
Object-Oriented
Macromedia Flash MX

WILLIAM DROL

147_Drol.book Page i Friday, May 17, 2002 3:16 PM

Object-Oriented Macromedia Flash MX
Copyright © 2002 by William Drol

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval system, without the prior written permission of the copyright owner and the
publisher.

ISBN (pbk): 1-59059-014-7

Printed and bound in the United States of America 12345678910

Trademarked names may appear in this book. Rather than use a trademark symbol with every
occurrence of a trademarked name, we use the names only in an editorial fashion and to the
benefit of the trademark owner, with no intention of infringement of the trademark.

Technical Reviewer: Thomas Burr

Editorial Directors: Dan Appleman, Peter Blackburn, Gary Cornell, Jason Gilmore, Karen
Watterson, John Zukowski

Managing Editor: Grace Wong

Copy Editor: Nicole LeClerc

Compositor: Susan Glinert

Artist and Cover Designer: Kurt Krames

Indexer: Valerie Haynes Perry

Marketing Manager: Stephanie Rodriguez

Distributed to the book trade in the United States by Springer-Verlag New York, Inc., 175 Fifth
Avenue, New York, NY, 10010 and outside the United States by Springer-Verlag GmbH & Co. KG,
Tiergartenstr. 17, 69112 Heidelberg, Germany.

In the United States, phone 1-800-SPRINGER, email orders@springer-ny.com, or visit
http://www.springer-ny.com.

Outside the United States, fax +49 6221 345229, email orders@springer.de, or visit
http://www.springer.de.

For information on translations, please contact Apress directly at 2560 9th Street, Suite 219,
Berkeley, CA 94710.

Phone 510-549-5930, fax: 510-549-5939, email info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every
precaution has been taken in the preparation of this work, neither the author nor Apress shall
have any liability to any person or entity with respect to any loss or damage caused or alleged to
be caused directly or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com in the Downloads
section. You will need to answer questions pertaining to this book in order to successfully
download the code.

147_Drol.book Page ii Friday, May 17, 2002 3:16 PM

5

CHAPTER 2

Introduction to OOP

OBJECT-ORIENTED PROGRAMMING (OOP) is an overused term for a simple idea. OOP
is not a computer language or any kind of software application. OOP is a common-
sense way to examine problems and break them down into smaller pieces. These
pieces are objects, the building blocks of software.

Not long ago, developers had to write large, complex applications using
countless lines of computer code. These applications described exactly what the
computer needed to do in a painful, systematic fashion. Often, the code was
heavily interdependent. If anything changed, a whole series of bugs might appear,
sometimes making it nearly impossible to locate the true source of the errors.

Frequently, software patches attempted to bypass errors without addressing
the real problem. If the project found itself in a tailspin, the only choice was to
abandon large portions of the code and start over. The rebuilding process usually
suffered the same fate, producing a purgatory for coding madness.

In an attempt to stop these problems, OOP was born. OOP is not perfect, but it
offers a simple way to handle complex problems. It’s also a commonsense approach.
Think of your car. It’s an object-oriented system formed by many discrete pieces
(or objects). The car itself is an object. The engine inside the car is an object. The
exhaust system is an object that contains even more objects. The engine depends
upon the exhaust system, but it has no idea how the exhaust system works. Fortu-
nately, your car parts conspire so that you may drive down to the corner store and
buy a frozen treat.

The Scoop on OOP

When you get into your car, you turn the key, the car starts, and off you go. You
don’t need to understand how the car parts work to find yourself in rush-hour
traffic. The car starts when you turn the key. Car designers hide the messy internal
details so you can concentrate on important things like finding another radio
station. OOP calls this concept encapsulation.

Are you old enough to remember fuel stations before the self-service era? You
could drive into these places and somebody else would fill up your tank. The
station attendant knew about OOP long before you did. He put the fuel nozzle into
the tank (any tank) and pumped the fuel! It didn’t matter if you drove a Ford, a

147_Drol.book Page 5 Friday, May 17, 2002 3:16 PM

Chapter 2

6

Chrysler, or a Datsun. All cars have fuel tanks, so this behavior is easy to repeat for
any car. OOP calls this concept polymorphism.

Do you need polymorphic behavior in OOP? Yes, you might need to create
things that bounce, for instance. A ball bounces in a normal ball-like fashion, a
squeaky toy bounces in an unpredictable fashion, and a bowling ball doesn’t bounce
much at all. The point is, they can all respond to the same command: BOUNCE!
This process works very well, especially when you don’t know (in advance) which
objects you may need to control.

The last major part of OOP is inheritance. Inheritance allows you to build new
applications based on pieces and parts of existing applications. You start with an
existing piece of computer code and then introduce a desirable new feature. The result
is a new piece of computer code with qualities identical to the original, but with added
functionality. If you do this carefully, you can stop building code from scratch.

Now that you have an overview, I will focus on classes, objects, and properties.
These are the OOP power tools that solve real problems.

