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Chapter 2
The Basics of Pricing with GLMs

As described in the previous section, the goal of a tariff analysis is to determine how
one or more key ratios Y vary with a number of rating factors. This is reminiscent
of analyzing how the dependent variable Y varies with the covariates (explanatory
variables) x in a multiple linear regression. Linear regression, or the slightly larger
general linear model, is not fully suitable for non-life insurance pricing, though,
since: (i) it assumes normally distributed random errors, while the number of insur-
ance claims follows a discrete probability distribution on the non-negative integers,
and claim costs are non-negative and often skewed to the right; (ii) in linear mod-
els, the mean is a linear function of the covariates, while multiplicative models are
usually more reasonable for pricing, cf. Sect. 1.3.

Generalized linear models (GLMs) is a rich class of statistical methods, which
generalizes the ordinary linear models in two directions, each of which takes care
of one of the above mentioned problems:

• Probability distribution. Instead of assuming the normal distribution, GLMs work
with a general class of distributions, which contains a number of discrete and
continuous distributions as special cases, in particular the normal, Poisson and
gamma distributions.

• Model for the mean. In linear models the mean is a linear function of the covari-
ates x. In GLMs some monotone transformation of the mean is a linear function
of the x’s, with the linear and multiplicative models as special cases.

These two generalization steps are discussed in Sects. 2.1 and 2.2, respectively.
GLM theory is quite recent—the basic ideas were introduced by Nelder and Wed-

derburn [NW72]. Already in the first 1983 edition of the standard reference by Mc-
Cullagh and Nelder there is an example using motor insurance data; in the second
edition [MN89] this example can be found in Sects. 8.4.1 and 12.8.3. But it was not
until the second half of the 90’s that the use of GLMs really started spreading, partly
in response to the extended needs for tariff analysis due to the deregulation of the
insurance markets in many countries. This process was facilitated by the publication
of some influential papers by British actuaries, such as [BW92, Re94, HR96]; see
also [MBL00], written for the US Casualty Actuarial Society a few years later.
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16 2 The Basics of Pricing with GLMs

Some advantages of using GLMs over earlier methods for rate making are:

• GLMs constitute a general statistical theory, which has well established tech-
niques for estimating standard errors, constructing confidence intervals, testing,
model selection and other statistical features.

• GLMs are used in many areas of statistics, so that we can draw on developments
both within and without of actuarial science.

• There is standard software for fitting GLMs that can easily be used for a tariff
analysis, such as the SAS, GLIM, R or GenStat software packages.

In spite of the possibility to use standard software, many insurance companies
use specialized commercial software for rate making that is provided by major con-
sulting firms.

2.1 Exponential Dispersion Models

Here we describe the exponential dispersion models (EDMs) of GLMs, which gen-
eralize the normal distribution used in the linear models.

In our discussion of the multiplicative model in (1.3) and (1.4) we used a way
of organizing the data with the observations, yi1,i2,...,iK , having one index per rat-
ing factor. This is suitable for displaying the data in a table, especially in the two-
dimensional case yij , and will therefore be called tabular form.

In our general presentation of GLMs, we rather assume that the data are or-
ganized on list form, with the n observations organized as a column vector y′ =
(y1, y2, . . . , yn). Besides the key ratio yi , each row i of the list contains the ex-
posure weight wi of the tariff cell, as well as the values of the rating factors. The
transition from tabular form to list form amounts to deciding on an order to display
the tariff cells; a simple example is given in Table 2.1. As further illustration, con-
sider again the moped insurance example, for which Table 1.2 contains an implicit
list form; in Table 2.2 we repeat the part of that table that gives the list form for
analysis of claim frequency.

List form corresponds to the way we organize the data in a data base, such as a
SAS table. Tabular form, on the other hand, is useful for demonstrative purposes;
hence, the reader should try to get used to both forms.

By the assumptions in Sect. 1.2, the variables Y1, . . . , Yn are independent, as
required in general GLM theory. The probability distribution of an EDM is given

Table 2.1 Transition from tabular form to list form in a 2 by 2 case

Married Male Female

Yes y11 y12

No y21 y22

�⇒

i Married Gender Observation

1 Yes M y1

2 Yes F y2

3 No M y3

4 No F y4
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Table 2.2 Moped tariff on
list form (claim frequency per
mille)

Tariff Covariates Duration Claim

cell Class Age Zone (exposure) frequency

i xi1 xi2 xi3 wi yi

1 1 1 1 62.9 270

2 1 1 2 112.9 62

3 1 1 3 133.1 68

4 1 1 4 376.6 19

5 1 1 5 9.4 0

6 1 1 6 70.8 14

7 1 1 7 4.4 228

8 1 2 1 352.1 148

9 1 2 2 840.1 82
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

21 2 1 7 14.5 0

22 2 2 1 844.8 111

23 2 2 2 1 296.0 76

24 2 2 3 1 214.9 30

25 2 2 4 3 740.7 15

26 2 2 5 109.4 37

27 2 2 6 404.7 12

28 2 2 7 66.3 15

by the following frequency function, specializing to a probability density function
in the continuous case and a probability mass function in the discrete case,

fYi
(yi; θi, φ) = exp

{
yiθi − b(θi)

φ/wi

+ c(yi, φ,wi)

}
. (2.1)

Here θi is a parameter that is allowed to depend on i, while the dispersion parameter
φ > 0 is the same for all i. The so called cumulant function b(θi) is assumed twice
continuously differentiable, with invertible second derivative. For every choice of
such a function, we get a family of probability distributions, e.g. the normal, Poisson
and gamma distributions, see Example 2.1 and (2.3) and (2.6) below. Given the
choice of b(·), the distribution is completely specified by the parameters θi and φ.
The function c(·, ·, ·), which does not depend on θi , is of little interest in GLM
theory.

Of course, the expression above is only valid for the yi that are possible outcomes
of Yi—the support; for other values of yi we tacitly assume fYi

(yi) = 0. Examples
of support we will encounter is (0,∞), (−∞,∞) and the non-negative integers.

Further technical restrictions are that φ > 0, wi ≥ 0 and that the parameter space
must be open, i.e., θi takes values in an open set, such as 0 < θi < 1 (while a closed
set such as 0 ≤ θi ≤ 1 is not allowed).
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An overview of the theory of the so defined exponential dispersion models can
be found in Jörgensen [Jö97]. We will presuppose no knowledge of the theory for
EDMs, and our interest in them is restricted only to the role they play in GLMs.

