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Chapter 2

Co-seismic Gravity Changes Computed for a Spherical Earth
Model Applicable to GRACE Data

W. Sun, G. Fu, and Sh. Okubo

Abstract Dislocation theories were developed con-
ventionally for a deformed earth surface because most
traditional gravity measurements are performed on
the terrain surface. However, through development of
space geodetic techniques such as the satellite gravity
missions, co-seismic gravity changes can be detected
from space. In this case, the conventional dislocation
theory cannot be applied directly to the observed data
because the data do not include surface crustal defor-
mation (the free air gravity change). Correspondingly,
the contribution by the vertical displacement part must
be removed from the traditional theory. This study
presents the corresponding expressions applicable to
space observations. In addition, a smoothing technique
is necessary to damp the high-frequency contribu-
tion so that the theory can be applied reasonably. As
examples, the Sumatra earthquakes (2004, 2007) are
considered and discussed.

2.1 Introduction

Numerous studies have been undertaken by many sci-
entists to study co-seismic deformation in a half-space
Earth model, a spherical earth model, and even a 3D
earth model. For a half-space earth model, Steketee
(1958), Maruyama (1964), and Okada (1985), etc.
presented analytical expressions for calculating the
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surface displacement, tilt, and strain resulting from
various dislocations. Especially, Okada (1985) sum-
marized previous studies and presented a complete
set of analytical formulae for calculating these geode-
tic deformations. Okubo (1992) proposed closed-form
expressions to describe potential and gravity changes
resulting from dislocations. Because of their math-
ematical simplicity, these dislocation theories (e.g.,
Okada, 1985; Okubo, 1992) have been applied widely
to study or invert seismic faults. However, the valid-
ity of these theories is strictly limited to a near field
because Earth’s curvature and radial heterogeneity are
ignored. Modern geodesy can detect and observe far-
field crustal deformation. Consequently, even a global
so-seismic deformation, a dislocation theory for a more
realistic Earth model, is demanded to interpret far-field
deformation.

Efforts to develop formations for such a spherical
Earth model have been advanced through numerous
studies (e.g., Ben-Menahem and Singh, 1968; Smylie
and Mansinha, 1971). Such studies have revealed that
Earth’s curvature effects are negligible for shallow
events, although vertical layering might impart con-
siderable effects on deformation fields. However, Sun
and Okubo’s (2002) study comparing discrepancies
between a half-space and a homogeneous sphere and
between a homogeneous sphere and a stratified sphere
indicates that both curvature and vertical layering
strongly affect co-seismic deformation.

Stratified spherical model such as the PREM model
(Dziewonski and Anderson, 1981) is the most real-
istic: it reflects both sphericity and Earth’s strat-
ified structure. For such an Earth model, Pollitz
(1992) solved the problem of regional displace-
ment and strain fields induced by dislocation in a
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viscoelastic, non-gravitational model. Sun and Okubo
(1993) presented methods to calculate co-seismic grav-
ity changes in spherically symmetric Earth models.
Piersanti et al. (1995) and Sabadini et al. (1995)
studied displacement and its rates induced by dislo-
cation in viscoelastic stratified Earth models, account-
ing for sphericity and self-gravitation using a self-
consistent approach. Tanaka et al. (2006) computed
co-seismic gravity changes for a visco-elastic earth
model using an integrating technique to avoid intrin-
sic numerical difficulties. Fu and Sun (2008) pre-
sented a new theory for computing co-seismic gravity
changes in a three-dimensional inhomogeneous earth
model. In addition, Rundle (1982) studied deforma-
tions by a rectangular thrust fault in a gravitating
model consisting of an elastic layer over a viscoelastic
half-space.

