the observed plots and the configured probability. Now observe the estimated PSDs.
Note that discrete spectral components have appeared on the top of the main lobes,
a result that is consistent with the change in the mean value of the random wave
due to the unbalance in the pulse probabilities. This unbalance corresponds to a
DC (zero-frequency) component in the PSD of the baseband random wave and to a
discrete component at the carrier frequency in the modulated signal.

The effect of unbalanced bit probabilities in the PSD of communication sig-
nals will be covered in more detail in Subsect. 2.6.3. In addition, several examples
involving typical communication waveforms will be addressed in Chap. 4, where
baseband transmission is discussed in detail.

As an exercise, try to implement modifications in the sinusoidal carrier in order
to simulate a random initial phase. After that, investigate the influence of this

8 The use of a rectangular window means that the signal samples used by the FFT computation are
selected from the signal under analysis as if the signal were multiplied by a rectangular function
with duration equal to the window length.
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initial phase on the estimated PSDs. Hint: use the “Sinusoid” block from the
“Comm”/“Signal Sources” tabs. It permits the initial phase to be configured.

Explore inside the individual blocks. Try to understand how they were imple-
mented. Create and investigate for yourself new situations and configurations of the
simulation parameters and try to reach your own conclusions.

2.6.2 Estimation of the PSD via the Periodogram

If the signal x(t) is a sample-function of the stationary random process X (t), its
Fourier transform may not exist. In this case, as we saw in Chap. 1, the spectral
content of X (t) is given by its power spectral density (PSD), which is obtained from
the Fourier transform of the autocorrelation function RX (τ ) of the random process,
that is,

SX ( f ) =
∫ ∞

−∞
RX (τ )e− j2π f τ dτ. (2.165)

The Parseval’s theorem [24, p. 221] states that the total energy contained in a
waveform integrated across all time is equal to the total energy of the waveform’s
Fourier transform integrated across all of its frequency components. This is also
known as the Rayleigh’s energy theorem. By defining XΠ( f ) as the Fourier trans-
form obtained from the sample-function xΠ(t), which is x(t) truncated from −Π/2
to Π/2, the Parseval’s theorem can be written as

∫ Π/2

−Π/2
x2(t)dt =

∫ ∞

−∞
|XΠ( f )|2 d f, (2.166)

where |XΠ( f )|2 is called the energy spectral density of the energy signal xΠ(t).
Multiplying both sides of (2.166) by 1/Π and making Π → ∞ we obtain

lim
Π→∞

1

Π

∫ Π/2

−Π/2
x2(t)dt =

∫ ∞

−∞
lim

Π→∞
|XΠ( f )|2

Π
d f. (2.167)

Note that in the left-side of (2.167) we have the definition of the average power
of the sample-function x(t). To obtain the average power of the process X (t) we
must take the expected value of both sides of (2.167), yielding [26, p. 174]

PX = lim
Π→∞

1

Π

∫ Π/2

−Π/2
E[X2(t)]dt =

∫ ∞

−∞
lim

Π→∞
E
[|XΠ( f )|2]

Π
d f. (2.168)

Finally, the integrand on the right-side of (2.168) must be the power spectral
density of the random process X (t) [10, p. 51], since its integral results in a power.
Furthermore, the unit watts/hertz for the PSD is adequate.
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In (2.168) we notice that the average power in the process X (t) is given by the
time average of its second moment. Nevertheless, if X (t) is stationary E[X2(t)] will
be constant and the total average power in X (t) will be PX = E[X2(t)].

From the above discussion we have the following PSD estimation for X (t):

SX ( f ) = lim
Π→∞

1

Π
E
[|XΠ( f )|2] . (2.169)

If the signal x(t) is deterministic, expression (2.169) can also be used, but without
the expectation operation [1, p. 31].

The PSD estimation in (2.169) is called a periodogram [21, p. 212; 27, p. 902].
A useful interpretation about it can be stated as follows: the power spectral density
of a random process X (t) can be estimated by averaging the squared-modulus of the
Fourier transform of windowed sample-functions. For stationary random processes,
this averaging can be obtained through time-averaging.