Classes and Objects

There’s a subtle difference between a class and an object. A class is a self-contained
description for a set of related services and data. Classes list the services they
provide without revealing how they work internally. You cannot do any real work
with a class; you can only describe what the class may offer. To do work, you need
an object.

Suppose you want to build a house. Unless you build it yourself, you need an
architect and a builder. The architect drafts a blueprint, and the builder uses it to
construct your house. Software developers are architects, and classes are their
blueprints. You cannot use a class directly, any more than you could move your
family into a blueprint. Classes only describe the final product. To actually do
something you need an object.

If a class is a blueprint, then an object is a house. Builders create houses from
blueprints; OOP creates objects from classes. OOP is efficient. You write the class
once and create as many objects as needed.

Properties

Properties give individual objects unique qualities. Without properties, each house
(from the previous example) would remain identical to its neighbors (all constructed
from the same blueprint). With properties, each house is unique, from its exterior
color to the style of its windows. These are properties.

147_Drol.book Page 6 Friday, May 17, 2002 3:16 PM

Introduction to OOP

77

In OOP, you write classes to offer predefined behaviors and maybe hold some
data. Next, you create one or more objects from a class. Finally, you endow objects
with their own individual property values. The progression from classes to objects to
objects with unique properties is the essence of OOP.

Understanding Basic OOP Concepts

Encapsulation, polymorphism, inheritance . . . they’re just words. Don’t memorize
them just because you think must. Understand the concepts first; remember the
names later. There’s a big difference between knowing the name of something and
knowing something. One of Richard Feyman’s stories about a lesson his father
taught him applies here:

“‘See that bird?’ he says. ‘It’s a Spencer’s warbler. (I knew he didn’t know the real
name.) Well, in Italian, it’s a Chutto Lapittida. In Portuguese, it’s a Bom da

Peida. In Chinese, it’s a Chung-long-tah, and in Japanese, it’s a Katano
Tekeda. You can know the name of that bird in all the languages of the world,
but when you’re finished, you’ll know absolutely nothing whatever about the
bird. You’ll only know about humans in different places, and what they call
the bird. So let’s look at the bird and see what it’s doing, that’s what counts.’”

In the following sections, I will discuss basic OOP concepts in detail.

Encapsulation: Hiding the Details

Accountants love details (all the numbers, receipts, and invoices). The accountant’s
boss, however, is interested in the bottom line. If the bottom line is zero, the
company is debt-free. If the bottom line is positive, the company is profitable. She
is happy to ignore all the messy details and focus on other things. Encapsulation is
about ignoring or hiding internal details. In business, this is delegation. Without it,
the boss may need to deal with accounting, tax law, and international trading at a
level beyond her ability.

OOP loves encapsulation. With encapsulation, classes hide their own internal
details. Users of a class (yourself, other developers, or other applications) are not
required to know or care why it works. Class users just need the available service
names and what to provide to use them. Building classes is an abstraction process;
you start with a complex problem, and then reduce it down (abstracting it) to a list
of related services. Encapsulation simplifies software development and increases
the potential for code reuse.

147_Drol.book Page 7 Friday, May 17, 2002 3:16 PM

Chapter 2

8

To demonstrate, I’ll present some pseudo-code (false code). You can’t enter
pseudo-code into a computer, but it’s great for previewing ideas. First, you need an
accounting class:

Start Of Accounting Class

End Of Accounting Class

Everything between the start and end line is the accounting class. A useless
class so far, because it’s empty. Let’s give the accounting class something to do:

Start Of Accounting Class

 Start Of Bottom Line Service

 (Internal Details Of Bottom Line Service)

 End Of Bottom Line Service

End Of Accounting Class

Now the accounting class has a bottom-line service. How does that service
work? Well, I know (because I wrote the code), but you (as a user of my class) have
no idea. That’s exactly how it should be. You don’t know or care how my class
works. You just use the bottom-line service to see if the company is profitable. As
long as my class is accurate and dependable, you can go about your business. You
want to see the details anyway? Okay, here they are:

Start Of Accounting Class

 Start Of Bottom Line Service

 Do Invoice Service

 Do Display Answer Service

 End Of Bottom Line Service

End Of Accounting Class

Where did the Invoice and Display Answer services come from? They’re part of
the class too, but encapsulation is hiding them. Here they are:

Start Of Accounting Class

 Start Of Bottom Line Service

 Do Invoice Service

 Do Display Answer Service

 End Of Bottom Line Service

 Start Of Invoice Service

 (Internal Details Of Invoice Service)

 End Of Invoice Service

147_Drol.book Page 8 Friday, May 17, 2002 3:16 PM

Introduction to OOP

99

 Start Of Display Answer Service

 (Internal Details Of Display Answer Service)

 End Of Display Answer Service

End Of Accounting Class

The bottom-line service has no idea how the invoice service works, nor does it
care. You don’t know the details, and neither does the bottom-line service. This
type of simplification is the primary benefit of encapsulation. Finally, how do you
request an answer from the bottom-line service? Easy, just do this:

Do Bottom Line Service

That’s all. You’re happy, because you only need to deal with a single line of
code. The bottom-line service (and encapsulation) handles the details for you.