All of the theories explained above were devel-
oped for a deformed earth surface because most tra-
ditional gravity measurements are performed on the
earth surface. However, advances in modern geode-
tic techniques, such as GPS, InSAR, altimetry, and
GRACE enable better detection of co-seismic defor-
mations such as displacement, gravity change, and
strain. For example, the co-seismic gravity change
caused by the 2004 Sumatra earthquake was detected
by GRACE (Gross and Chao, 2001; Sun and Okubo,
2004; Han et al., 2006). Han et al. (2006) calculated the
gravity changes caused by the earthquake, and inter-
preted the gravity changes using a very simple method
based on a half-space earth model. In this case, a more
reasonable dislocation theory must be used instead.
However, the conventional dislocation theory cannot
be applied directly to the observed data because the
theory includes contributions from the surface crustal
deformation, although the GRACE data do not include
it. Correspondingly, the contribution by the vertical
displacement part must be removed from the tradi-
tional theory. For this purpose, in this study, we present
the formulas applicable to the space observation. In
addition, a smoothing technique, e.g., a Gaussian filter,
is necessary to damp the high-frequency contribu-
tion, so that the theory can be applied reasonably. As
an example, the 2004 Sumatra earthquake is consid-
ered and investigated. More case studies are made to
observe whether or not the co-seismic gravity changes
for a smaller earthquake (e.g., M8.0) are detectable
from space.

2.2 Dislocation Theory Applicable
in Satellite Data

If a dislocation is considered in a spherical Earth model
(Fig. 2.1), such as a homogeneous sphere or a spher-
ically symmetric, non-rotating, perfectly elastic and
isotropic Earth (SNREI), the excited vertical displace-
ment is represented as ur(a,θ ,ϕ) (radius, co-latitude
and longitude) (Sun and Okubo, 1993). The co-seismic
gravity change δg(a,θ ,ϕ) on the deformed earth surface
(r = a + u) is expressed as

δg(a,θ ,ϕ) = �g(a,θ ,ϕ) − βur(a,θ ,ϕ) (1)

where the first term �g(a,θ ,ϕ) of the right-hand-side of
(1) is the gravity change at a fixed-space point (r = a)
and β is the free-air gravity gradient, which can be
expressed as (Sun and Okubo, 1993) β = 2 g(a)/a,
where g(a) is the mean gravity on the earth surface.
The last term −βur(a,θ ,ϕ) gives the free-air correction
caused by the vertical displacement on the earth sur-
face. This free-air correction is considered to convert
the gravity change from the fixed-space point to the
deformed earth surface. This correction is necessary
if a theoretical co-seismic gravity change is computed
to compare with the observed gravity change on the
deformed earth surface. However, if one wants to study
the co-seismic gravity change observed in space, such
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Fig. 2.1 Illustration of an original (un-deformed r = a) and a
deformed (r = a + u) earth, and corresponding gravity changes
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as by GRACE, Eq. (1) is not applicable, and the free-
air correction term must be eliminated because the
satellite gravity mission does not “see” this part.

We need only consider the first term on the
right-hand-side in (1) to interpret the gravity change
observed from space. This term �g(a,θ ,ϕ) is actu-
ally the gravity change at a fixed-space point on the
undeformed earth (see level) surface r = a. The gravity
change �g(a,θ ,ϕ) can be decomposed into two terms
(Sun and Okubo, 1993) as

�g(a,θ ,ϕ) = − ∂ψ(r,θ ,ϕ)

∂r

∣∣∣∣
r=a

,

+ 4πGρur(a,θ ,ϕ)

(2)

where ψ(r,θ ,ϕ) is the co-seismic potential change
caused by the mass redistribution of the whole earth, G
is Newton’s gravitational constant, and ρ is the density.
The last term 4πGρur(a,θ ,ϕ) is the Bouguer gravity
correction attributable to the deformation of the earth
surface, i.e., the vertical displacement. It implies that
the surface deformation is considered in �g(a,θ ,ϕ), but
the free-air correction is eliminated. On the other hand,
the first term on the right-hand-side in (2) also contains
a Bouguer layer term, but it is opposite in sign.

− ∂ψ

∂r

∣∣∣∣
r=a

= g

a3

∞∑
n,m

(n + 1) kij
nmYm

n (θ ,ϕ)

· νinjUdS − 4πGρur(a,θ ,ϕ)

(3)

As a result, the Bouguer terms related with the vertical
displacement ur(a,θ ,ϕ) cancel each other. Finally, the
gravity change �g(a,θ ,ϕ) is obtainable as

�g(a,θ ,ϕ) = g

a3

∞∑
n,m

(n + 1) kij
nmYm

n (θ ,ϕ)

· νinjUdS

, (4)

where U denotes the dislocation slip, νi, nj respectively
indicate the slip and normal components, and Ym

n is the
spherical function. The variable kij

nm is the dislocation
Love number of the potential change. Its numerical
computation can be made similarly to that in Sun and
Okubo (1993).

