
Requirements Engineering

Fundamentals, Principles, and Techniques

Bearbeitet von
Klaus Pohl

1. Auflage 2010. Buch. xvii, 813 S. Hardcover
ISBN 978 3 642 12577 5

Format (B x L): 19,3 x 26 cm
Gewicht: 1931 g

Weitere Fachgebiete > EDV, Informatik > Programmiersprachen: Methoden >
Prozedurorientierte Programmierung

Zu Inhaltsverzeichnis

schnell und portofrei erhältlich bei

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft.
Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm
durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr

als 8 Millionen Produkte.

http://www.beck-shop.de/Pohl-Requirements-Engineering/productview.aspx?product=792548&utm_source=pdf&utm_medium=clickthru_lp&utm_campaign=pdf_792548&campaign=pdf/792548
http://www.beck-shop.de/trefferliste.aspx?toc=8287
http://www.beck-shop.de/trefferliste.aspx?toc=8287
http://www.beck-shop.de/fachbuch/inhaltsverzeichnis/9783642125775_TOC_001.pdf

Chapter 4
The Requirements Engineering Framework

�This chapter provides an overview of our requirements engineering framework.
The framework defines:

� Four facets of the system context: the subject, the usage, the IT system, and the
development facets

� Three core requirements engineering activities: documentation, elicitation, and
negotiation

� Two cross-sectional activities: validation and management
� Three kinds of requirements artefacts: goals, scenarios, and solution-oriented

requirements

The structure of this book is derived from the requirements engineering framework
and is briefly described at the end of this chapter.

41K. Pohl, Requirements Engineering,
c© Springer-Verlag Berlin Heidelberg 2010

42 Part I – 4 The Requirements Engineering Framework

4.1 Goal of Requirements Engineering: Establishing a Vision
in Context

Each requirement engineering process starts with an aim to change the current reality.Vision defines intended
change Regardless of the complexity of the project, the essence of the desired change should

be defined briefly and precisely. We call this definition of the envisioned change the
system “vision”. A prominent example is the vision expressed by John F. Kennedy in
1961 when he said: “First, I believe that this nation should commit itself to achieving
the goal, before this decade is out, of landing a man on the moon and returning him
safely to the earth” (speech of J.F. Kennedy in 1961 [Dudley 2000]).

A vision may also express a small change to the current reality, such as the inte-A vision states a goal and
not how the goal should be

achieved
gration of a new functionality into a multimedia system, or the increase of the level of
security of an online banking system. A vision defines only what should be changed
without stating how the change should be implemented. In other words, the vision
defines a goal but does not state how this goal should be achieved. In the example
of John F. Kennedy, the vision defines that a man has to be sent to the moon and
that he has to be brought back safely without saying anything, for example, about the
transportation to be used, how to land, or how to get back to Earth again.

A vision does not express an unachievable illusion. Rather, it describes a goal thatVision as guidance

is clearly defined and verifiable, and often also associated with a particular point in
time when it should be achieved. The vision serves, for all stakeholders involved in
the development process, as guidance throughout the entire development process. The
stakeholders align their activities with the defined vision. The information expressed
in the vision is not sufficient to define all the requirements for the system at the
required level of detail. The additional information needed to define the requirements
fully must thus be elicited from other requirement sources such as stakeholders (e.g.
customers, system users, domain experts), existing documents (e.g. laws, guidelines,
standards), and existing systems (e.g. legacy systems, competitors’ systems); see Part
IV.b.

Each software-intensive system is embedded within a given context (the “systemThe system context

context”; see Glossary) that contains the requirement sources and strongly influences
the definition of the system requirements. We elaborate on the system context and its
influence on the system requirements in Part II.

The vision and the system context are thus the two essential inputs for the require-Establishing a vision in
context ments engineering process. Whereas the vision is typically clearly defined, the system

context is often not fully known and understood at the beginning of the require-
ments engineering process. The main goal of requirements engineering is thus to
“establish a vision within an existing context” (see, e.g. [Jarke and Pohl 1993;
Pohl 1997]).

4.2 Overview of the Framework

Our requirements engineering framework (see Fig. 4-1) defines the major structural
elements of a requirements engineering process required for establishing a vision
within an existing context. The framework consolidates various research results
which have been developed based on problem statements elicited from industrial
practice and which have been successfully validated and transferred to industry.

