2

Process Calculi: LOTOS

2.1 Introduction

A number of notations have been developed within concurrency theory for
specification of concurrent systems, e.g. process calculi [96,148],! temporal
logics [136], Petri Nets [169] and extended finite state machines [105]. We will
particularly focus on process calculi, as realised in the specification language
LOTOS [101].

LOTOS (Language Of Temporal Ordering Specification) was defined dur-
ing the 1980’s by a standardisation committee chaired by Ed Brinksma of
the University of Twente. The most significant influence on the design of the
language was a number of previously defined process calculi, including CCS,
CSP, CIRCAL [144] and ACP [15]. From amongst this list, the two most di-
rect influences were CCS [148] and CSP [96]. In fact, the language is largely
a composite of these two previous process calculi.

The language has two main parts: a behavioural part (sometimes also
referred to as the process algebraic part) and a data part. The role of the
behavioural part is to specify the order in which actions can occur; for exam-
ple, you may specify that component B of a system receives messages from
component A and then either passes the messages on to a further component,
C, or loses the message. The data part on the other hand defines the data
types that can be used in the behavioural part. For example, a queue data
type might be defined. This queue type may then be used as an input queue
by component B. Thus, when an action occurs at component B to indicate a
message has arrived, the message will be added to the queue. The data part

"We prefer the term process calculus to process algebra, because in fact, the
approach we present is not that advanced in algebraic terms. In particular, we do
not consider algebraic proof systems. Although, the reader should be aware that
the term, process algebra, is often used in the literature to describe very similar
approaches to the one we highlight.



20 2 Process Calculi: LOTOS

of LOTOS uses an abstract data typing language called ACT-ONE; see [24]
for an introduction to this notation.

A process of restandardisation has been undertaken. One particular area
of redefinition is the data part, which in its original form was seen to be
very cumbersome and a hindrance to the uptake of the language. The ACT-
ONE notation has been replaced with a functional notation. We discuss these
revisions in Chapter 6.

It is quite easy though to view the behavioural and data parts as distinct.
In fact, here we are almost exclusively interested in the behavioural part. We
use the term full LOTOS (which we shorten to fLOTOS) to refer to the full
language with data types and the term basic LOTOS (which we shorten to
bLOTOS) to refer to the language without data types (i.e. just the behavioural
part). We also subdivide basic LOTOS, because the full behavioural language
contains a lot of syntax that is somewhat cumbersome to carry around when
looking at the theoretical properties of the language. Thus, our main point of
focus is a subset of bLOTOS that we call primitive basic LOTOS (which we
shorten to pbLOTOS).

The next section (Section 2.2) introduces two specification examples that
we use to illustrate formal description in LOTOS. Then Section 2.3 introduces
pbLOTOS; and, finally, Section 2.4 presents example specifications written in
pbLOTOS.

2.2 Example Specifications

A simple communication protocol and the Dining Philosophers problem are
used as running examples. Both of these are standard examples of concurrent
behaviour and readers who are familiar with them can safely skip this section.

2.2.1 A Communication Protocol

The communication protocol comprises three main components: a sender pro-
cess, a receiver process and a medium (or channel). These components are
depicted in Figure 2.1. The specification task here is to firstly model the be-
haviour of the medium (e.g. its ability to lose messages) and then to give sender
and receiver process specifications that support reliable communication. The
specification will use timeouts, sequence numbering and acknowledgement in
order to do this.

The sender process obtains messages to send (also called packets or frames)
from outside the protocol system (in terms of a layered protocol model, mes-
sages to send would be obtained from a previous layer in the protocol stack).
The computation steps of the sender are: request a message from outside the
system, successfully send the message (perhaps with some retransmission)



2.2 Example Specifications 21

start  get put
sender receiver
process process

send ¢ T receiveAck receiveT ¢ sendAck

medium
process

Fig. 2.1. Components in the Communication Protocol

and then request a new message. Thus, the protocol is a stop and wait pro-
tocol [187]; it waits for the current message to be successfully sent before it
requests a new message to send.