2.3 Co-seismic Gravity Changes
on the Deformed Earth Surface

The gravity changes on the deformed earth surface (1)
and at a space-fixed point (4) are used respectively for
surface and space measured gravity. They are differ-
ent in distribution and opposite in sign. We consider
the 2004 Sumatra earthquake to demonstrate the dif-
ference between the two gravity changes (Banerjee
et al., 2005; Ammon et al., 2005). The seismic slip
model (Fig. 2.2a) used in this study includes two seis-
mic events: the Sumatra earthquake, which occurred on
December 26, 2004; and the Nias earthquake, which
occurred on March 28, 2005. Digital data are provided
by Chen Ji and by Han et al. (2006).

Fig. 2.2 (a) Fault slip distribution of the 2004 Sumatra earth-
quake, which includes seven fault planes (after Han et al., 2006).
(b) Computed co-seismic gravity change (unit: μGal) on a
deformed earth surface caused by the earthquake
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Using the seismic fault model described above in
Fig. 2.2a and Eq. (1), we calculate the co-seismic
gravity changes δg(a,θ ,ϕ) on the deformed earth sur-
face and plot them in Fig. 2.2b. Results show that the
co-seismic gravity changes vary from –1,250 μGal
to +600 μGal. Generally, the gravity changes appear
positive in the land side (northeast direction), and neg-
ative in the ocean side (the South-West direction) near
the fault area. The distribution pattern appears positive
and negative values mixed together and the positive-
negative boundary is not clear. This phenomenon is
attributable to the sparse computing points. The cell
size of the computing points is about 50 × 50 km,
i.e., the gravity change is calculated for 3,840 points
in all in the plotted area shown in Fig. 2.2b. Actually,
for a simple seismic slip model, e.g., one with few
pieces of sub-tangential faults, these computing points
are sufficiently dense to reflect the distribution of the
gravity changes. However, because the Sumatra earth-
quake is a large event and the seismic slip distribution
is complicated (Fig. 2.2a), the computing cell size of
50 × 50 km seems too large to visualize the phe-
nomenon. This phenomenon is true not only for spher-
ical dislocation theory but also for applying the half-
space dislocation theory, such as Okubo (1992). In the
following, we will make a computation for a smaller
geometrical cell size to show the difference in distri-
bution pattern. The rough results presented here were
produced for two reasons: one is to illustrate that com-
putation for large cells saves much computing time; the
other is to clarify the following comparison.

2.4 Co-seismic Gravity Changes
at Space-Fixed Point

We next compute the co-seismic gravity changes
�g(a,θ ,ϕ) at the space-fixed point r = a in the same
computing scheme as δg(a,θ ,ϕ), but using Eq. (4).
Results of �g(a,θ ,ϕ) are depicted in Fig. 2.3. Com-
paring �g(a,θ ,ϕ) (Fig. 2.3) and δg(a,θ ,ϕ) (Fig. 2.2b)
reveals a great difference in amplitude and sign. The
co-seismic gravity changes �g(a,θ ,ϕ) vary from –
410 μGal to +640 μGal; they appear negative on
the land side, and positive in ocean side. For com-
parison, we also calculate the gravity changes using
the half-space dislocation theory (Okubo, 1992) with

Fig. 2.3 Calculated co-seismic gravity changes (unit: μGal) at
space-fixed point for the spherical earth model

elimination of the free-air correction. Comparison of
the results shows that, in the near field, the grav-
ity changes calculated using spherical and half-space
theories are fundamentally identical, but with some
differences in detail and in the far field.

The satellite (GRACE) is known to observe only the
low-frequency gravity change because of the attenua-
tion of the signals; the accuracy of the high-frequency
signals is low. In practical applications of satellite data,
a filter is usually used for damping the error in the high-
frequency part. For example, Han et al. (2006) adopted
the Gaussian filter with smoothing radius of 300 km,
which corresponds to the spherical harmonic degree of
60. The same filter is expected to be used in the the-
oretical computation to compare the observed gravity
changes with theoretically predicted ones. In this case,
the geometrical cell size of 50 × 50 km, as used above,
is expected to be sufficiently small because the high-
frequency contribution (less than 300 km) is expected
to be filtered out. However, our investigation below
shows that the geometrical cell size of 50 × 50 km is
insufficient. We consider the more detailed geometrical
cell size of 1 × 1 km to observe the effect of geometri-
cal cell size on computing co-seismic gravity changes.
The computed co-seismic gravity changes are depicted
in Fig. 2.4. Comparison of the results in Figs. 2.3a
and 2.4 shows that the gravity varies smoothly and
the positive-negative boundary becomes clear and rea-
sonable if the computing cells are sufficiently small.
Results also show that the maximum amplitude of the
gravity changes for small cells (1 × 1 km) size become
larger than those of big cells (50 × 50 km).
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Fig. 2.4 The same as Fig. 2.3, but with small computing cell
size of 1 × 1 km