4.2 Overview of the Framework 43

V
 a

 l
i d

 a
 t

 i
o

 n C o r e a c t i v i t i e s

R e q u i r e m e n t s a r t e f a c t s

Elicitation

Subject
facet

Usage
facet

IT system
facet

Development
facet

M
 a

 n
 a

 g
 e

 m
 e

 n
 t

Negotiation

Goals Scenarios

Solution-oriented
requirements

S y s t e m c o n t e x t

C
ro

ss
-s

ec
tio

na
l a

ct
iv

ity

C
ro

ss
-s

ec
tio

na
l a

ct
iv

ity

Documentation

Fig. 4-1 The requirements engineering framework

Our framework has been successfully introduced in a number of organisations and Our framework has been
adopted in several
organisations

companies which use the framework as a reference for structuring their requirements
engineering processes, as a reference for the training of managers, requirements
engineers, and developers, and for analysing the strengths and weaknesses of their
requirements engineering processes. The framework consists of the following main
building blocks:

� System context: The framework structures the system context into four parts: the Four context facets

subject, the usage, the IT system, and the development facet.
� Three core requirements engineering activities: The three core requirements engi- Documentation, elicitation

and negotiationneering activities (elicitation, documentation, and negotiation) are performed
iteratively in order to establish the vision within the existing context.

� Two cross-sectional activities: The two cross-sectional activities of validation and Validation and
managementmanagement support the core activities and secure the results of requirements

engineering.
� Requirements artefacts: Our framework distinguishes three essential types of Three types of requirements

artefactsrequirements artefacts: goals, scenarios, and solution-oriented requirements.

In Sections 4.3–4.6, the elements of our framework and the relationships between Details of the framework

these elements are described in more detail. In Parts II–VI, fundamentals, principles,

44 Part I – 4 The Requirements Engineering Framework

and techniques related to each element of the framework are presented. Section 4.7
provides an overview of the structure of the book, which is based on our requirements
engineering framework.

4.3 Four Context Facets

The requirements for a software-intensive system are strongly influenced by theElicitation and
consideration of all context

aspects
system context. A sufficient understanding of the context is an essential pre-
requisite for developing a good requirements specification. The system context
comprises a large number of different aspects that are relevant to the system to
be developed, such as business processes and workflows, existing hardware and
software components, other systems that interact with the system, physical laws,
safety standards, system users, customers — just to name a few. Due to the
complexity demanded of the increasing system functionality and integration of
systems, analysing the system context is a difficult task. Moreover, coupled with
higher demands for system quality, reduced development costs and shorter time
frames, consideration of the relevant aspects of the context becomes exceedingly
difficult.

However, if relevant context aspects (see Definition 5-2, Page 65) are neglected,Insufficient consideration
of context aspects leads
to requirements defects

insufficiently considered, or documented inadequately, this may result in an incor-
rect and incomplete requirements specification. In order to support the systematic
consideration and analysis of the relevant context aspects, our framework struc-
tures the system context into four facets7 which have to be considered for each
software-intensive system during requirements engineering, namely:

� Subject facet: The subject facet includes the objects and events in the system con-Objects and events relevant
for the system text that are relevant for the system. This includes, for example, objects and events

that the system must store or process information about. In other words, informa-
tion about the objects and events in the subject facet must be represented in the
system. The objects of interest can be tangible as well as intangible objects. For
instance, a software component that measures the speed of a vehicle requires a
representation of the intangible object “speed” within the component. The sub-
ject facet also includes aspects that influence the representation of information
about the objects and the events in the system, such as laws that forbid or regulate
the recording of certain types of data within a software-intensive system, or laws
which restrict the accuracy of the recorded data or the frequency of updating the
data.

� Usage facet: A software-intensive system is used by people or other software-System usage

intensive systems in order to achieve a goal or to accomplish a certain task. The
usage facet comprises all aspects concerning the system usage by people and other
systems. This includes, for example, the various usage goals which exist, desired
workflows, different user groups with specific characteristics, different interaction
models with different associated interfaces as well as laws and standards restricting
or influencing the system usage.

7 The four facets are based on the four worlds of requirements engineering proposed in [Mylopoulos
et al. 1990; Jarke and Pohl 1993].

4.3 Four Context Facets 45

� IT system facet: The system to be developed is eventually deployed into an IT system environment

existing IT infrastructure, which typically comprises existing software-intensive
systems as well as existing hardware and software platforms, communica-
tion network(s), peripheral devices, and other hardware and software com-
ponents used. The IT system facet comprises all aspects of the operational
and technical environment including policies and strategies defining restrictions
or guidelines for the use of any type of technology or operational environ-
ment. All these aspects of the technical and operational environment, as well
as the constraints resulting from them, influence the definition of the sys-
tem requirements. For example, the IT strategy might prescribe the commu-
nication protocol to be used, which obviously influences the communication
requirements defined for the system, or the software platform might prede-
fine a set of supported operating systems which in turn influences the defined
requirements.