In practice the periodogram estimation of a PSD is accomplished by segmenting
a sample-function, sampling each segment, performing a discrete Fourier transform
(typically a fast Fourier transform, FFT), applying the squared-modulus, summing
the results coming from each segment and dividing the result by the number of
segments. This averaging process is sometimes called smoothing.

The windowing process is not necessarily rectangular and, in fact, different win-
dowing can reduce bias and leakage in the estimated PSD [21, p. 216], as we shall
see in the next computer simulation.

The periodogram is just one of the many techniques for estimating the power
spectral density of a signal. For more information on this technique, see [18, p. 622].
For a detailed analysis on several other techniques for power spectral density esti-
mation, see [21] and [36]. For a condensed material on several aspects of the PSD
estimation, see Chap. 12 of [27].

Simulation 2.8 – Periodogram Estimation of the PSD

File – CD drive:\Simulations\Signals\Periodogram.vsm

Default simulation settings: Frequency = 1 Hz; End = 32,768
seconds. Number of FFT averages: 32. Window type: Rectangular.
FFT size: 1,024 points (1k). PSD unit: dBm/Hz. 1Ω load.

This experiment is intended to show how the spectral estimation via periodogram is
performed. The effects of window size and smoothing are investigated. The experi-
ment also shows the bias effect and one possible solution implemented by changing
the window type.

The sample-function to be analyzed is an autoregressive, usually denoted by
AR(4) [21, pp. 164, 218]. This random process is generated according to
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x[n] = −
4∑

k=1

ak x[n − k] + w[n], (2.170)

where x[n], n = 0, 1, . . . , N − 1 is a sample of the autoregressive sequence x and
w[n] is a sample of a normal random variable N (0, 1), forming the sequence w.
The vector a is given by

a = [1 − 2.7607 3.8106 − 2.6535 0.9238]T. (2.171)

A vector x with 32,768 (32k) samples was generated according to (2.170) and
the result was stored in a .DAT file. This file is read by VisSim/Comm and the
computation of the power spectral density is then performed.

The theoretical power spectral density of the AR(4) sequence, in dBm/Hz and
considering a 1Ω load resistance is given by

SX ( f ) = 10 log

∣∣∣∣
4∑

k=0
ake− j2π f k

∣∣∣∣
−2

0.001
(2.172)

This PSD was converted into a .DAT file and also exported to VisSim/Comm, so
that it is be possible to compare the theoretical and the estimated PSDs, which are
shown in Fig. 2.25. The estimated periodograms were obtained from a 1k-point FFT
using two different window types. The interpretation of the results will be provided
throughout the analysis of this experiment.

Fig. 2.25 Theoretical and estimated PSDs of the AR(4) signal

The use of the AR(4) signal was motivated due to the fact that it has a high
dynamic range and is extensively used for testing PSD estimation techniques [21].

As already mentioned in Chap. 1, the use of the scale in dBm/Hz is motivated by
the fact that lower values of the PSD are emphasized to permit measurements. In a
linear scale these lower levels perhaps would not be measurable.
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Open the simulation file indicated in the header. Note that the sample-function
of the AR(4) process is applied to a VisSim/Comm block that estimates the PSD.
The result is plotted in dBm/Hz, along with the theoretical PSD given by (2.172). A
time plot and an histogram plot are also provided so that you can better analyze the
waveform corresponding to the AR(4) signal.

Using the default simulation settings, run the simulation and observe the time
plot. Magnify the waveform for a better view. Note that the AR(4) signal seems to
be, and in fact is, a filtered white Gaussian process. The histogram plot can confirm
this. As a consequence, the theoretical PSD is determined only by the discrete-time
filter coefficients {ak}, since the PSD of a white noise is constant.

Now observe the estimated PSD and compare it to the theoretical one. Note
that there is a strong bias for higher frequencies, a typical characteristic of the
periodogram that manifests more visibly when the signal has a high dynamic
range.