Remark 2.1 If φ was regarded as fixed, (2.1) would define a so called one-parameter
exponential family, see, e.g., Lindgren [Li93, p. 188]. If, on the other hand, φ is
unknown then we usually do not have a two-parameter exponential family, but we
do have an EDM.

Example 2.1 (The normal distribution) Here we show that the normal distribution
used in (weighted) linear models is a member of the EDM class; note, though, that
the normal distribution is seldom used in the applications we have in mind. Nev-
ertheless, assume for the moment that we have a normally distributed key ratio Yi .
The expectation of observation i is denoted μi , i.e., μi = E(Yi). Lemma 1.1 shows
that the variance must be wi -weighted; the σ 2 of that lemma is assumed to be the
same for all i in linear models. We conclude that Yi ∼ N(μi, σ

2/wi), where wi is
the exposure. Then the frequency function is

fYi
(yi) = exp

{
yiμi − μ2

i /2

σ 2/wi

+ c(yi, σ
2,wi)

}
, (2.2)

were we have separated out the part of the density not depending on μi ,

c(yi, σ
2,wi) = −1

2

(
wiy

2
i

σ 2
+ log(2πσ 2/wi)

)
.

This is an EDM with θi = μi , φ = σ 2 and b(θi) = θ2
i /2. Hence, the normal distribu-

tion used in (weighted) linear models is an EDM; the unweighted case is, of course,
obtained by letting wi ≡ 1.

2.1.1 Probability Distribution of the Claim Frequency

Let N(t) be the number of claims for an individual policy during the time inter-
val [0, t], with N(0) = 0. The stochastic process {N(t); t ≥ 0} is called the claims
process. Beard, Pentikäinen and Pesonen [BPP84, Appendix 4] show that under as-
sumptions that are close to our Assumptions 1.2–1.3, plus an assumption that claims
do not cluster, the claims process is a Poisson process. This motivates us to assume
a Poisson distribution for the number of claims of an individual policy during any
given period of time. By the independence of policies, Assumption 1.1, we get a
Poisson distribution also at the aggregate level of all policies in a tariff cell.

So let Xi be the number of claims in a tariff cell with duration wi and let μi

denote the expectation when wi = 1. Then by Lemma 1.1 we have E(Xi) = wiμi ,
and so Xi follows a Poisson distribution with frequency function

fXi
(xi;μi) = e−wiμi

(wiμi)
xi

xi ! , xi = 0,1,2, . . . .
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We are more interested in the distribution of the claim frequency Yi = Xi/wi ; in the
literature, this case is often (vaguely) referred to as Poisson, too, but since it is rather
a transformation of that distribution we give it a special name, the relative Poisson
distribution. The frequency function is, for yi such that wiyi is a non-negative inte-
ger,

fYi
(yi;μi) = P(Yi = yi) = P(Xi = wiyi) = e−wiμi

(wiμi)
wiyi

(wiyi)!
= exp{wi[yi log(μi) − μi] + c(yi,wi)}, (2.3)

where c(yi,wi) = wiyi log(wi) − log(wiyi !). This is an EDM, as can be seen by
reparameterizing it through θi = log(μi),

fYi
(yi; θi) = exp{wi(yiθi − eθi ) + c(yi,wi)}.

This is of the form given in (2.1), with φ = 1 and the cumulant function b(θi) = eθi .
The parameter space is μi > 0, i.e., the open set −∞ < θi < ∞.

Remark 2.2 Is the Poisson distribution realistic? In practice, the homogeneity within
cells is hard to achieve. The expected claim frequency μi of the Poisson process
may vary with time, but this is not necessarily a problem since the number of claims
during a year will still be Poisson distributed. A more serious problem is that there is
often considerable variation left between policies within cells. This can be modeled
by letting the risk parameter μi itself be the realization of a random variable. This
leads to a so called mixed Poisson distribution, with larger variance than standard
Poisson, see, e.g., [KPW04, Sect. 4.6.3]; such models often fit insurance data better
than the standard Poisson. We will return to this problem in Sects. 3.4 and 3.5.

It is a reasonable requirement for a probabilistic model of a claim frequency to
be reproductive, in the following sense. Suppose that we work under the assumption
that the claim frequency in each cell has a relative Poisson distribution. If a tariff
analysis shows that two cells have similar expectation, we might decide to merge
them into just one cell. Then it would be very strange if we got another probability
distribution in the new cell. Luckily, this problem will not arise—on the contrary,
the relative Poisson distribution is reproduced on the aggregated level, as we shall
now show.

Let Y1 and Y2 be the claim frequency in two cells with exposures w1 and w2,
respectively, and let both follow a relative Poisson distribution with parameter μ. If
we merge these two cells, the claim frequency in the new cell will be the weighted
average

Y = w1Y1 + w2Y2

w1 + w2
.

Since w1Y1 + w2Y2 is the sum of two independent Poisson distributed variables,
it is itself Poisson distributed. Hence Y follows a relative Poisson distribution with
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exposure w1 + w2 and the parameter is, by elementary rules for the expectation of
a linear expression, μ.

As indicated above, a parametric distribution that is closed under this type of
averaging will be called reproductive, a concept coined by Jörgensen [Jö97]. In
fact, this is a natural requirement for any key ratio; fortunately, we will see below in
Theorem 2.2 that all EDMs are reproductive.

2.1.2 A Model for Claim Severity

We now turn to claim severity, and again we shall build a model for each tariff cell,
but for the sake of simplicity, let us temporarily drop the index i. The exposure for
claim severity, the number of claims, is then written w. Recall that in this analysis,
we condition on the number of claims so that the exposure weight is non-random,
as it should be. The idea is that we first analyze claim frequency with the number of
claims as the outcome of a random variable; once this is done, we condition on the
number of claims in analyzing claim severity. Here, the total claim cost in the cell is
X and the claim severity Y = X/w.

In the previous section, we presented a plausible motivation for using the Poisson
distribution, under the assumptions on independence and homogeneity. However, in
the claim severity case it is not at all obvious which distribution we should assume
for X. The distribution should be positive and skewed to the right, so the normal
distribution is not suitable, but there are several other candidates that fulfill the re-
quirements. However, the gamma distribution has become more or less a de facto
standard in GLM analysis of claim severity, see, e.g., [MBL00, p. 10] or [BW92,
Sect. 3]. As we will show in Sect. 2.3.3, the gamma assumption implies that the
standard deviation is proportional to μ, i.e., we have a constant coefficient of vari-
ation; this seems quite plausible for claim severity. In Sect. 3.5 we will discuss the
possibility of constructing estimators without assuming a specific distribution, start-
ing from assumptions for the mean and variance structure only.