� Development facet: The development facet comprises all aspects of the context Aspects of the development
processconcerning the development process of the system. This includes process guide-

lines and constraints, development tools, quality assurance methods, maturity
models, quality certifications, and other means or techniques for ensuring the
quality (e.g. safety or security) of a software-intensive system. Each aspect of the
development facet may be restricted by the client or by certain laws and standards.
For instance, the client may demand that only certified tools are used during
system development, or a standard might require that the system fulfils certain test
criteria.

4.3.1 Relationships between the Four Context Facets

The relationships between the four context facets can be illustrated by means of a
very simple, logical model of a software-intensive system.

Each software-intensive system requires a representation of information about Relationship between
subject facet and IT system
facet

real-world objects (residing in the subject facet) such as the speed of a car or the
name of a customer. The system represents the information about these real-world
objects in a digital format using the available technology (residing in the IT system
facet). The representation of the information about the real-world objects in the sys-
tem constitutes a relationship between the subject facet and the IT system facet (see
the black arrow labelled “Representation” in Fig. 4-2).

The system processes the represented information according to the defined func- Relationship between IT
system facet and usage
facet

tionality. The processing of the information takes place within the IT system facet.
However, the system presents the results of the processing to its users (a person or
another system) using an appropriate user interface. The presentation of the results
to the user by means of some interface device constitutes a relationship between the
IT system facet and the usage facet (see the black arrow labelled “Presentation” in
Fig. 4-2).

The system user interprets the output of the system obtained and associates it Relationship between
usage facet and subject
facet

with real-world objects of the subject facet. This constitutes a relationship between
the usage facet and the subject facet (see the black arrow labelled “Association” in
Fig. 4-2).

46 Part I – 4 The Requirements Engineering Framework

The software-intensive system itself is a product of a development process whichRole of the development
facet takes place in the development facet. The task of the development process is to

consider, besides the relevant aspects of the development facet, the relevant aspects
of the other three context facets and their relationships. Hence the development facet
is related to each of the other three facets (as indicated by the three grey arrows in
Fig. 4-2).

The four context facets and their relationships are discussed in detail in Part II.

Subject IT system

Usage

Representation

DevelopmentDevelopment

A
ss

oc
ia

tio
n

Pre
se

nt
at

ion

10111010001101010100
1
00101001110011011011
01000101000100110100
01101110100011010101
001

Processing

Fig. 4-2 Logical relationships between the four context facets

4.3.2 Use of the Four Context Facets

Structuring the system context into the four facets is a heuristic that has proven use-Improved quality of
requirements documents ful during, among other things, requirements elicitation, negotiation, and validation.

Structuring the context into four facets supports a systematic consideration of the sys-
tem context during requirements engineering. By considering each of the four facets,
as well as their relationships, relevant context aspects can be identified more easily
and, for example, the risk of neglecting an entire facet is reduced. Hence the com-
pleteness and the correctness of the specified requirements are significantly improved.
According to our experience, the definition and use of simple checklists for each con-
text facet, and for the relationships between the facets, facilitates a more systematic
consideration of the system context and thus leads to requirements specifications of
higher quality.

4.4 Three Core Activities

The requirements engineering process takes place in the development facet. The
main goals of requirements engineering are characterised by the three dimensions
of requirements engineering, as explained in Section 4.4.1 (see [Pohl 1993; Pohl
1994]).

4.4 Three Core Activities 47

From the three dimensions of requirements engineering, the three core activities of
requirements engineering (documentation, elicitation, and negotiation) can be derived
(see Section 4.4.2).

4.4.1 The Three Dimensions of Requirements Engineering

Figure 4-3 illustrates the three dimensions of requirements engineering, which can be
characterised as follows:

� Content dimension: The content dimension deals with the understanding of the All requirements are known
and understood in detailsystem requirements attained. At the beginning of the requirements engineering

process, besides the system vision, only a few system requirements are known.
The understanding of these requirements is typically vague, and the detailed
requirements are mostly unknown. In contrast, at the end of the process, all the
requirements are known and understood, preferably at the required level of detail.
During the requirements engineering process, requirements must thus be elicited,
including the development of new and innovative requirements. Consequently, the
first essential goal of the requirements engineering process can be defined as: “All
relevant requirements shall be explicitly known and understood at the required
level of detail.”