Open the dialog box of the power spectral density analyzer. Note that it is using a
relatively short FFT size (1k) and that it is using a smoothing with 32 FFT averages.
Note also that the window of a rectangular type is being used. Reduce the number of
FFT averages to 1 and rerun the simulation. Note that the variance of the estimated
PSD has been increased. This shows to us that the smoothing process is a means for
reducing the variance of the periodogram.

Now increase the FFT size to 16k and set the number of FFT averages to 2.
Remember that whenever you change the FFT size in the PSD analyzer block, you
must set the same value for the theoretical PSD (Spectral Mask block). Run the
simulation and note that this increased FFT size has increased the frequency resolu-
tion of the PSD estimation. Note also that the bias has been slightly reduced. This
situation is an example of the increased resolution and reduced bias caused when
the FFT size is increased. However, note that the variance of the PSD is not affected
by the window size [18, p. 622].

If desired, it is possible to save the data corresponding to the PSD plots so that
you can use a mathematical tool to compute the variance of the estimated PSDs.

Now, reset the diagram to the default parameters. Run the simulation and observe
again the estimated PSD and the bias previously verified. Open the dialog box of the
spectral analyzer and change the window type to Hanning. Run the simulation and
note that the bias has been reduced. This situation shows to us that it is possible to
overcome the bias problem, at least by a small amount, using a different windowing.
Nevertheless, care must be taken when using windows other than the rectangular,
since the gradual decaying of a non-rectangular window is normally accompanied
by a smearing of the peaks in the estimated PSD.

As an exercise, do some research in order to better understand the various
types of window and their main characteristics. Any good book on discrete-time
signal processing or digital signal processing (DSP) will probably discuss the
subject.

There are many other situations that can be simulated with this experiment.
Create and investigate for yourself some new situations and configurations of the
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simulation parameters and try to reach your own conclusions. Additionally, try to
reproduce the results presented in Fig. 2.25.

2.6.3 The PSD of Baseband Digital Communication Signals

In this subsection we address a general expression for the power spectral density of
any baseband digital signals that can be represented in the form

x(t) =
∞∑

i=−∞
ai p(t − iT ), (2.173)

where {ai } is a sequence with M amplitudes, each of them representing log2 M bits,
p(t) is a unit-amplitude pulse-shaping function and T is the pulse duration. We call
1/T the signaling rate or symbol rate (or yet baud rate), which is measured in
symbols per second or bauds.

The waveform represented by (2.173) is a form of baseband signaling usually
referred to as M-ary Pulse Amplitude Modulation (M-PAM). It is one of the base-
band transmission forms that will be covered in detail in Chap. 4, in the more spe-
cific context of digital transmission. Additionally, it is associated to the equivalent
low-pass representation of several digital modulated signals. Then, determining its
PSD is indeed of major importance.

Here we omit some intermediate mathematical deductions and proofs and give
special attention to the interpretation and use of the main final results. For a detailed
analysis, see for example [6, p. 415; 41, Chap. 2 and Appendix A].

Since the PSD of a signal depends on its autocorrelation function, the correlation
between pulses in the sequence {ai } will affect the result. Furthermore, the mean of
the sequence {ai } will affect the PSD, since a non-zero mean causes the appearance
of discrete components in the frequency spectrum. Additionally, the pulse-shape
function p(t) will also play its role in the final spectral shape.

What we shall do in the sequel is to analyze the continuous and discrete parts
of the power spectral density of x(t) as a function of the correlation, mean and
pulse-shaping properties of the signal. We assume that x(t) is a sample-function of
an ergodic random process X (t). This assumption is reasonable for many commu-
nication signals, especially if they are not modulated onto a carrier or, if modulated,
they are operated through their complex envelope representation [14].