For the time being, we assume that the cost of an individual claim is gamma
distributed; this is the case w = 1. One of several equivalent parameterizations is
that with a so called index parameter α > 0, a scale parameter β > 0, and the
frequency function

f (x) = βα

Γ (α)
xα−1e−βx; x > 0. (2.4)

We denote this distribution G(α,β) for short. It is well known that the expectation
is α/β and the variance α/β2, see Exercise 2.4. Furthermore, sums of independent
gamma distributions with the same scale parameter β are gamma distributed with
the same scale and an index parameter which is the sum of the individual α, see
Exercise 2.11. So if X is the sum of w independent gamma distributed random
variables, we conclude that X ∼ G(wα,β). The frequency function for Y = X/w is
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then

fY (y) = wfX(wy) = (wβ)wα

Γ (wα)
ywα−1e−wβy; y > 0,

and so Y ∼ G(wα,wβ) with expectation α/β . Before transforming this distribution
to EDM form, it is instructive to re-parameterize it through μ = α/β and φ = 1/α.
In Exercise 2.5 we ask the reader to verify that the new parameter space is given by
μ > 0 and φ > 0. The frequency function is

fY (y) = fY (y;μ,φ) = 1

Γ (w/φ)

(
w

μφ

)w/φ

y(w/φ)−1e−wy/(μφ)

= exp

{−y/μ − log(μ)

φ/w
+ c(y,φ,w)

}
; y > 0, (2.5)

where c(y,φ,w) = log(wy/φ)w/φ − log(y) − logΓ (w/φ). We have E(Y) =
wα/(wβ) = μ and Var(Y ) = wα/(wβ)2 = φμ2/w, which is consistent with
Lemma 1.1.

To show that the gamma distribution is an EDM we finally change the first pa-
rameter in (2.5) to θ = −1/μ; the new parameter takes values in the open set θ < 0.
Returning to the notation with index i, the frequency function of the claim severity
Yi is

fYi
(yi; θi, φ) = exp

{
yiθi + log(−θi)

φ/wi

+ c(yi, φ,wi)

}
. (2.6)

We conclude that the gamma distribution is an EDM with b(θi) = − log(−θi) and
hence we can use it in a GLM.

Remark 2.3 By now, the reader might feel that in the right parameterization, any
distribution is an EDM, but that is not the case; the log-normal distribution, e.g., can
not be rearranged into an EDM.

2.1.3 Cumulant-Generating Function, Expectation and Variance

The cumulant-generating function is the logarithm of the moment-generating func-
tion; it is useful for computing the expectation and variance of Yi , for finding the
distribution of sums of independent random variables, and more. For simplicity, we
once more refrain from writing out the subindex i for the time being. The moment-
generating function of an EDM is defined as M(t) = E(etY ), if this expectation is
finite at least for real t in a neighborhood of zero. For continuous EDMs we find, by
using (2.1),

E(etY ) =
∫

etyfY (y; θ,φ)dy

=
∫

exp

{
y(θ + tφ/w) − b(θ)

φ/w
+ c(y,φ,w)

}
dy
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= exp

{
b(θ + tφ/w) − b(θ)

φ/w

}

×
∫

exp

{
y(θ + tφ/w) − b(θ + tφ/w)

φ/w
+ c(y,φ,w)

}
dy. (2.7)

Recall the assumption that the parameter space of an EDM must be open. It follows,
at least for t in a neighborhood of 0, i.e., for |t | < δ for some δ > 0, that θ + tφ/w is
in the parameter space. Thereby, the last integral equals one and the factor preceding
it is the moment-generating function, which thus exists for |t | < δ.

In the discrete case, we get the same expression by changing the integrals in (2.7)
to sums. By taking logarithms, we conclude that the cumulant-generating function
(CGF), denoted Ψ (t), exists for any EDM and is given by

Ψ (t) = b(θ + tφ/w) − b(θ)

φ/w
, (2.8)

at least for t in some neighborhood of 0. This is the reason for the name cumulant
function that we have already used for b(θ).

As the name suggests, the CGF can be used to derive the so called cumulants; this
is done by differentiating and setting t = 0. The first cumulant is the expected value;
the second cumulant is the variance; the reader who is not familiar with this result
is invited to derive it from well-known results for moment-generating functions in
Exercise 2.8.

We use the above property to derive the expected value of an EDM as follows,
recalling that we have assumed that b(·) is twice differentiable,

Ψ ′(t) = b′(θ + tφ/w); E(Y) = Ψ ′(0) = b′(θ).

The second cumulant, the variance, is given by

Ψ ′′(t) = b′′(θ + tφ/w)φ/w; Var(Y ) = Ψ ′′(0) = b′′(θ)φ/w.

As a check, let us see what this yields in the case of a normal distribution: here
b(θ) = θ2/2, b′(θ) = θ and b′′(θ) = 1, whence E(Y) = θ = μ and Var(Y ) = φ/w =
σ 2/w as it should be.

In general, it is more convenient to view the variance as a function of the mean μ.
We have just seen that μ = E(Y) = b′(θ), and since this is assumed to be an invert-
ible function, we may insert the inverse relationship θ = b′−1(μ) into b′′(θ) to get
the so called variance function v(μ)

.= b′′(b′−1(μ)). Now we can express Var(Y ) as
the product of the variance function v(μ) and a scaling and weighting factor φ/w.
Here are some examples.

Example 2.2 (Variance functions) For the relative Poisson distribution in Sect. 2.1.1
we have b(θi) = exp(θi), by which μi = b′(θi) = exp(θi). Furthermore b′′(θi) =
exp(θi) = μi , so that v(μi) = μi and Var(Y ) = μi/wi , since φ = 1. In the case
wi = 1 this is just the well-known result that the Poisson distribution has variance
equal to the mean.
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Table 2.3 Example of
variance functions Distribution Normal Poisson Gamma Binomial

v(μ) 1 μ μ2 μ(1 − μ)

The gamma distribution has b(θi) = − log(−θi) and b′(θi) = −1/θi so that μi =
−1/θi , as we already knew. Furthermore, b′′(θi) = 1/θ2

i = μ2
i so that Var(Yi) =

φμ2
i /wi .

The variance functions we have seen so far are collected in Table 2.3, together
with the binomial distribution that is treated in Exercises 2.6 and 2.9.

We summarize the results in the following lemma, returning to our usual notation
with index i for the observation number.