� Agreement dimension: The agreement dimension deals with the level of agree- Establish sufficient
stakeholder agreementment achieved between the relevant stakeholders about the known requirements.

Different stakeholders can have different opinions about a system requirement.
Conflicts between the stakeholders about system requirements thus have to be
detected as early as possible. The detected conflicts should be resolved, either
by achieving consensus or by making (well-founded) decisions. If requirements
are defined without consolidating the stakeholders’ different opinions, the unre-
solved conflicts will inevitably surface during or after the deployment of the
new system. Unresolved conflicts put the acceptance of the system at risk and
thereby endanger the realisation of the system vision. Consequently, the second
goal of the requirements engineering process can be defined as: “To estab-
lish a sufficient agreement about the system requirements between the involved
stakeholders.”

� Documentation dimension: The documentation dimension deals with docu- Documentation/
specification of
requirements in
compliance with the
defined formats and rules

menting and specifying the system requirements using different documenta-
tion/specification formats. Usually, information that is elicited during require-
ments engineering is first documented informally, either as a note, sketch,
statement in a minute, or hand drawing, for example. Later, the requirements
are documented and specified according to the documentation and specification
formats and rules defined for the project. Such formats and rules can define
the modelling language or a template to be used for documenting or specify-
ing a particular type of requirement. The rules may also include other criteria
for ensuring high quality of the requirements documentation and specification,
such as consistency rules for requirements expressed in different formats. The
third essential goal of the requirements engineering process can be defined as:
“All requirements shall be documented/specified in compliance with the relevant
documentation/specification formats and rules.”

48 Part I – 4 The Requirements Engineering Framework

Agreement

Documentation

Content Goal

compliant
with rules

informal

consolidated views

vague individual views

complete

Fig. 4-3 The three dimensions of requirements engineering (based on [Pohl 1994])

The three essential goals of requirements engineering can thus be defined as
follows:

Definition 4-1: Goals of requirements engineering�D
Requirements engineering is a cooperative, iterative, and incremental process
which aims at ensuring that:

(1) All relevant requirements are explicitly known and understood at the required
level of detail.

(2) A sufficient agreement about the system requirements is achieved between the
stakeholders involved.

(3) All requirements are documented and specified in compliance with the
relevant documentation/specification formats and rules.

4.4.2 The Core Activities

From the three dimensions of requirements engineering, the three core activities ofDerivation of the core
activities from the three

dimensions
requirements engineering can be derived. Each core activity significantly contributes
to the achievement of one of the three sub-goals of requirements engineering. We
explain the three core activities below. The interactions between the core activities,
as well as between the core activities and the cross-sectional activities, are explained
in Section 4.5.1.

Documentation

The focus of the documentation activity is the documentation and specification of theCompliance with
documentation and

specification rules
elicited requirements according to the defined documentation and specification rules.
In addition, other important types of information such as rationale or decisions must

4.4 Three Core Activities 49

be documented (see Section 15.1). The documentation activity thus distinguishes the
following sets of rules:

� General documentation rules: These rules apply to all kinds of information to
be documented such as interview and meeting protocols, information about the
context or decisions and rationale. These rules define, for instance, the docu-
ment layout, required document headers, and required document management
information such as authors or a version history.

� Documentation rules: These rules apply to each requirement documented at dif-
ferent stages of the requirements engineering process. The rules aim to ensure
a sufficient quality of the documentation of the requirements mainly for use in
other requirements engineering activities (e.g. negotiation or validation) while
at the same time keeping the documentation effort low. Documentation rules
may, for instance, prescribe a specific template to be used for documenting the
requirements.

� Specification rules: These rules apply to all requirements which are included in
the requirements specification. The specification rules aim to ensure high qual-
ity of the specified requirements which are used in the subsequent development
activities as key input or might be part of contracts. The specification rules may
prescribe, for instance, the use of syntactic requirements patterns or a requirements
specification language (see Definition 17-6).

In general, specification rules are typically more restrictive than documentation rules.
Depending on the intended use of a requirements artefact, different documenta- Use of different formats

tion and specification formats can be used. For example, a requirement might be
documented using natural language to facilitate communication with a typical end
user, while at the same time be specified using a formal requirements language to
support the system architect in defining the system architecture. In general, different
stakeholders prefer different documentation/specification formats. Hence a require-
ments artefact may have to be translated from one format into another one. The issue
becomes keeping the documentation/specification of a requirement held in different
formats consistent across formats when undertaking any change. The documentation
activity is discussed in more detail in Part IV.a.