Start Of Accounting Class

 Start Of Bottom Line Service

 Do Invoice Service

 Do Display Answer Service

 End Of Bottom Line Service

 Start Of Invoice Service

 Gather Invoices

 Return Sum

 End Of Invoice Service

 Start Of Display Answer Service

 Display Sum

 End Of Display Answer Service

End Of Accounting Class

NOTE When I speak of hiding code details, I’m speaking conceptually. I
don’t mean to mislead you. This is just a mental tool to help you under-
stand the importance of abstracting the details. With encapsulation,
you're not actually hiding code (physically). If you were to view the full
accounting class (as follows), you’d see the same code that I see.

147_Drol.book Page 9 Friday, May 17, 2002 3:16 PM

Chapter 2

10

Inheritance: Avoid Rebuilding the Wheel

Grog roll wheel. Wheel good. Grog doesn’t like rebuilding wheels. They’re heavy,
made of stone, and tend to crush feet when they fall over. Grog likes the wheel that
his stone-age neighbor built last week. Sneaky Grog. Maybe he’ll carve some holes
into the wheel to store rocks, twigs, or a tasty snack. If Grog does this, he’ll have
added something new to the existing wheel (demonstrating inheritance long
before the existence of computers).

Inheritance in OOP has a very nice extra. You don’t need to modify your neighbor’s

wheel. You only need to tell the computer, “Build a replica of my neighbor’s wheel,
and then add this, and this, and this.” The result is a custom wheel, but you didn’t
modify the original. Now you have two wheels, each unique. To clarify, here’s some
more pseudo-code:

Start Of Wheel Class

 Start Of Roll Service

 (Internal Details Of Roll Service)

 End Of Roll Service

End Of Wheel Class

The wheel class provides a single service named roll. That’s a good start, but
what if you want to make a tire? Do you build a new tire class from scratch? No, you
just use inheritance to build a tire class, like this:

Start Of Tire Class

 Using Wheel Class

End Of Tire Class

By using the wheel class as a starting point, the tire class already knows how to
roll (the tire is a type of wheel). Here’s the next logical step:

Start Of Tire Class

 Using Wheel Class

 Property Named Size

End Of Tire Class

TIP If you're wondering why some of the lines are indented, this is
standard practice (that is not followed often enough). It shows, at a
glance, the natural hierarchy of the code (of what belongs to what).
Please adopt this practice when you write computer code.

147_Drol.book Page 10 Friday, May 17, 2002 3:16 PM

Introduction to OOP

1111

Now the tire class has a property named size. That means you could create
many unique tire objects. All of the tires can roll (behavior inherited from the
wheel class), but each tire has its own unique size. You could add other properties
to the tire class too. With very little work, you could have small car tires that roll,
big truck tires that roll, and bigger bus tires that roll.

Polymorphism: Exhibiting Similar Features

Oranges have pulp. Lemons have pulp. Grapefruits have pulp. Cut any of these
open, I dare you, and try to scoop out the fruit with a spoon. Chances are, you’ll get
a squirt of citrus juice in your eye. Citrus fruits know exactly where your eye is, but
you don’t have to spoon them out to know they share this talent (they’re all acid-
based juice-squirters). Look at the following citrus class:

Start Of Citrus Class

 Property Named Juice

 Start Of Taste Service

 (Internal Details Of Taste Service)

 End Of Taste Service

 Start Of Squirt Service

 (Internal Details Of Squirt Service)

 End Of Squirt Service

End Of Citrus Class

You can use the citrus class as a base to define other classes:

Start Of Orange Class

 Using Citrus Class

 Juice is Orange

End Of Orange Class

Start Of Lemon Class

 Using Citrus Class

 Juice is Lemon

End Of Lemon Class

Start Of Grapefruit Class

 Using Citrus Class

 Juice is Grapefruit

End Of Grapefruit Class

147_Drol.book Page 11 Friday, May 17, 2002 3:16 PM

Chapter 2

12

Besides demonstrating inheritance again, the orange, lemon, and grapefruit
classes also exhibit similar behaviors. You know that the orange, lemon, and
grapefruit classes have the ability to squirt and each has a Juice property (inherited
from the Citrus class). So the orange can squirt orange juice, the lemon can squirt
lemon juice, and the grapefruit can squirt grapefruit juice. You don’t have to know
in advance which type of fruit, because they all squirt. In fact, you could taste the
juice (inherited from the citrus class) to know which fruit you’re dealing with.
That’s polymorphism: multiple objects exhibiting similar features in different ways.

What’s Next?

If this was your first exposure to OOP, maybe you were expecting something more
complicated. I hope I have demonstrated its simplicity instead. Coming up next,
I will focus on the general programming concepts common to modern computer
languages.

147_Drol.book Page 12 Friday, May 17, 2002 3:16 PM