Lemma 2.1 Suppose that Yi follows an EDM, with frequency function given
in (2.1). Then the cumulant generating function exists and is given by

Ψ (t) = b(θi + tφ/wi) − b(θi)

φ/wi

,

and

μi
.= E(Yi) = b′(θi);
Var(Yi) = φv(μi)/wi,

where the variance function v(μi) is b′′(·) expressed as a function of μi , i.e.,
v(μi) = b′′(b′−1(μi)).

Remark 2.4 Recall that in linear regression, we have a constant variance Var(Yi) =φ,
plus possibly a weight wi which we disregard for a moment. The most general as-
sumption would be to allow Var(Yi) = φi , but this would make the model heavily
over-parameterized. In GLMs we are somewhere in-between these extremes, since
the variance function v(μi) allows the variance to vary over the cells i, but without
introducing any new parameters.

The variance function is important in GLM model building, a fact that is empha-
sized by the following theorem.

Theorem 2.1 Within the EDM class, a family of probability distributions is uniquely
characterized by its variance function.

The practical implication of this theorem is that if you have decided to use a
GLM, and hence an EDM, you only have to determine the variance function; then
you know the precise probability distribution within the EDM class. This is an in-
teresting result: only having to model the mean and variance is much simpler than
having to specify an entire distribution.
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The core in the proof of this theorem is to notice that since v(·) is a function
of the derivatives of b(·), the latter can be determined from v(·) by solving a pair
of differential equations—but b(·) is all we need to specify the EDM distribution
in (2.1). The proof can be found in Jörgensen [Jö87, Theorem 1].

We saw in Sect. 2.1.1 that the relative Poisson distribution had the appealing
property of being reproductive. The next theorem shows that this holds for all dis-
tributions within the EDM class.

Theorem 2.2 (EDMs are reproductive) Suppose we have two independent random
variables Y1 and Y2 from the same EDM family, i.e., with the same b(·), that have
the same mean μ and dispersion parameter φ, but possibly different weights w1 and
w2. Then their w-weighted average Y = (w1Y1 + w2Y2)/(w1 + w2) belongs to the
same EDM distribution, but with weight w· = w1 + w2.

The proof is left as Exercise 2.12, using some basic properties of CGFs derived in
Exercise 2.10. From an applied point of view the importance of this theorem is that
if we merge two tariff cells, with good reason to assume they have the same mean,
we will stay within the same family of distributions. From this point of view, EDMs
behave the way we want a probability distribution in pricing to behave. One may
show that the log-normal and the (generalized) Pareto distribution do not have this
property; our conclusion is that, useful as they may be in other actuarial applications,
they are not well suited for use in a tariff analysis.

2.1.4 Tweedie Models

In non-life actuarial applications, it is often desirable to work with probability dis-
tributions that are closed with respect to scale transformations, or scale invariant.
Let c be a positive constant, c > 0, and Y a random variable from a certain family
of distributions; we say that this family is scale invariant if cY follows a distribu-
tion in the same family. This property is desirable if Y is measured in a monetary
unit: if we convert the data from one currency to another, we want to stay within the
same family of distributions—the result of a tariff analysis should not depend on the
currency used. Similarly, the inference should not depend on whether we measure
the claim frequency in per cent or per mille. We conclude that scale invariance is
desirable for all the key ratios in Table 1.3, except for the proportion of large claims,
for which scale is not relevant.

It can be shown that the only EDMs that are scale invariant are the so called
Tweedie models, which are defined as having variance function

v(μ) = μp (2.9)

for some p. The proof can be found in Jörgensen [Jö97, Chap. 4], upon which much
of the present section is based, without further reference.
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Table 2.4 Overview of Tweedie models

Type Name Key ratio

p < 0 Continuous – –

p = 0 Continuous Normal –

0 < p < 1 Non-existing – –

p = 1 Discrete Poisson Claim frequency

1 < p < 2 Mixed, non-negative Compound Poisson Pure premium

p = 2 Continuous, positive Gamma Claim severity

2 < p < 3 Continuous, positive – Claim severity

p = 3 Continuous, positive Inverse normal Claim severity

p > 3 Continuous, positive – Claim severity

With the notable exception of the relative binomial in Exercise 2.6, for which
scale invariance is not required since y is a proportion, the EDMs in this book are all
Tweedie models. In Table 2.4 we give a list of all Tweedie models and the key ratios
for which they might be useful. The cases p = 0,1,2 have already been discussed.
Tweedie models with p ≥ 2 are often suggested as distributions for the claim sever-
ity, especially p = 2, but also the inverse normal distribution (p = 3) is sometimes
mentioned in the literature.

The class of models with 1 < p < 2 is interesting: these so called compound Pois-
son distributions arise as the distribution of a sum of a Poisson distributed number
of claims which follow a gamma distribution; hence, they are proper for modeling
the pure premium, without doing a separate analysis of claim frequency and sever-
ity. Note that the compound Poisson is mixed (neither purely discrete nor purely
continuous), having positive probability at zero plus a continuous distribution on
the positive real numbers.

Jörgensen and Souza [JS94] analyze the pure premium for a private motor insur-
ance portfolio in Brazil, and get the value p = 1.37 from an algorithm they designed
for maximum likelihood estimation of p.

A bit surprising is that for 0 < p < 1 no EDM exists. Negative values of p,
finally, are allowed and give continuous distributions on the whole real axis, but to
the best of our knowledge no application in insurance has been proposed.

From now on, we only discuss the case p ≥ 1, which covers our applications,
and we start by presenting the corresponding cumulant function b(θ).

b(θ) =
⎧⎨
⎩

eθ , for p = 1;
− log(−θ), for p = 2;
− 1

p−2 [−(p − 1)θ](p−2)/(p−1), for 1 < p < 2 and p > 2.
(2.10)

The parameter space Mθ is

Mθ =
{−∞ < θ < ∞, for p = 1;
−∞ < θ < 0, for p > 1.

(2.11)
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The derivative b′(θ) is given by

b′(θ) =
{

eθ , for p = 1;
[−(p − 1)θ]−1/(p−1), for p > 1,

(2.12)

with inverse

h(μ) =
{

log(μ), p = 1;
− 1

p−1μ−(p−1), p > 1. (2.13)

These results are taken from Jörgensen [Jö97]; some are also verified in Exer-
cise 2.13.

2.2 The Link Function

We have seen how to generalize the normal error distribution to the EDM class, and
now turn to the other generalization of ordinary linear models, concerning the linear
structure of the mean.