Elicitation

The goal of the elicitation activity is to improve the understanding of the require- Progress in the content
dimensionments, i.e. to achieve progress in the content dimension. During the elicitation

activity, requirements are elicited from stakeholders and other requirement sources.
In addition, new and innovative requirements are collaboratively developed.

The requirement sources relevant for the system are not always known at the Eliciting requirements
and jointly developing
innovative requirements

beginning of the process. An essential task of the elicitation activity is therefore
the systematic identification of relevant requirement sources. Relevant requirement
sources include the stakeholders involved in the process, existing documentation, and
existing predecessor systems. Requirements are elicited, for example, by interview-
ing the stakeholders or by analysing existing documents and systems. In addition,
innovative requirements (which can typically not simply be elicited from a require-
ment source) are developed in a collaborative and creative process. The development
of innovative requirements can, for example, be supported by applying creativity

50 Part I – 4 The Requirements Engineering Framework

techniques such as brainstorming. The elicitation activity is described in more detail
in Part IV.b.

Negotiation

The system has to fulfil the needs and wishes of different stakeholders. Obviously,Individual, conflicting
stakeholder opinions the needs and wishes of the different stakeholders can vary. Each stakeholder has

his/her own view about the system to be developed. The different opinions of the
stakeholders can be in conflict with one another.

The goal of the negotiation activity is therefore twofold: First, all conflicts betweenResolution of all existing
conflicts the viewpoints of the different stakeholders have to be detected and made explicit.

Second, the identified conflicts should be resolved (as far as possible). Depending
on the cause of the conflict, different strategies can be applied for resolving it. At
the beginning of the requirements engineering process, typically the viewpoints of
the different stakeholders differ significantly. Ideally, at the end of the requirements
engineering process, the negotiation activity has identified and resolved all conflicts
which exist between the different stakeholders involved. The negotiation activity is
described in more detail in Part IV.c.

4.5 Two Cross-Sectional Activities

Besides the three requirements engineering core activities, two cross-sectional activi-
ties significantly influence the requirements engineering process. The cross-sectional
activities support the three core activities and secure the results of requirements engi-
neering. The two cross-sectional activities are described in the following sub-sections.

Validation

The validation activity is a cross-sectional activity which consists of three sub-
activities:

� Validation of the requirements artefacts: The validation of the requirements arte-Validation of the artefacts

facts aims at detecting defects in the requirements. Only requirements with high
quality provide a sound basis for the architectural design, the implementation
of the system, and the development of test artefacts. Defects in requirements
entail defects in the architecture, in the implementation, and in test artefacts.
Requirements defects are rarely caused only by insufficient or inappropriate
requirements documentation. In many cases, defects can be attributed to the
non-fulfilment of one or more goals in each of the three dimensions (see
Section 4.4.2). Validation thus has the key aim of validating the artefacts with
regard to the content, the documentation, and the agreement dimensions. A
requirement should only be used as a reference for the further development pro-
cess or as part of a (legal) contract if it has been successfully validated under
the consideration of all three validation aspects (content, documentation, and
agreement).

� Validation of the core activities: The validation of the core activities (documenta-Validation of the activities

tion, elicitation, and negotiation) has the goal of checking the compliance between

4.5 Two Cross-Sectional Activities 51

the activities performed and the process and/or activity specifications. For exam-
ple, one should validate whether the steps defined for an activity and the defined
follow-up activities have been performed.

� Validation of the consideration of the system context: The validation of the con- Validation of context
considerationsideration of the system context aims at validating whether the system context has

been considered in the intended way during requirements engineering. In other
words, this sub-activity aims at validating whether all relevant stakeholders have
been involved in the process at the right time and whether the relevant context
aspects of all four context facets have been considered during the requirements
engineering process. For example, with respect to the usage facet, one should vali-
date whether all required interactions between the system and its actors (users and
other systems) have been elicited.

The goals, principles, and techniques of the validation activity are described in detail
in Part V.

Management

The management activity can be subdivided into the following three essential sub-
activities:

� Management of the requirements artefacts: This activity comprises the man- Management of the
artefactsagement of the requirements artefacts throughout the system lifecycle. The

management of the requirements artefacts includes the prioritisation of require-
ments, the persistent recording of requirements (e.g. by storing them in a database),
the configuration management and the change management of the requirements as
well as maintaining requirements traceability.

� Management of the activities: This activity comprises the planning and control of Management of the
activitiesthe requirements engineering activities in order to ensure an efficient and effective

overall requirements engineering process. If necessary, the planned workflow of
the activities can be aligned to accommodate the current project situation.