We start by defining the discrete autocorrelation function of the sequence {ai }:

RA(k) = E[ai ai+k]. (2.174)

Since the sequence {ai } can have any mean μA and variance σA
2, we define the

normalized zero-mean and unit-variance sequence



160 2 Signals and Systems

âi = ai − μA

σA
. (2.175)

As a consequence, we have a normalized discrete autocorrelation function

R̂A(k) = E[âi âi+k] = RA(k) − μ2
A

σ 2
A

. (2.176)

This autocorrelation can be estimated through the discrete-time average

R̂A(k) ∼= 1

n

n−1∑

j=0

â j â( j+k)mod n. (2.177)

In (2.177) the modulo-n operation can be avoided if the number of points in the
sequence {âi } is at least N = 2n − 1. Moreover, for a good estimation n must
be as large as possible. In fact (2.177) corresponds to the exact computation of
the autocorrelation function for any periodic sequence (pseudo-random sequences,
for example). Furthermore, for large values of n, the circular-shift caused by the
modulo-n operation does not cause large estimation errors for small values of the
lag k.

Now let us define a spectral weighting function ŜA( f ), given by the Fourier trans-
form of the normalized continuous-time autocorrelation function of the sequence
{âi }, which can be written in terms of the discrete-time autocorrelation function, as
shown by:

ŜA( f ) =
∫ ∞

−∞
R̂A(τ )e− j2π f τ dτ

=
∫ ∞

−∞

∞∑

k=−∞
R̂A(k)δ(τ − kT )e− j2π f τ dτ

=
∞∑

k=−∞
R̂A(k)

∫ ∞

−∞
δ(τ − kT )e− j2π f τ dτ

=
∞∑

k=−∞
R̂A(k)e− j2π f kT .

(2.178)

This spectral weighting function is associated to the continuous part of the spec-
trum of x(t), since it depends on the autocorrelation function of the zero-mean and
unit-variance sequence {âi }.

Then, for the general case where it is possible that the sequence {ai } in (2.173)
exhibits correlation between pulses and have a non-zero mean, the power spectral
density of the signal x(t) defined in (2.173) is given by [6, p. 418; 41, p. 577]
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SX ( f ) = |P( f )|2
T

σ 2
A ŜA( f ) +

(μA

T

) ∞∑

i=−∞

∣∣∣∣P
(

i

T

)∣∣∣∣
2

δ

(
f − i

T

)
. (2.179)

Note that the second term in the right-hand side of (2.179) is the discrete part of
the spectrum. For a non-zero mean of the sequence {ai } in (2.173), this term will
correspond to discrete components in harmonics of the signaling rate 1/T . It will
vanish if the sequence {ai } has zero-mean, that is μA = 0.

The first term in the right-hand side of (2.179) is influenced by the pulse-shaping
function p(t) and by the correlation properties of the sequence {ai }. Note that for
uncorrelated pulses, the normalized autocorrelation function in (2.176) will be given
by a unity impulse at k = 0. With this result in (2.178) we shall have a unitary
weighting function �S A( f ) and the power spectral density will be determined only
by the pulse-shaping function p(t) and the variance σA

2 of the sequence {ai }.

Example 2.5 – Let us apply expression (2.179) to the analysis of the PSD of the
random binary wave with uncorrelated, rectangular and equally-likely pulses {ai } ∈
±A = ±1 already considered in Example 2.4.

Since the pulses are equally-likely, μA = 0. The variance σA
2 is given by E[(ai −

μA)2] = E[ai
2] = A2 = 1.

Additionally, since the pulses are uncorrelated, the spectral weighting function
�S A( f ) = 1. Then, with these results in (2.179) we obtain

SX ( f ) = |P( f )|2
T

. (2.180)

Since p(t) is a rectangular pulse of unit amplitude and duration T we can apply
the already known Fourier transform, yielding

SX ( f ) = T 2sinc2( f T )

T
= T sinc2( f T ). (2.181)

This is indeed the same result obtained in (2.161) and (2.164), demonstrating
that the power spectral density of a zero-mean random sequence of uncorrelated
pulses can be obtained by dividing the energy spectral density of the pulse-shaping
function by the pulse duration T and multiplying the result by the variance (in this
case equal to the mean square value) of the sequence {ai}, that is,

SX ( f ) = |P( f )|2
T

σ 2
A. (2.182)

Comparing (2.182) with (2.163), observe that (2.163) applies only to binary
antipodal signals with pulses ±g(t) and is a particular case of (2.182) if we use
G( f ) = P( f )σA, that is, g(t) = p(t)σA. Nevertheless, (2.182) is applicable to any
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zero-mean random sequence of uncorrelated multilevel pulses, as long as the shape
of the pulses, p(t), is the same.