Transmission using the protocol is initiated by a request to start from
outside the protocol. The sender then obtains a message to send and sends it.
Getting a message to send is identified by an event get being performed by the
sender process with the environment and sending is identified by an event send
occurring between the sending process and the medium. The medium then
relays the message to the receiver. Successful transmissions cause an event
receive to occur at the receiver process. However, the medium may lose the
message, in which case no such event is able to occur. In addition, the receiver
sends acknowledgements through the medium (so the medium is a duplex
channel). Sending and receiving these acknowledgements are identified by the
events sendAck and receiveAck, respectively. Successfully received messages
are passed out of the system on the receiver side using the event put.

We consider two variants of this basic scenario. The first assumes a reliable
acknowledgement medium. The second assumes that acknowledgements can
be lost. We discuss these in turn.

e Reliable Acknowledgement. In this class of protocol, messages sent
from the sender to the receiver may be lost, but acknowledgements will
always be relayed successfully. This assumption simplifies the protocol con-
siderably and avoids the necessity for sequence numbers. The sender pro-
cess will still have to set a timer when it sends a message. If the timer
expires, the message is assumed lost in transit and is resent.

e Unreliable Acknowledgement. The second variant assumes that ac-
knowledgements may be lost. The troublesome scenario for such a protocol
is that an acknowledgement is lost, the sender times out and retransmits
the original message, which is successfully transmitted to the receiver. The
receiver will have no way of knowing that this is a retransmission and will
blindly pass it to higher layers, resulting in delivery of a duplicate message.
Stop and wait protocols, which can lose acknowledgements, typically use



22 2 Process Calculi: LOTOS

alternating bit sequence numbering in order to obtain reliable communica-
tion. A sequence number of zero or one is associated with every message.
This means that retransmissions can be distinguished from transmission
of new messages when an acknowledgement is lost, because the sequence
number of a retransmission will have the same sequence number as the
previously received message.

2.2.2 The Dining Philosophers

The Dining Philosophers scenario has been used for many years as an illustra-
tion of the problems associated with scheduling shared resources in concurrent
systems. The version of the problem that we seek to specify is given by the
following scenario.?

Four philosophers (Aristotle, Buddha, Confucius and Descartes) are
sitting around a table, which has a large plate of rice in the middle.
Philosophers alternately think and eat. To be able to eat they must
first pick up two chopsticks, one in their left hand and one in their
right. They can pick up the chopsticks in any order, either right hand
first or left hand first. Because there are only four chopsticks, not all
of them can eat at the same time.

The table is depicted in Figure 2.2. A formal description of this problem will
describe all the possible behaviours in which the four philosophers can engage.

2.3 Primitive Basic LOTOS

The Nature of LOTOS Specification. A major objective of formal descrip-
tion is not to over-specify and to allow implementation freedom by being non-
prescriptive about aspects of realisation. Such avoidance of over-specification
is at the heart of the process calculus approach. In particular, it is important
that the correct interpretation is imposed on LOTOS descriptions. Specif-
ically, they should be viewed as expressing the “externally visible possible
behaviour” of a system. Specifications should be viewed as black bozxes; they
describe the order of possible external interaction, but do not prescribe how
that interaction order is internally realised. Any physical system that realises
the external behaviour is a satisfactory implementation.

The concept of the environment that a specification evolves in is central in
obtaining this interpretation. The term environment refers to the behaviour
that the external observer of a system wishes to perform. Note that this exter-
nal observer could be either human or mechanical. Conceptually, a LOTOS

2This scenario is based upon a Dining Philosophers specification associated with
the SEDOS tool set.



2.3 Primitive Basic LOTOS 23

right w left

ANA.

£ S
Descartes oo ok o Buddha

N

left w right

Fig. 2.2. The Dining Philosophers

specification only defines “possibilities” for evolution of a system and it is
through interaction with a particular environment that these possibilities are
resolved and realised. For example, if an environment cannot offer an action
that a specification must perform, a deadlock will ensue.