� Observation of the system context: The observation of the system context aims at Management of changes
to the contextidentifying changes in the system context that are relevant for the system. A rele-

vant context change typically requires the execution of one or more requirements
engineering activities or a re-scheduling of activities. For example, it might require
the execution of an elicitation activity and a documentation activity in order to doc-
ument the new requirements caused by this change, or the execution of a change
management activity to adjust existing requirements accordingly.

The three essential requirements management activities are described in detail in
Part VI.

4.5.1 Interrelations between the Five Activities

There are obvious interactions between the activities defined in our requirements
engineering framework, i.e. the three core activities and the two cross-sectional activ-
ities. For example, the execution of one core activity (and thus progress mainly in

52 Part I – 4 The Requirements Engineering Framework

one of the three dimensions) may lead to a decrease in the progress established in
one of the other dimensions, and thus require the execution of additional activities. In
other words, performing one requirements engineering activity typically causes the
execution of additional requirements engineering activities. We illustrate the inter-
actions between the three core and two cross-sectional activities in Examples 4-1
to 4-3.

Example 4-1: Elicitation of additional requirements�E
During an interview (i.e. the execution of an elicitation activity), new requirements
are identified and documented in the interview minutes. The identification of the
new requirements obviously leads to progress in the content dimension. However,
the documentation of the new requirements in the interview minutes is not in
compliance with the project-specific documentation rules. Thus an additional task
for the documentation dimension is created, namely the documentation of the new
requirements so as to be in compliance with the defined rules. In addition, the
new requirements should be agreed between the stakeholders involved. Thus, a
new validation activity is performed to check whether the stakeholders agree with
the new requirement. During the validation of the agreement, conflicts about the
requirement between the involved stakeholders might be identified. If so, these
conflicts need to be resolved and the outcome of the conflict resolution must be
documented and comply with the documentation rules, etc.

Example 4-2: Detection of a missing requirement�E
While reviewing a set of requirement artefacts (i.e. during the execution of a val-
idation activity), the stakeholders detect that an important requirement has been
omitted. The stakeholders briefly sketch the omitted requirement. Obviously, the
new requirement is not yet documented in compliance with the defined docu-
mentation rules. Moreover, the documentation of the new (previously omitted)
requirement does not contain all the required information, and not all the stake-
holders have yet agreed to the new requirement. The identification of a new
requirement during the validation activity (progress in the content dimension)
thus might lead to the execution of additional elicitation, documentation, and
negotiation activities.

Example 4-3: Removal of a requirement from the specification�E
Negotiations between customers and system users result in the removal of a
requirement from the specification. The elimination of this requirement requires
an evaluation of whether other requirements artefacts are affected by this change.
The related requirements artefacts thus have to be analysed. In this example, the
resolution of a conflict (progress in the agreement dimension) leads to the execu-
tion of additional activities in the content and documentation dimensions in order
to check for inconsistencies resulting from the removal of the requirement and to
adjust the documented artefacts accordingly, if required.

4.6 The Three Kinds of Requirements Artefacts 53

4.6 The Three Kinds of Requirements Artefacts

We use the term “requirements artefact” to refer to a documented requirement (see Goals, scenarios, and
solution-oriented
requirements

Definition 2-2 on Page 16). A requirements artefact thus documents a requirement
using a specific documentation format. Different documentation formats which might
be used to document a requirement are discussed in detail in Part III. In our frame-
work, we differentiate three kinds of requirement artefacts, namely goals, scenarios,
and solution-oriented requirements, which are also described in detail in Part III.

4.6.1 Goals

Requirements engineers need to understand the stakeholders’ intentions with regard Stakeholder intentions

to the system to be developed. In requirements engineering, the stakeholders’ inten-
tions are documented as goals. Antón states in [Antón 1996] that goals “are high-level
objectives of the business, organisation, or system”. According to [Van Lamsweerde
2001], a goal is “an objective the system under consideration should achieve”. We
define a goal (in requirements engineering) as follows:

Definition 4-2: Goal �D
A goal is an intention with regard to the objectives, properties, or use of the system.

Goals have a prescriptive nature, i.e. a goal states what is expected or required Prescriptive statements

from the system. Thereby, goals differ from descriptive statements such as statements
about the domain of the system (e.g. the description of a physical law). Example 4-4
depicts two goals for a navigation system.

Example 4-4: Goals for the car navigation system example �E
G1: The system shall guide the driver to a desired destination automatically.
G2: The response times of the system shall be 20% lower compared with the

predecessor system.