In [28, p. 530] and [37] the spectral characteristics of digital signals are analyzed
from the perspective of Markov chains. With this approach, signals are represented
by a set of states that happen with specified probabilities and with specified transi-
tion probabilities between states. This analysis is particularly useful for determining
the power spectral density of signals with memory, that is, signals in which the
correlation between one or more successive pulses are intrinsic to the signal gener-
ation. Examples of such signals are some line codes that will be considered at the
beginning of Chap. 4.

2.7 The Bandwidth of Communication Signals

The information provided by the power spectral density of a random process or a
deterministic signal can be complemented if we associate to it some measure of the
frequency range in which a given portion of the signal power is concentrated on.
This measure is usually referred to as the bandwidth of the signal.

There are several definitions for bandwidth and they differ basically in the way
that the portion of the signal power is defined. Usual bandwidth measurements are
the absolute bandwidth, the −3 d B or half-power bandwidth, the equivalent noise
bandwidth, the root mean square (rms) bandwidth and the null-to-null or main lobe
bandwidth. Bandwidth requirements are also commonly defined in terms of a spec-
tral mask, which establishes limits for PSD levels. This bandwidth measurement
is commonly used by regulatory agencies to impose limits to the radiated power
spectrum of communication systems.

In what follows we shall briefly discuss each of these bandwidth definitions.

2.7.1 Absolute Bandwidth

The absolute bandwidth is a measure of the frequency range in which the PSD
of a signal is non-zero. The binary random wave considered in Example 2.4 is an
example of infinite absolute bandwidth.

Care must be taken when considering the absolute bandwidth of signals defined
according to (2.173). As we saw, the PSD of such signal is determined by (2.179),
where P( f ) is the Fourier transform of the shaping-pulse p(t). As long as p(t) is
confined in some interval, no matter how long, P( f ) will have infinite bandwidth
and, as a consequence, SX ( f ) will also have infinite bandwidth. From another point
of view, any confined spectrum P( f ) is associated to an unlimited-time pulse p(t).
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2.7.2 −3 dB (or Half Power) Bandwidth

As the name indicates, the −3 dB bandwidth is the range of frequencies comprised
between the frequency values in which the PSD of a signal falls 3 dB related to its
peak. If the PSD has multiple occurrences of −3 dB points, we can consider the
bandwidth of the −3 dB frequency values that are mostly far apart.

2.7.3 Equivalent Noise Bandwidth

At the end of Chap. 1 we defined the equivalent noise bandwidth B as the bandwidth
of an ideal filter that produces the same noise power as the filter representing a
given system’s response, when a white noise is applied to both. Translating this
definition to the context of power spectral density, we can define the equivalent
noise bandwidth as the bandwidth of a brick-wall-shaped PSD that has the same
area of the PSD of a given process X (t). Making use of the results in Chap. 1, we
then have

2
∫ ∞

0
SX ( f )d f = SX (0)2B ⇒ B =

∫∞
0 SX ( f )d f

SX (0)
. (2.183)

2.7.4 Root Mean Square (rms) Bandwidth

The concept behind the rms bandwidth comes from the notion of the standard devi-
ation as a measure of the dispersion of a probability density function.