We start by discussing a simple example, in which we only have two rating fac-
tors, one with two classes and one with three classes. On tabular form, we let μij

denote the expectation of the key ratio in cell (i, j), where the first factor is in class
i and the second is in class j . Linear models assume an additive model structure for
the mean:

μij = γ0 + γ1i + γ2j . (2.14)

We recognize this model from the analysis of variance (ANOVA), and recall that
it is over-parameterized, unless we add some restrictions. In an ANOVA the usual
restriction is that marginal sums should be zero, but here we chose the restriction to
force the parameters of some base cell to be zero. Say that (1,1) is the base cell; then
we let γ11 = γ21 = 0, so that μ11 = γ0, and the other parameters measure the mean
departure from this cell. Next we rewrite the model on list form by sorting the cells
in the order (1,1); (1,2); (1,3); (2,1); (2,2); (2,3) and renaming the parameters,

β1
.= γ0,

β2
.= γ12,

β3
.= γ22,

β4
.= γ23.

With these parameters the expected values in the cells are as listed in Table 2.5.
Next, we introduce so called dummy variables through the relation

xij =
{

1, if βj is included in μi,

0, else.
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Table 2.5 Parameterization
of a two-way additive model
on list form

i Tariff cell μi

1 1 1 β1

2 1 2 β1 +β3

3 1 3 β1 +β4

4 2 1 β1 +β2

5 2 2 β1 +β2 +β3

6 2 3 β1 +β2 +β4

Table 2.6 Dummy variables
in a two-way additive model i Tariff cell xi1 xi2 xi3 xi4

1 1 1 1 0 0 0

2 1 2 1 0 1 0

3 1 3 1 0 0 1

4 2 1 1 1 0 0

5 2 2 1 1 1 0

6 2 3 1 1 0 1

The values of the dummy variables in this example are given in Table 2.6. Note the
similarity to Table 2.5.

With these variables, the linear model for the mean can be rewritten

μi =
4∑

j=1

xijβj i = 1,2, . . . ,6, (2.15)

or on matrix form μ = Xβ , where X is called the design matrix, or model matrix,
and

μ =

⎛
⎜⎜⎜⎜⎜⎜⎝

μ1
μ2
μ3
μ4
μ5
μ6

⎞
⎟⎟⎟⎟⎟⎟⎠

, X =

⎛
⎜⎜⎜⎜⎜⎜⎝

x11 x12 x13 x14
x21 x22 x23 x24
x31 x32 x33 x34
x41 x42 x43 x44
x51 x52 x53 x54
x61 x62 x63 x64

⎞
⎟⎟⎟⎟⎟⎟⎠

, β =

⎛
⎜⎜⎝

β1
β2
β3
β4

⎞
⎟⎟⎠ . (2.16)

So far the additive model for the mean has been used; next we turn to the mul-
tiplicative model μij = γ0γ1iγ2j that was introduced in Sect. 1.3. By taking loga-
rithms we get

log(μij ) = log(γ0) + log(γ1i ) + log(γ2j ), (2.17)

and again we must select a base cell, say (1,1), where γ11 = γ21 = 1. Let us now do
a transition to list form similar to the one we just performed for the additive model,
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by first letting

β1
.= logγ0,

β2
.= logγ12,

β3
.= logγ22,

β4
.= logγ23.

By the aid of the dummy variables in Table 2.6, we have

log(μi) =
4∑

j=1

xijβj ; i = 1,2, . . . ,6. (2.18)

This is the same linear structure as in (2.15), the only difference being that the left-
hand side is log(μi) instead of just μi . In general GLMs this is further generalized
to allow the left-hand side to be any monotone function g(·) of μi .

Leaving the simple two-way example behind, the general tariff analysis problem
is to investigate how the response Yi is influenced by r covariates x1, x2, . . . , xr .
Introduce

ηi =
r∑

j=1

xijβj ; i = 1,2, . . . , n, (2.19)

where xij as before is the value of the covariate xj for observation i.
In the ordinary linear model, μi ≡ ηi ; in a GLM this is generalized to an arbitrary

relation g(μi) = ηi , with the restriction that g(·) must be a monotone, differentiable
function. This fundamental object in a GLM is called the link function, since it links
the mean to the linear structure through

g(μi) = ηi =
r∑

j=1

xijβj . (2.20)

We have seen that multiplicative models correspond to a logarithmic link function,
a log link,

g(μi) = log(μi),

while the linear model uses the identity link μi = ηi , i.e., g(μi) = μi . Note that the
link function is not allowed to depend on i.

For the analysis of proportions, it is common to use a logit link,

ηi = g(μi) = log

(
μi

1 − μi

)
. (2.21)

This link guarantees that the mean will stay between zero and one, as required in
a model where μi is a proportion, such as the relative binomial model for the key
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ratio proportion of large claims. The corresponding GLM analysis goes under the
name logistic regression.

In a GLM, the link function is part of the model specification. In non-life in-
surance pricing, the log link is by far the most common one, since a multiplicative
model is often reasonable. For a discussion of the merits of the multiplicative model,
see Sect. 1.3.

Interactions may cause departure from multiplicativity. An example is motor in-
surance, where young men are more accident-prone than young women, while in
midlife there is little gender difference in driving behavior. In Sect. 3.6.2 we will
show how this problem can be handled within the general multiplicative framework.
For further discussion on multiplicative models, see [BW92, Sects. 2.1 and 3.1.1].
With the exception of the analysis of proportions, we will assume a multiplicative
model throughout this text, with possible interactions handled by combining vari-
ables as in the age and gender example.

We end this section by summarizing the GLM generalization of the ordinary
linear model and the particular case that is most used in our applications.

Weighted linear regression models:
• Yi follows a normal distribution with Var(Yi) = σ 2/wi ;
• The mean follows the additive model μi = ∑

j xij βj .

Generalized Linear Models (GLMs):
• Yi follows an EDM with Var(Yi) = φv(μi)/wi ;
• The mean satisfies g(μi) = ∑

j xijβj , where g is a monotone function.

Multiplicative Tweedie model, subclass of GLMs:
• Yi follows a Tweedie EDM with Var(Yi) = φμ

p
i /wi , p ≥ 1;

• The mean follows the multiplicative model log(μi) = ∑
j xij βj .