As an illustration, we might view a LOTOS specification, called S, in the
form depicted in Figure 2.3; i.e. as a black box with two interaction points
between the specification and the environment, g and h. Such interaction
points are called gates (the term port is also sometimes used). The set of all
gates of a specification defines the interface to the specification. It is only
through gates in this interface that an external observer can interact with the
specified system.

Gates reference “locations” at which interactions can take place. At such
gates, actions are performed. We say more shortly about this concept, but
they can be thought of as interaction activities, e.g. passing a value, sending a
message or pressing a button. In fact, the latter of these yields a nice pictorial
representation of interaction between environment and specification. LOTOS
descriptions define the order in which actions can be offered at gates; e.g. it
might be that an action at gate g can only be offered once an action at gate
h has been performed. Thus, typically, actions are only offered intermittently



24 2 Process Calculi: LOTOS

Fig. 2.3. Black Box Interpretation of a LOTOS Specification

at gates. We can view the offering of an action to the environment as the
popping up of a button. For example, Figure 2.4 depicts the situation when
an action is offered at gate g, but not at gate h. The environment can decide
to push the button or to leave it unpushed. We could also have situations such
as that depicted in Figure 2.5, where both buttons are up and the external
observer has a choice of actions to perform.

g
[ ] N

Fig. 2.4. Action Offering as Buttons Popping Up

Fig. 2.5. Choice of Action Offers

We use this button-pushing analogy a number of times in our presentation

of LOTOS.



2.3 Primitive Basic LOTOS 25

Behaviour Expressions. As indicated already, we introduce pbLOTOS by
working through the main constructs of the language. As also indicated al-
ready, we are interested in deriving behavioural specifications. As a reflection
of this, the main unit of pbLOTOS specification is a behaviour. The operators
that we introduce characterise the possible behaviour expressions that can be
written in pbLOTOS. The set of all possible ppLOTOS behaviour expressions
is denoted Beh; the variables B, B', B, By, Bs, ... range over the set Beh;
i.e. when we refer to such a variable it is implicitly assumed to be in Beh; e.g.
B € Beh.

There is one behaviour expression that we can highlight immediately; it is
the null behaviour expression,

stop

which is a distinguished behaviour that performs no actions. In fact, it is
synonymous with deadlock. stop is typically used to terminate a nonnull be-
haviour; i.e. it indicates that a point has been reached at which no more
behaviour can be performed.

Behaviour Trees. We use a general notation, which we call behaviour trees,
in order to depict the allowable evolutions of a behaviour expression. One of
the semantics that we consider in the next chapter, labelled transition sys-
tems, has similarities to behaviour trees and can be seen as a formalisation of
some aspects of behaviour trees.> Examples of behaviour trees are presented
in Figure 2.6. The exact meaning of this graphical notation is made clear as
we introduce the LOTOS constructs. Such a representation of behaviour is
helpful for simple specifications, but becomes unmanageable when specifica-
tions become complex, e.g. if a large amount of recursive behaviour is included
in a specification.

ANEN

Fig. 2.6. Example Behaviour Trees

3In fact, labelled transition systems are more general than behaviour trees, be-
cause their underlying connectivity can be a graph; i.e. can contain cycles.



26 2 Process Calculi: LOTOS
2.3.1 Abstract Actions

The first major principle is to assume the existence of a universe of observable
actions (these are also called external actions). For example, in specifying a
communication protocol we might assume the following observable actions
exist.

e send, which references the instant that a message is transmitted from a
sender process to a communication medium;

e receive, which references the instant that a message is passed from the
communication medium to a receiver process;

e timeout, which references the instant that a sender process times out wait-
ing for an acknowledgement;

e And similarly, sendAck, receiveAck, get, put etc;

and, in specifying the Dining Philosophers problem, we might assume the
following observable actions:

e pick, which references the instant that a chopstick is picked up off the
table; and

e put, which references the instant that a chopstick is put back onto the
table.