If the PSD is integrable, we can define a normalized PSD such that the resultant
area is made equal to 1. From this PDF-like power spectral density we can compute
the square root of the second moment and associate the result to a measure of the
dispersion of the SPD. Mathematically, for a baseband real signal we have

B =
√√√√
∫ ∞

−∞
f 2

(
SX ( f )∫∞

−∞ SX (u)du

)
d f . (2.184)

For a passband signal we can apply the same reasoning. First we define the mean
frequency μF as

μF =
∫ ∞

0
f

(
SX ( f )∫∞

0 SX (u)du

)
d f. (2.185)

Then we ignore the negative part of SX ( f ) and translate the positive part to
f = 0. As a result we have a baseband PSD SY ( f ). Finally we apply (2.184), which
is multiplied by 2 to reflect the double deviation about the mean in the passband
spectrum. Mathematically we have:
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SY ( f − μF ) = SX ( f )u( f ),

SY ( f ) = SX ( f + μF )u( f + μF ) and

B = 2

√√√√
∫ ∞

−∞
f 2

(
SY ( f )∫∞

−∞ SY (u)du

)
d f ,

(2.186)

where u( f ) is the unit-step function in the frequency domain. Note that if the posi-
tive part of SX ( f ) is symmetric about the carrier frequency fc, the mean frequency
will (as it should) be equal to the carrier frequency.

Instead of working with SY ( f ) we can determine the rms bandwidth using

B = 2

√√√√
∫ ∞

0
( f − μF )2

(
SX ( f )∫∞

0 SX (u)du

)
d f . (2.187)

2.7.5 Null-to-Null or Main Lobe Bandwidth

The null-to-null or main lobe bandwidth is a usual measure of the frequency range
occupied by a signal whose power spectral density is of the form, or at least is
similar in shape to a “sinc” function.

As an example, refer to the PSD in Fig. 2.24. Note that the null-to-null bandwidth
is located from 20 to 30 Hz. This is indeed the portion of the signal that concentrates
most of the signal power, typically more than 90%. For example, the proportion of
the signal power in the main lobe of SY ( f ) in (2.162) is

∫ 30

20
SY ( f )d f

/∫ ∞

0
SY ( f )d f ∼= 0.903. (2.188)

For a baseband signal, the null-to-null bandwidth lose a little bit its meaning,
since the negative half part of the main lobe does not exist. In this case the term
“main lobe” or “first null” bandwidth is more adequate, as it measures the frequency
band from 0 to the first spectral null.

The power concentration is also valid for the baseband spectrum, as shown below
for the PSD SX ( f ) in (2.161):

∫ 1/T

0
SX ( f )d f

/∫ ∞

0
SX ( f )d f ∼= 0.903. (2.189)

It is worth mentioning that the term “null” not necessarily refers to a zero value of
the PSD. The term also applies to situations where deep notches exist in the spectral
content of a signal.

Summarizing the above discussion, Fig. 2.26 shows the bandwidth definitions
presented so far, considering a passband signal as a case study. The representa-
tion of the equivalent noise and the rms bandwidths with smaller values than the
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Fig. 2.26 Several bandwidth definitions

null-to-null bandwidth is only illustrative, their exact values depending of the spe-
cific signal under analysis.

2.7.6 Spectral Mask

The spectral mask is not a measure of bandwidth, at least in the sense of the
other measures described so far. Instead, it establishes upper (and sometimes lower)
bounds on the spectral characteristics of a signal. The spectral mask is commonly
used by regulatory agencies to impose limits on the radiated power of wireless com-
munication systems.

In Fig. 2.27 the concept of the spectral mask is illustrated. The mask consists
of a set of lines that establish the limits for the spectrum of a transmitted signal.
Although these limits can be specified in several ways, a normal unit is the “dBc”,
which means that they are measured in dB relative to the signal power at the carrier
frequency. By using this unit of measurement, transmitters with different average
powers can be assessed by using the same spectral mask.

The spectral mask is also used to establish lower and upper bounds simultane-
ously. In this case the spectral characteristics of the signal or system under analysis

Fig. 2.27 The concept of spectral mask
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must fit in-between the imposed limits. This type of spectral mask is particularly
useful to set limits in the spectral characteristics of filters.

Just as a complement, a mask can also be defined in the time-domain, having
typically lower and upper limits. This type of mask is normally used to set limits in
pulse shapes and the like.