2.2.1 Canonical Link*

In the GLM literature one encounters the concept of a canonical link; this concept is
not so important in our applications, but for the sake of completeness we shall give
a brief orientation on this subject. First we note that we have been working with
several different parameterizations of a GLM; these parameters are unique functions
of each other as illustrated in the following figure:

θ
b′(·)−→ μ

g(·)−→ η. (2.22)
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Here b(·), and hence b′(·), are determined by the structure of the random compo-
nent, uniquely determined by the choice of variance function. The link function
g(·), on the other hand, is part of the modeling of the mean and in some applications
there are several reasonable choices. The special choice g(·) = b′−1(·) is the canon-
ical link. From (2.22) we find that the canonical link makes θ = η. It turns out that
using the canonical link simplifies some computations, but the name is somewhat
misleading since it may not be the natural choice in a particular application. On the
other hand, some of the most common models actually use canonical links.

Example 2.3 (Some canonical links) The normal distribution has μ = b′(θ) = θ and
the identity link g(μ) = μ that is used in the linear model is the canonical one.

In the Poisson case we have μ = b′(θ) = eθ , by which the log link g(μ) = logμ

is canonical. So for this important EDM, the multiplicative model is canonical.
In the case of the gamma distribution b′(θ) = −1/θ and so the canonical link is

the inverse link g(μ) = −1/μ. A problem with this link is that, as opposed to the
log link, it may cause the mean to take on negative values. McCullagh and Nelder
[MN89, Sects. 8.4.1 and 12.8.3], suggests using this link for claim severity, but as
far as we know it is not used in practice.

2.3 Parameter Estimation

So far, we have defined GLMs and studied some of their properties. It is now time for
the most important step: the estimation of the regression parameters in (2.20), from
which we will get the relativities—the basic building blocks of the tariff. Before
deriving a general result, we will give an introduction to the subject by treating an
important special case.

2.3.1 The Multiplicative Poisson Model

We return to the simple case in Sect. 1.3.1, with just two rating factors. For easy
reference, we repeat the multiplicative model on tabular form from (1.3)

μij = γ0γ1iγ2j . (2.23)

In GLM terms, we say that we use a log link. In addition to this, we assume that
the claim frequency Yij has a relative Poisson distribution, with frequency function
given on list form in (2.3). We rewrite this on tabular form and note that the cells are
independent due to Assumption 1.1, implying that the log-likelihood of the whole
sample is the sum of the log-likelihoods in the individual cells.

 =
∑

i

∑
j

wij {yij [log(γ0) + log(γ1i ) + log(γ2j )] − γ0γ1iγ2j } + c, (2.24)
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where c does not depend on the γ parameters. By in turn differentiating  with re-
spect to each γ , we get a system of equations for the maximum likelihood estimates
(MLEs), the so called ML equations. The result is exactly the MMT equations in
(1.6)–(1.8); this is no surprise if we recall that Jung [Ju68] derived these equations
as the MLEs of a Poisson model, cf. Remark 1.1.

In general, under a GLM model for the claim frequency with a relative Poisson
distribution and log link (multiplicative model), the ML equations are equal to the
equations of the method of marginal totals (MMT), and hence the resulting estimates
are the same, see Exercise 2.16.

2.3.2 General Result

We now turn to the general case of finding the MLEs of the β-parameters in a GLM.
The estimates are based on a sample of n observations. The individual observations
follow the EDM distribution given on list form in (2.1) and by independence, the
log-likelihood as a function of θ is

(θ;φ,y) = 1

φ

∑
i

wi(yiθi − b(θi)) +
∑

i

c(yi, φ,wi). (2.25)

It is clear that the dispersion parameter φ does not affect the maximization of  with
respect to θ—a similar observation should be familiar from the linear regression
model, where φ is denoted σ 2. We can therefore ignore φ here, but we will return
to the question of how to estimate it later, in Sect. 3.1.1.

The likelihood as a function of β , rather than θ , could be found by the inverse
of the relation μi = b′(θi), combined with the link g(μi) = ηi = ∑

j xij βj . The
derivative of  with respect to βj is, by the chain rule,

∂

∂βj

=
∑

i

∂

∂θi

∂θi

∂βj

= 1

φ

∑
i

(
wiyi − wib

′(θi)
) ∂θi

∂βj

= 1

φ

∑
i

(
wiyi − wib

′(θi)
) ∂θi

∂μi

∂μi

∂ηi

∂ηi

∂βj

. (2.26)

By the mentioned relation μi = b′(θi) we have ∂μi/∂θi = b′′(θi). The derivative
of the inverse relation is simply the inverse of the derivative, and so ∂θi/∂μi =
1/v(μi), since by definition v(μi) = b′′(θi).

Furthermore, ∂μi/∂ηi = [∂ηi/∂μi]−1 = 1/g′(μi). Finally, from ηi = ∑
j xijβj

we get ∂ηi/∂βj = xij .
Putting all this together gives the result,

∂

∂βj

= 1

φ

∑
i

wi

yi − μi

v(μi)g′(μi)
xij , (2.27)
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the so called score function. By setting all these r partial derivatives equal to zero
and multiplying by φ, we get the ML equations

∑
i

wi

yi − μi

v(μi)g′(μi)
xij = 0, j = 1,2, . . . , r. (2.28)

It might look as if the solution is simply μi = yi , but then we forget that μi = μi(β)

also has to satisfy the relation given by the regression on the x’s, i.e.,

μi = g−1(ηi) = g−1
(∑

j

xijβj

)
. (2.29)

It is only the so called saturated model, where there are as many parameters as there
are observations, that allows the solution μi = yi .

It is interesting to note that the only property of the probability distribution that
affects the ML equations (2.28) is the mean and the variance, through the link func-
tion g and the variance function v; for further discussion on this issue, see Sect. 3.5.

Example 2.4 (Tweedie models) In a tariff analysis, we typically use the Tweedie
models of Sect. 2.1.4, where v(μ) = μp , in connection with a multiplicative model
for the mean, i.e., g(μi) = log(μi), implying that g′(μi) = 1/μi . Then the general
ML equations in (2.28) simplify to

∑
i

wi

yi − μi

μ
p−1
i

xij = 0 ⇐⇒
∑

i

wi

μ
p−1
i

yixij =
∑

i

wi

μ
p−1
i

μixij , (2.30)

where the μ’s are connected to the β’s through

μi = exp

{∑
j

xij βj

}
. (2.31)

Compared to the Poisson case p = 1, models with p > 1 will downweigh both sides
of the right-most equation in (2.30) by μp−1, giving less weight to cells with large
expectation.

In the end, we are not interested in the β’s, but rather the relativities γ . These are
found by the relation γj = exp{βj }.