Goals (see Chapter 7) document the intentions of the stakeholders and abstract Intentions of stakeholders

from system usage as well as from the realisation of the system. Goals refine the
system vision into objectives to be fulfilled by the system.

A goal should be solution free, i.e. it should not predefine a specific solution.
Hence, the stakeholders typically have many different alternatives for satisfying a
goal, where each alternative may lead to different requirements.

The explicit definition of goals (stakeholder intentions) supports conflict resolu- Benefit of goals

tion, leads to a better understanding of the system, and increases the acceptance of
the system.

In Part III, we elaborate on different types of goals, the documentation of goals,
and their usage in requirements engineering.

54 Part I – 4 The Requirements Engineering Framework

4.6.2 Scenarios

A scenario typically documents a concrete example of system usage. It thus illustratesExamples of system usage

the fulfilment (or non-fulfilment) of a goal (or set of goals). Thus, a scenario describes
a concrete example of either how the system satisfies a goal or how it fails to satisfy a
goal. A scenario may define an interaction sequence at different levels of abstraction.
For example, a scenario can describe the interactions in detail and thus very close
to reality or only document the essential interactions (and thereby abstract from the
incarnation). We define a scenario as follows:

Definition 4-3: Scenario�D
A scenario describes a concrete example of satisfying or failing to satisfy a goal
(or set of goals). It thereby provides more detail about one or several goals. A
scenario typically defines a sequence of interaction steps executed to satisfy the
goal and relates these interaction steps to the system context.

Example 4-5 presents a scenario that documents a sequence of interactionsScenarios illustrate goal
satisfaction between a driver and a driver assistance system. The scenario describes how the goal

“facilitate automatic braking manoeuvres” can be achieved. In principle, goals and
scenarios are complementary. For example, goals stimulate the elicitation of scenarios
and vice versa.

In Part III.b, we elaborate on the characteristics of scenarios, different types of
scenarios, their documentation, their usage in requirements engineering as well as
their interrelations with goals.

Example 4-5: Scenario “Automatic braking manoeuvre”�E
Carl drives his car on the motorway at a speed of 50 mph. Peter, the driver of the
car ahead of Carl, steps on the brake pedal firmly. After recognising that the car in
front is braking, Carl pushes on the brake pedal as well. The on-board computer of
Carl’s vehicle detects that the safety distance to Peter’s car is no longer maintained
and issues a warning to the driver. The distance between the two cars continu-
ously decreases. In order to support the driver, the on-board computer initiates an
automated full braking. The computer informs Carl about the automatic braking
manoeuvre. After the distance between the two cars stops decreasing, the on-board
computer terminates the full braking manoeuvre. The on-board computer contin-
ues controlling the speed of Carl’s car until the safety distance to Peter’s car is
maintained and informs Carl about the end of this “manoeuvre”.

4.6.3 Solution-Oriented Requirements

Solution-oriented requirements define the data perspective, the functional per-Data, functions, behaviour,
quality, and constraints spective, and the behavioural perspective on a software-intensive system (see

4.6 The Three Kinds of Requirements Artefacts 55

Section 2.2.1). Furthermore, solution-oriented requirements comprise (solution-
oriented) quality requirements (see Section 2.2.2) and (solution-oriented) constraints
(see Section 2.2.3).

In contrast to goals and scenarios, which should be defined fairly independently Conceptual solution

from a specific and intended solution, the definition of solution-oriented requirements
often implies a conceptual (or logical) solution for the system (see Chapter 13). Data
models, for instance, define entities, attributes, and relationships between entities (see
Section 14.1).8 Data models determine which data shall be represented in the system
and, to some extent, how these data shall be represented. A behavioural model defines
the states of the system and the externally visible behaviour with respect to these
states (see Section 14.3). Thereby, it partially defines the intended solution. Solution-
oriented requirements models thus often define a (partial) solution or even the basis
for generating a solution from the requirements models (see Section 13.1).

In Part III.c, we present requirements models for documenting the data perspective,
the functional perspective, and the behavioural perspective.

4.6.4 Use of the Three Kinds of Requirements Artefacts

The three different kinds of requirements artefacts (goals, scenarios, and solution- The three artefact types are
complementaryoriented requirements) are used complementarily during requirements engineering.