The set of all such actions is denoted Act; i.e. this is the set of all possible
actions that can be written; this set will clearly be infinite. Act is sometimes
called the alphabet of actions. The variables u, v, x, y, z and their super- and
subscripts, e.g. ', z”’, 1, x2, ..., range over Act.* However, although Act is
infinite, the set of actions used in a particular ppbLOTOS specification is finite;
i.e. a finite subset of Act. Assuming that a particular ppbLOTOS specification
is being considered, the set of all actions in the specification is denoted L; i.e.
the labels arising in the specification.

In pbLOTOS, actions and gates are synonymous. This is because no data
is passed as part of an action, so, the name of the gate at which an action is
performed completely defines the action performed at that gate. As a reflection
of this, for ppbLOTOS, the terms gate and action can be used interchangeably.

It is important to note that actions are atomic; they are atomic units
of observation and cannot be divided in time. A consequence of this is that
no two actions can occur at the same time and, thus, the occurrence of two
actions cannot overlap. For example, a send and a sendAck or a pick and
a put cannot happen at the same time. The atomicity of actions clearly has
important consequences for the modelling of concurrency; we discuss these
consequences in Section 2.3.6.

The restriction to atomic actions does not limit expressiveness, because
nonatomic activities can be specified in terms of the actions that delimit the

4Not only is this convention employed in this chapter, it is followed throughout
the book, unless otherwise stated.



2.3 Primitive Basic LOTOS 27

activity; i.e. rather than defining an action that has duration, we can specify
the atomic instant at which the activity starts and the atomic instant at
which it stops. For example, rather than specifying that a philosopher eats,
we specify that at some instant he starts eating (which could be marked with
an action pick) and at some instant he stops eating (which could be marked
with an action put).

Actions are a fundamental abstraction device. Systems are described in
terms of such abstract entities rather than physical realisations; e.g. a com-
munication protocol is described in terms of abstract actions rather than the
physical mechanisms that realise the tasks of sending, receiving, timing-out
ete.

A special distinguished action, i, is also used; it denotes an internal action;
i.e. an action that is hidden from the external observer. The occurrence of
an internal action is not externally visible. Thus conceptually, no button is
raised when it is offered or pushed when it is performed. It is important
to note though that although an ¢ action is not externally visible, it may
“indirectly” affect behaviour that is externally visible. Typically, an i action
will represent an internal decision, resolution of which prescribes a particular
visible behaviour.

The internal action has a number of roles. Firstly, it enables information
hiding; actions that are observable at one level of specification can be trans-
formed into hidden actions at another level. Thus, behaviour that should not
be visible can be hidden. Such hiding supports a form of abstraction, because
the complexity of a part of the system is abstracted away from, by hiding it,
when specifying another part. In addition, internal actions play a central role
in creating nondeterminism; see Section 2.3.4.

Internal actions also prove to be important when (behavioural) equiv-
alences are defined. In particular, two specifications with different internal
behaviour may achieve the same “observable” behaviour and could, thus, be
considered equivalent.

Observable actions can be transformed into ¢ using a hiding operator,
which takes the form:

hide x1,...,x, in B

and states that wherever any of the actions z1, ..., x, arise during the evalu-
ation of the behaviour B they will be replaced by i. Thus, the gates x1,...,x,
are removed from the interface of behaviour B. For example, if we assume B’
models the behaviour of a sending process and contains an action timeout,
we might wish to hide the timeout from all observers outside the sender; i.e.

hide timeout in B’

This hiding reflects the reality of networked communication, where, for exam-
ple, the receiver process would be unable to observe a timer expiring in the
sender. We use a, b, ¢, d, e and their super- and subscripts, e.g. a’, a”, a1, as,
..., to range over Act U {i}.



28 2 Process Calculi: LOTOS

Actions are the basic unit of LOTOS specification and, typically, when
performing a formal description using LOTOS, a set of actions in the prob-
lem domain would be located. Having identified the constituent actions of
the specification we would like to order them in someway, i.e. to define the
“temporal order” in which actions can occur (after all this is what basic event
ordering models are about). The pbLOTOS operators allow us to do this.
Thus, we postulate a universe of actions and then order them according to a
set of primitive operators. Standard operators are: sequence, choice, process
instantiation and concurrency.