Introduce the diagonal matrix W with the parameter-dependent “weights”

w̃i = wi

v(μi)g′(μi)
,

on the diagonal and zeroes off the diagonal, W = diag(w̃i; i = 1, . . . , n). Then
(2.28) may be written on matrix form

X′Wy = X′Wμ, (2.32)
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where X is the design matrix, cf. the example in (2.16). In the case of the normal
distribution with identity link, it is readily seen that w̃i = wi , and if we furthermore
let all weights wi = 1, then (2.32) is reduced to the well-known “normal equations”
of the linear model X′y = X′Xβ , as we would expect since the linear model is a
special case of the GLM. Here we have used the fact that μ = Xβ when we use the
identity link.

Except for a few special cases, the ML equations must be solved numerically. The
interested reader is referred to Sect. 3.2.3 for an introduction to numerical methods
for solving the ML equations and to Sect. 3.2.4 for the question whether ML equa-
tions really give a (unique) maximum of the likelihood.

2.3.3 Multiplicative Gamma Model for Claim Severity

In Sect. 2.3.1 we discussed estimation for claim frequency; our next important spe-
cial case is claim severity. With the data on list form, in cell i we have wi claims
and the claim severity Yi , which is assumed to be relative gamma distributed with
density given by (2.5). Let us have a closer look at the relation between the mean μi

and the variance in this case. By Lemma 2.1 and Table 2.3 we have E(Yi) = μi and
Var(Yi) = φμ2

i /wi . Hence,

Var(Yi)

E(Yi)2
= φ

wi

, (2.33)

which means that the coefficient of variation (CV) is constant over cells with the
same exposure wi . This is, of course, a consequence of having a constant CV in
the underlying model for individual claims. Such a constant CV, i.e., a standard
deviation proportional to the mean, is plausible and in any case much more realistic
than having a constant standard deviation: say that we have a tariff cell with mean
20 and standard deviation 4, then in another cell with the same exposure but with
mean 200 we would rather expect a standard deviation of 40 than of 4.

From (2.30) with p = 2 we get the ML equations, which in this case are

∑
i

wi

yi

μi

xij =
∑

i

wixij . (2.34)

It is instructive to write these equations on tabular form in the simple case with just
two rating factors, using the multiplicative model in (2.23):

∑
i

∑
j

wij yij

γ0γ1iγ2j

=
∑

i

∑
j

wij ;

∑
j

wij yij

γ0γ1iγ2j

=
∑
j

wij i = 2, . . . , k1; (2.35)

∑
i

wij yij

γ0γ1iγ2j

=
∑

i

wij j = 2, . . . , k2.
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This system of equations provides a quite natural algorithm for estimating relativ-
ities, giving a marginal balance in the sum of the relative deviations of the obser-
vations from their means: the average relative deviation equals one for each rating
factor level i or j . Mack [Ma91] refers to work by Eeghen, Nijssen and Ruygt from
1982 where these equations are used for the pure premium, under the name the di-
rect method. They found that the estimates of this method were very close to those
given by the MMT. This is consistent with our general experience that the choice of
p in the Tweedie models is not that important for estimating relativities.

2.3.4 Modeling the Pure Premium

In the end, it is the model for the pure premium that gives the tariff. One might con-
sider using a Tweedie model with 1 < p < 2 to analyze the pure premium directly,
as demonstrated by Jörgensen and Souza [JS94]. However, the standard GLM tariff
analysis is to do separate analyses for claim frequency and claim severity, and then
relativities for the pure premium are found by multiplying the results. The reason
for this separation into two GLMs is:

(i) Claim frequency is usually much more stable than claim severity and often
much of the power of rating factors is related to claim frequency: these factors
can then be estimated with greater accuracy;

(ii) A separate analysis gives more insight into how a rating factor affects the pure
premium.

See also [BW92, MBL00].

Example 2.5 (Moped insurance contd.) We return once more to Example 1.1, with
the aggregated data given in Table 1.2. In Example 1.3 we applied the MMT directly
to the pure premium. We now carry out a separate analysis for claim frequency and
severity, obtaining the relativities for the pure premium by multiplying the factors
from these two analyses. The results are listed in Table 2.7.

We observe that the two variables vehicle class and vehicle age affect claim fre-
quency and severity in the same direction, which means that newer and stronger
vehicles are not only more expensive to replace when stolen, but are also stolen
more often. The geographic zone has a large impact on the claim frequency, but
once a moped is stolen the cost of replacing it is not necessarily larger in one zone
than another, with a possible exception for the largest cities in zone 1. Note that
these interesting conclusions could not have been drawn, had we analyzed pure pre-
mium only. On the other hand, the resulting estimates for pure premium are quite
close to those obtained by the MMT method, see Table 1.4.

For zone 5 and 7, it is rather obvious that no conclusion can be drawn due to
the very small number of claims, and hence very uncertain estimates of claim sever-
ity. But how can we know if the 23 observations in zone 6 or the 132 in zone 3
are enough to draw significant conclusions? This is one of the themes in the next
chapter, where we go further into GLM theory and practice.
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Table 2.7 Moped insurance: relativities from a multiplicative Poisson GLM for claim frequency
and a gamma GLM for claim severity

Rating Class Duration No. Relativities, Relativities, Relativities,

factor claims frequency severity pure premium

Vehicle class 1 9833 391 1.00 1.00 1.00

2 8824 395 0.78 0.55 0.42

Vehicle age 1 1918 141 1.55 1.79 2.78

2 16740 645 1.00 1.00 1.00

Zone 1 1451 206 7.10 1.21 8.62

2 2486 209 4.17 1.07 4.48

3 2889 132 2.23 1.07 2.38

4 10069 207 1.00 1.00 1.00

5 246 6 1.20 1.21 1.46

6 1369 23 0.79 0.98 0.78

7 147 3 1.00 1.20 1.20

2.4 Case Study: Motorcycle Insurance

Under the headline “case study” we will present larger exercises using authentic
insurance data; for solving the case studies, a computer equipped with SAS or other
suitable software is required.

The data for this case study comes from the former Swedish insurance com-
pany Wasa, and concerns partial casco insurance, for motorcycles this time. It
contains aggregated data on all insurance policies and claims during 1994–1998;
the reason for using this rather old data set is confidentiality—more recent data
for ongoing business can not be disclosed. The data set mccase.txt, avail-
able at www.math.su.se/GLMbook, contains the following variables (with Swedish
acronyms):

• AGARALD: The owners age, between 0 and 99.
• KON: The owners gender, M (male) or K (female).
• ZON: Geographic zone numbered from 1 to 7, in a standard classification of all

Swedish parishes. The zones are the same as in the moped Example 1.1.
• MCKLASS: MC class, a classification by the so called EV ratio, defined as (En-

gine power in kW × 100) / (Vehicle weight in kg + 75), rounded to the nearest
lower integer. The 75 kg represent the average driver weight. The EV ratios are
divided into seven classes as seen in Table 2.8.