Using all three types of artefacts offers several advantages, as outlined through-
out this book. For example, developing goals and scenarios prior to or along with
solution-oriented requirements is an established principle for developing detailed
system requirements based on a system vision (see e.g. [Jarke and Pohl 1993; Van
Lamsweerde 2001; Antón 1996; Antón and Potts 1998; Yu 1997]). Applying a goal-
and scenario-based approach typically leads to a significant improvement of the qual-
ity of the requirements specification. It improves, for example, the completeness of
the specification (see amongst others [Antón and Potts 1998] as well as Section 7.1).

Moreover, scenarios put requirements into context and thus provide a good basis
for deriving and developing detailed, solution-oriented requirements. For instance,
scenarios explicitly document which stakeholders use the system as well as, via the
goals associated with a scenario, the stakeholders’ intentions for using the system (see
Part III.b for more details). Moreover, goals and scenarios support the refinement of
the requirements across different layers of abstraction, which is exploited by our goal-
and scenario-based requirements engineering method COSMOD-RE (see Part VII).

4.6.5 The Term “Requirements” as Used in This Book

When we use the term “requirements” in this book, we refer to the three types of
requirements outlined above (goals, scenarios, and solution-oriented requirements),
as described in detail in Part III. For example, when we talk about requirements

8 More precisely, a data model defines entity types and relationship types between the entity types
(see Section 14.1).

56 Part I – 4 The Requirements Engineering Framework

elicitation we refer to the elicitation of goals, scenarios, and solution-oriented require-
ments. Therein, the term “solution-oriented requirements” refers to data, functional,
and behavioural requirements as well as (solution-oriented) quality requirements and
constraints.

Definition 4-4: Requirements (as used in this book)�D
When we use the term “requirements”, we refer to goals, scenarios, and solution-
oriented requirements (i.e. data, functional, and behavioural requirements, and
solution-oriented quality requirements and constraints).

By defining more fine-grained types of requirements, a requirements classification
scheme can be established which fits the needs of a particular domain, company, or
project (see e.g. [Pohl 1996a; Young 2004]).

4.7 Overview of the Book

The structure of the book is derived from our requirements engineering framework.
Fig. 4-4 illustrates which parts of the book discuss and describe which parts of the
framework in detail.

� The structuring of the system context into four context facets is outlined in detailPart II

in Part II.
� The three kinds of requirements artefacts, their documentation, and their usePart III

are explained in detail in Part III. Part III is divided into three sub-parts.
Part III.a focuses on goals, Part III.b on scenarios, and Part III.c on solution-
oriented requirements.

� The three requirements engineering core activities are explained in detail inPart IV

Part IV. Part IV is divided into three sub-parts. Part IV.a outlines the documentation
activity, Part IV.b the elicitation activity, and Part IV.c the negotiation activity.

� The two cross-sectional activities are explained in Part V (validation) and Part VIParts V and VI

(management).

In addition to the detailed description of all aspects of our requirements engineer-Parts VII and VIII

ing framework, we present our goal- and scenario-based requirements engineering
method COSMOD-RE which integrates most of the aspects presented in this book
(Part VII).

In Part VIII of this book, we outline the main challenges faced when applying our
requirements engineering framework in a software product line setting and elaborate
on the benefits of deriving test artefacts from requirements.

4.7 Overview of the Book 57

V
 a

 l
i d

 a
 t

 i
o

 n C o r e a c t i v i t i e s

R e q u i r e m e n t s a r t e f a c t s

M
 a

 n
 a

 g
 e

 m
 e

 n
 t

S y s t e m c o n t e x t

C
ro

ss
- s

ec
tio

na
l a

ct
iv

ity

C
ro

ss
- s

ec
tio

na
l a

ct
iv

ity

Software Product Lines and
Requirements-based Testing

COSMOD-RE - The Goal- and
Scenario-based Requirements

Engineering Method

Fundamentals
V

 a
 l

i d
 a

 t
 i

o
 n C o r e a c t i v i t i e s

R e q u i r e m e n t s a r t e f a c t s

M
 a

 n
 a

 g
 e

 m
 e

 n
 t

S y s t e m c o n t e x tS x

C
ro

ss
- s

ec
tio

na
l a

ct
iv

ity

C
ro

ss
- s

ec
tio

na
l a

ct
iv

ity

Software Product Lines and
Requirements-based Testing

COSMOD-DD RE - The Goal-ll and
Scenario-based Requirements

Engineering Method

Fundamentals

Part VIIIPart VII

Part
V

Part
VI

Part II

Part I

Part IV

Part III

Part IV.a Part IV.b

Part IV.c

Part III.a Part III.b

Part III.c

Fig. 4-4 Structure of this book illustrated using the framework