2.3.2 Action Prefix

Basic sequencing of actions is defined in LOTOS using action prefixr, which
has the general form

a; B

where a is an action from Act U {i} and B is a behaviour. Thus, a; B is a
behaviour that will perform action a and then behave as B. We can depict the
effect of this construct using the behaviour tree shown in Figure 2.7. Thus,
action offers are attached to line segments in behaviour trees and unspecified
behaviour, such as B, is depicted using a triangle.

In terms of pushing buttons, we can also view a; B as a black box with a
gate a (and gates for all the external actions in B). The button a is initially
the only button raised; if the environment pushes a then the black box behaves
as B (e.g. new buttons will be raised).

/5\

Fig. 2.7. A General Behaviour Tree Depicting Action Prefix

As an example, we may wish to specify that our medium process will
perform a send action with the sender process and then perform a receive
action with the receiver process (this behaviour is depicted in Figure 2.8):

send ; receive ; stop

Notice the use of the distinguished behaviour stop to terminate the action
offering of the sender. This behaviour states that the action receive cannot
happen before the action send and, following the action receive, no more



2.3 Primitive Basic LOTOS 29

send pick

receive put

Fig. 2.8. Behaviour Trees of Action Prefix

actions will be offered. By way of clarification, this behaviour can be derived
from the general form for action prefix by repeated application. In fact, as a
reflection of this, the behaviour is actually a shorthand for the following fully
bracketed behaviour

send; (receive; ( stop))

where the repeated application is made explicit.
Alternatively, we might want to specify the following behaviour (depicted
in Figure 2.8) for a dining philosopher

pick ; put; stop

indicating that a philosopher cannot put his chopstick down until he has
picked it up.

2.3.3 Choice

Choice is denoted
By [| By

and states that either behaviour By or behaviour By will be performed. The
choice of which behaviour to perform is determined by the initially offered
action of the two behaviours. Typically, all such actions will be offered to the
environment, which will choose which to perform; this decision will resolve
the choice.

The necessity to offer such choices largely arises because of the move to
systems that contain concurrency. A behaviour offering a choice of a number
of observable actions to perform is really offering a menu of possible inter-
actions from which concurrently executing objects can select. The behaviour
is defining the set of actions to which it is willing to react. Such choices are
not typically associated with sequential systems which are, in comparison to
parallel systems, closed. The interaction choices between components are pre-
determined in sequential systems.

As an example of choice, we may wish to specify the sender behaviour
depicted to the left in Figure 2.9:



30 2 Process Calculi: LOTOS

send pick_stickl pick_stick2

receiveAck timeout

send

Fig. 2.9. Examples of Choice in Behaviour Trees

send; (receiveAck ; stop [| timeout ; send; stop)

This states that after a send the sender will either receive an acknowledge-
ment or time out and retransmit, by performing another send. Each of the
alternatives is completed by stopping.

We can also picture choice in terms of buttons popping up. For example,
this behaviour yields a black box with gates send, receiveAck and timeout
and it is initially in the state depicted in Figure 2.10(i). If the environment per-
forms a send then the box progresses to the state depicted in Figure 2.10(ii).
So, there is now a choice for the environment: does it press receiveAck or
timeout? (In fact, in more advanced versions of this behaviour we hide timeout
and do not make this choice externally visible, but for illustrative purposes
we leave it visible here.) If the environment presses receiveAck no more ac-
tions will be offered; i.e. all buttons will be depressed. However, if timeout
is pressed, the send button pops up and we progress to the (external) state
depicted in Figure 2.10(i).

This is only a snapshot of the full behaviour of the sender and is far from
complete. For example, after timing out we would actually like to specify that
the behaviour recurses back to the start in order to resend. We have to wait
until we have a few more constructs before we can express such behaviour.

In a similar way, we could specify the behaviour depicted on the right in
Figure 2.9 as

pick_stickl; By [] pick_stick2; Bs

i.e. a philosopher can either pick up stick 1 or stick 2.