• FORDALD: Vehicle age, between 0 and 99.
• BONUSKL: Bonus class, taking values from 1 to 7. A new driver starts with bonus

class 1; for each claim-free year the bonus class is increased by 1. After the first
claim the bonus is decreased by 2; the driver can not return to class 7 with less
than 6 consecutive claim free years.
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Table 2.8 Motorcycle insurance: rating factors and relativities in current tariff

Rating factor Class Class description Relativity

Geographic zone 1 Central and semi-central parts of 7.678

Sweden’s three largest cities

2 Suburbs plus middle-sized cities 4.227

3 Lesser towns, except those in 5 or 7 1.336

4 Small towns and countryside, except 5–7 1.000

5 Northern towns 1.734

6 Northern countryside 1.402

7 Gotland (Sweden’s largest island) 1.402

MC class 1 EV ratio −5 0.625

2 EV ratio 6–8 0.769

3 EV ratio 9–12 1.000

4 EV ratio 13–15 1.406

5 EV ratio 16–19 1.875

6 EV ratio 20–24 4.062

7 EV ratio 25– 6.873

Vehicle age 1 0–1 years 2.000

2 2–4 years 1.200

3 5– years 1.000

Bonus class 1 1–2 1.250

2 3–4 1.125

3 5–7 1.000

• DURATION: the number of policy years.
• ANTSKAD: the number of claims.
• SKADKOST: the claim cost.

The “current” tariff, the actual tariff from 1995, is based on just four rating fac-
tors, described in Table 2.8, where their current relativities are also given.

For each rating factor, we chose the class with the highest duration as base class.
For the interested reader, we mention that the annual premium in the base cell
(4,3,3,3) is 183 SEK, while the highest premium is 24 156 SEK (!).

Problem 1: Aggregate the data to the cells of the current tariff. Compute the empir-
ical claim frequency and severity at this level.

Problem 2: Determine how the duration and number of claims is distributed for
each of the rating factor classes, as an indication of the accuracy of the statistical
analysis.

Problem 3: Determine the relativities for claim frequency and severity separately,
by using GLMs; use the result to get relativities for the pure premium.
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Problem 4: Compare the results in 3 to the current tariff. Is there a need to change
the tariff? Which new conclusions can be drawn from the separate analysis in 3?
Can we trust these estimates? With your estimates, what is the ratio between the
highest pure premium and the lowest?

Exercises

2.1 (Section 2.1) Work out the details in the derivation of (2.2).

2.2 (Section 2.1) Suppose we have three rating factors, with two, three and five
levels respectively. In how many ways could the tariff be written on list form? Each
ordering of the cells is counted as one way of writing the tariff.

2.3 (Section 2.1) Show directly, without using the results in Sect. 2.1.3, that the
normal distribution of Example 2.1 is reproductive; what is the value of Var(Y )?

2.4 (Section 2.1) Verify that the expectation and variance of the gamma distribution
in (2.4) are α/β and α/β2, respectively.

2.5 (Section 2.1) Consider the reparameterization of the gamma distribution just
before (2.5). Show that when φ and μ run through the first quadrant, α and β run
through their parameter space, so that the same family of distributions is covered by
the new parameterization.

2.6 (Section 2.1) An actuary studies the probability of customer renewal—that the
customer chooses to stay with the insurance company for one more year—and how
it varies between different groups. Let wi be the number of customers in group i

and Xi the number of renewals among these, so that by policy independence Xi ∼
Bin(wi,pi). Furthermore, let pi be the probability under study, estimated by the key
ratio Yi = Xi/wi .

Is the distribution of Yi an EDM? If the answer is yes, determine the “canonical”
parameter θi , an expression for φ, plus the functions b(·) and c(·). (In any case, we
might call this the relative binomial distribution.)

2.7 (Section 2.1) The Generalized Pareto Distribution (GPD) is commonly used for
large claims, especially in the area of reinsurance. The frequency function can be
written, see e.g. Klugman et al. [KPW04, Appendix A.2.3.1],

f (y) = γ αγ

(α + y)γ+1
y > 0,

where α > 0 and γ > 0. Is this distribution an EDM? If so, determine the canonical
parameter θi and in addition φ and the function b(·).
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2.8 (Section 2.1) Use well-known results for moment-generating functions, see e.g.
Gut [Gu95, Theorem 3.3], to show that if the cumulant-generating function Ψ (t)

exists, then E(Y) = Ψ ′(0) and Var(Y ) = Ψ ′′(0).

2.9 (Section 2.1) Derive the variance function of the relative binomial distribution,
defined in Exercise 2.6.

2.10 (Section 2.1) Let X and Y be two independent random variables and let c be a
constant. Show that the CGF has the following properties

(a) ΨcX(t) = ΨX(ct),
(b) ΨX+Y (t) = ΨX(t) + ΨY (t).

2.11 (Section 2.1) Prove that the sum of independent gamma distributions with the
same scale parameter β are again gamma distributed and determine the parameters.
Hint: use the moment generating function.

2.12 (Section 2.1) Prove Theorem 2.2. Hint: Use the result in Exercise 2.10.

2.13 (Section 2.1)

(a) Derive b′(θ) in (2.12) from the b(θ) given by (2.10). Then derive b′′(θ) for
p ≥ 1.

(b) Show that h(μ) in (2.13) is the inverse to b′(θ) in (2.12).
(c) Show that an EDM with the cumulant function b(θ) taken from (2.10) has vari-

ance function v(μ) = μp , so that it is a Tweedie model.

2.14 (Section 2.2) Use a multiplicative model in the moped example, Example 1.2,
and write down the design matrix X for the list form that is implicit in Table 1.2.
For the sake of simplicity, use just three zones, instead of seven.

2.15 (Section 2.2*) Derive the canonical link for the relative binomial distribution,
defined in Exercise 2.6 and treated further in Exercise 2.9.

2.16 (Section 2.3) Derive (2.24) and differentiate  with respect to each parameter
to show that the ML equations are given by (1.6)–(1.8).

2.17 (Section 2.3) Derive the system of equations in (2.35) directly, in the special
case with just two rating factors, by maximizing the log-likelihood. Hint: use (2.5)
and (2.23).