2.5 Co-seismic Gravity Changes
by Damping High-Frequency Part

As described above, to apply the theoretical predic-
tion to satellite observed data, a filter must be used in
computations. The smoothed gravity changes include
only the low frequency part and become smaller in
amplitude, as presented in Fig. 2.5, when the isotropic
Gaussian filter (R = 300 km) is applied to the results
shown above in Figs. 2.3a and 2.4. Figure 2.5a, b repre-
sent co-seismic gravity changes for a space-fixed point,
but with cell size of 50 × 50 km and 1 × 1 km, respec-
tively. They show different distribution patterns and
amplitudes. The discrepancy is attributable entirely to
the different computing cell sizes. The latter (Fig. 2.5b)
looks reasonable and close to the GRACE observed
one (Han et al., 2006). It implies that the comput-
ing cell size is sufficiently small to obtain reasonable
results.

2.6 Are Co-seismic Gravity Changes
Detectable for a M8.4 Earthquake?

As indicated by Han et al. (2006), GRACE can detect
co-seismic gravity changes for a huge earthquake such
as the 2004 Sumatra earthquake (M9.3). The magni-
tude of the gravity change is about ±15 μgal after
the Gaussian filter (R=300 km) is used (Fig. 2.5b). In
this section, we investigate co-seismic gravity changes
caused by a smaller earthquake to see whether they are

Fig. 2.5 Theoretical co-seismic gravity changes (unit: μGal)
calculated for space-fixed point (Gaussian filter with R =
300 km): (a) for cell size of 50 × 50 km; (b) for cell size of
1 × 1 km

detectable by GRACE. For this purpose, we consider
the 2007 Southern Sumatra earthquake. That earth-
quake includes several large shocks that occurred on
September 12, 2007. Here we respectively consider
the largest shock that occurred, with seismic magni-
tude of M8.4. The fault slip distribution is depicted
in Fig. 2.6 (Chen, 2007). Then the co-seismic grav-
ity changes caused by the earthquake are calculated.
The results before the filter is used, as portrayed in
Fig. 2.7a, show that the gravity changes were about
–80 to +120 μGal. Finally, we apply the Gaussian fil-
ter with smoothing radius of R=300 km to the gravity
changes in Fig. 2.7 and thereby obtain the smoothed
gravity changes (Fig. 2.7b). The results show that the
smoothed gravity changes become smooth but that
the amplitude is smaller than that without a filter.
However, the gravity changes still reach about –1.5 to
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Fig. 2.6 Slip distribution on fault of the Southern Sumatra
earthquake (2007, M8.4) (after Chen, 2007)

+2.5 μGal. According to the detection capability of
GRACE (Sun and Okubo, 2004), the gravity changes
are detectable. This conclusion is to be confirmed
using actual GRACE data.

2.7 Summary

This study presented expressions of co-seismic grav-
ity changes for a spherical earth model, applicable
to satellite observed data. The difference between the
co-seismic gravity changes for deformed earth sur-
face and space-fixed point are compared and discussed.
Results show that the two kinds of gravity changes
are entirely different in both magnitude and sign. The
effect of geometrical cell size on computation accu-
racy is investigated. Results show that to guarantee an
accurate result of co-seismic gravity change, a small
geometrical computing cell size is necessary. The co-
seismic gravity change calculated by the present theory
seems reasonable and coincides with the observed one.
The gravity change for a smaller earthquake (M.8.4)
is also investigated; the results show that they are
detectable by GRACE.
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Fig. 2.7 Co-seismic gravity changes caused by the 2007
Sumatra earthquake (M8.4). (a) without filter; (b) with filter
R=300 km (unit: μGal)
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