2.3.4 Nondeterminism

Nondeterminism goes hand in hand with concurrency. Because, in concurrent
systems, components can evolve independently of one another, choices made



2.3 Primitive Basic LOTOS 31

send
,—| receiveAck timeout
() g
receiveAck timeout
send
i I
(i)

Fig. 2.10. Examples of Choice in Black Boxes

inside one component can create nondeterminism for the component’s envi-
ronment (i.e. all components that evolve in parallel with it). This is because
components cannot “look inside” other components to see why they make a
particular choice, thus, to the environment, hidden choices seem nondetermin-
istic.

Another way of viewing this is that components are autonomous and thus,
they make decisions for themselves, which are not “explained” to their envi-
ronment. This does not mean that overall behaviour is nondeterministic; the
emergent behaviour could be deterministic. Specifically, it will be determin-
istic if the environment can handle all the nondeterministic possibilities, i.e.
if nothing is unexpected. Although many hidden choices are taking place in a
car engine, (while faults do not occur) its emergent behaviour is predictable,
once it has been explained to the driver by reading the car manual or passing
a driving test.

Nondeterminism is defined in LOTOS as a special case of choice. Specific
forms of choice yield a nondeterministic resolution of the alternatives. The
main forms are:

11) i;Bl []{E;BQ
iti) x; By [] i; Ba

(
(
(
(iv) =5 By [J x5 Ba



32 2 Process Calculi: LOTOS

where x denotes an observable action and (ii) and (iii) are mirror images
of each other; so, there are really three basic forms. Notice that these first
three classes of nondeterminism could be created by hiding some actions in
an otherwise deterministic behaviour. In addition, parallel composition can
create nondeterminism, as we discuss in Section 2.3.6. The three basic forms
are depicted in Figure 2.11.

@) (i1) (iv)
Fig. 2.11. General Forms of Nondeterminism in Behaviour Trees

The nondeterminism arises because selection between the two initial ac-
tions of the choice is beyond the control of the environment. For example, in
(iv), when the external observer performs an z he or she has no control over
whether the specification evolves to By or to Bs. As a reflection of this, a
nondeterministic choice is also referred to as an internal choice.

Each of these three forms yields a different variant of nondeterministic
behaviour. Firstly, notice that forms (i) and (iv) are symmetric, while (ii) is
nonsymmetric, in the sense that the left branch starts with an internal action,
while the right branch starts with an observable action. We now consider each
in turn.

e In (i), the initial evolution of the behaviour is completely hidden from the
external observer; in terms of button-pushing, no buttons are raised. Thus,
a wholely internal choice will be made to either evolve to behaviour By or
to evolve to behaviour Bs.

e In (ii), the initial evolution could also be completely hidden from the ex-
ternal observer; i.e. the left branch could be taken immediately and no
buttons will be raised. However, if the external observer is quick enough
to interact with the behaviour she could perform action x and evolve to
Bs. However, if the external observer is either not quick enough or unable
to perform an z, the behaviour will eventually evolve to B;. Conceptually,
the button z is raised, to see whether the environment can push it, and
then, at some point, retracted (i.e. depressed). Critically though, because
we are not yet in the business of quantitative time specification, the time



2.3 Primitive Basic LOTOS 33

point at which z is retracted is not stated. Effectively, the specification
says that, if the environment has not performed the x by some unspecified
time point, it will be retracted.

e In (iv), the point of initial evolution of the behaviour is always externally
visible; i.e. an x action will be offered and the corresponding button will
be raised. However, the choice of evolving to B; or to By after performing
x is made internally and hence nondeterministically.

It is important to note the difference between a deterministic choice (some-
times referred to as an external choice) and a nondeterministic choice. For ex-
ample, you should convince yourself that the following two behaviours, which
are depicted in Figure 2.12, are different.