2.8 Summary and Further Reading

In this chapter we have presented the main concepts related to communication sig-
nals and systems. We have defined some common signals and studied their prop-
erties. In the sequel we addressed the time and frequency representation of such
signals through the Fourier analysis. The sampling theory was then discussed and
linear systems were put into focus, with emphasis in the class of linear, time-
invariant (LTI) systems. The complex representation of signals and systems were
also considered and the chapter ended with an analysis of the power spectral density
and the bandwidth of signals, complementing the corresponding study started in
Chap. 1.

The literature is vast in the topics covered in this chapter. However, some classical
books and other non-classical but invaluable ones can be highlighted:

• Signals and linear systems, sampling theory and Fourier analysis are treated in
detail by H. P. Hsu [13], A. V. Oppenheim, A. S. Willsky and S. H. Nawab [24],
S. Haykin and B. V. Veen [11] and B. Girod, R. Rabenstein and A. Stenger [7].

• The discrete-time signal processing area is well covered in the classic book by
A. V. Oppenheim and R. W. Schaffer [23] and in the book by V. K. Madisetti and
D. B. Williams (editors) in [20].

• In what concerns the power spectral estimation, a deep mathematical treatment is
given by R. M. Howard in [12], and an applied material is presented in Chap. 5 of
the book by D. G. Manolakis, V. K. Ingle and S. M. Kogon [21]. For a condensed
material on several aspects of PSD estimation, see Chap. 12 of the book by J. G.
Proakis and D. G. Manolakis [27]. A more complete covering of the subject is
given by P. Stoica and R. L. Moses in [36]. In the book by J. G. Proakis and M.
Salehi [28, p. 530] and in the report by R. C. Titsworth and L. R. Welch [37],
the spectral characteristics of digital signals are analyzed from the perspective
of Markov chains. This analysis is particularly useful for determining the power
spectral density of signals with memory.

• For a broad discussion on digital filtering, see the works by V. K. Madisetti and
D. B. Williams (editors) [20], C. B. Rorabaugh [32] and B. A. Shenoi [33].

2.9 Additional Problems

Several simulation-oriented problems were already proposed in the body of the
simulation work plans throughout the chapter. Most of the following additional
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propositions are also based on simulation or are research-oriented, requiring some
sort of additional reading. A number of exercises involving conventional calcula-
tions can be found in the references cited throughout the chapter.

1. Determine the Fourier transform of the following signals:

x1(t) =
{

K exp
[
− (t−T/2)2

T 2/8π

]
, 0 ≤ t ≤ T

0, otherwise

x2(t) =
{

sin
(

π t
T

)
, 0 ≤ t ≤ T

0, otherwise

x3(t) =
[

sin(π t/T )

π t/T

]
cos(παt/T )

1 − (2αt/T )2

x4(t) =
√

2B2π

ln 2
exp

(
−2B2π2t2

ln 2

)
.

2. Determine the power spectral density of a 4-PAM signal with independent pulses
with rectangular shape, duration T and amplitudes ±A and ±3A volts.

3. Find the specifications of the compact disc digital audio technology in what con-
cerns sampling and quantization and determine the signal-to-quantization noise
ratio that can be achieved. Repeat the process considering the Blu-ray disk tech-
nology.

4. Do some research and find applications of the moving-average filter in the con-
text of wireless channel characterization. Hint: seek for topics related to the
analysis of short-term and long-term propagation characteristics of the channel
during the so-called channel-sounding processes.

5. Revisit Example 2.3 and prepare a dissertation aiming at detailing all steps
involved in the design of a digital filter from its analog counterpart.

6. Do a research on a method for power spectral density estimation different from
the periodogram and describe it in details. If possible, implement the method
using VisSim/Comm or any other software tool.

7. Seek for a reference in which expression (2.179) is derived in detail. Study its
derivation and repeat it including your comments on intermediate derivations or
simplifications. Save your work for a future reference.

8. Do a research on the techniques used in modern digital spectrum analyzers to
estimate the frequency content of signals.

9. Study one of the techniques for implementing a 1-bit analog-to-digital converter
and implement it using VisSim/Comm. Perform an analysis of the quantization
error produced by the technique you have chosen e write down your conclusions,
preferably comparing the results with those obtained with a conventional analog-
to-digital conversion.
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