Fig. 2.12. A Deterministic and a Nondeterministic Choice

x; (x1; stop || x2; stop) and x; x1; stop [| ¢; xo; stop

Specifically, after performing an z action, the first behaviour will offer an
external choice between performing an z; or an xo, whereas, after performing
an x action, the second behaviour will offer one of z; or x5 to the environment,
but, crucially, not the choice between both. In terms of button-pushing, we
can depict the two behaviours as the two alternative sequences of black box
states depicted in Figure 2.13, where the arrows indicate evolution of the
system and, in particular, the two arrows in the nondeterministic black box
indicate a choice of internal evolution.

Nondeterminism plays a number of roles in process calculi. In general it
acts as an abstraction device. For example, nondeterminism is often intro-
duced when, at a certain level of system development, we wish to abstract
away from a particularly complex mechanism. A good example of this is in
modelling loss in a communication medium. For example, the medium in our
running example might be specified as follows,

send; (i; By [] receive; By)



34 2 Process Calculi: LOTOS

X

1 = = % =~

| %

> [1 11 L i L1|X—Z|

Fig. 2.13. Deterministic and Nondeterministic Choice in Black Boxes

which will perform a send action with the sender process (i.e. a message is
sent to the medium) and then it will either nondeterministically decide to lose
the message, represented by the ¢ action, or pass the message on, represented
by offering the receive action, with which the receiver process may interact.

What we are really doing here is abstracting away from the specific mech-
anism by which loss occurs in a communication medium. We are stating that
some internal mechanism could occur and result in the message being lost, but,
at the particular level of abstraction we are considering, we are not interested
in how this happens. Notice that a complete specification of the mechanics
of loss would probably require the physical laws of noise and attenuation on
communication lines to be expressed.

There is also a sense in which nondeterminism is used in specification to
allow implementation freedom. A nondeterministic choice between evolving
to By or to By can be viewed as stating that implementations that behave
as either By or By are satisfactory. Such a specification is stating that the
specifier does not mind whether the system behaves as By or as Bs. Such
nondeterminism may then be refined out during development. This is the
motivation behind refinement relations, such as reduction; see Section 5.1.6.2.

2.3.5 Process Definition

Basic Form. The basic unit of modularity is the process. The syntax for
process definition is:

P[xh...,xn] =B

where P € Pldent, the set of process identifiers. This states that the process
identifier P is bound to the behaviour B. The list z1,...,z, indicates the



2.3 Primitive Basic LOTOS 35

actions that are observable in B. [x1,...,%,] can be thought of as denoting
the interface of B, i.e. the actions that can be interacted with; it defines the
buttons that must be made available in a black box implementation of the
process P.

Instantiation of the behaviour B is performed through reference to P in
a behaviour expression (we also talk about invocation of processes; the terms
instantiation and invocation are interchangeable). In the process of instanti-
ating P, we can alter the action names. For example, the definition

Plz,y,z]:=B (a)
could be invoked by referencing
Plu,z,w]  (b)

which has the effect of instantiating behaviour B in such a way that, whenever
it is specified to offer an x it offers a u, whenever it is specified to offer a y it
offers an x and whenever it is specified to offer a z it offers a w. The terms
formal and actual gates, are often used to refer to these action lists. Thus, in
the above example, z, y and z are formal gates of the process P, whereas wu,
z and w are actual gates of the process instantiation.

In terms of black boxes, the definition of P, expression (a), can be depicted
as in Figure 2.14, whereas instantiation of P, expression (b), can be depicted
as in Figure 2.15.

Fig. 2.14. Process Definition Black Box

Notice also that, in P [z,y, 2] := B, the behaviour B can reference P and
thus create recursion. As an example, consider the behaviour

Plz,w]:=z; w; Plw,z]
which, on invocation as
Plz,y]

yields the infinite behaviour depicted in Figure 2.16. Infinite behaviour is cre-
ated by recursive process invocation. Notice also, recursive behaviour cannot



36 2 Process Calculi: LOTOS

Fig. 2.15. Process Instantiation Black Box

be finitely represented in a tree. Thus, to denote such executions, we need
to use what could be called behaviour graphs as a generalisation of the trees
used to this point.

Fig. 2.16. An Infinite Behaviour

Sometimes when we use process definition and instantiation we drop the
action list. So, we write

P:=B
as a shorthand for
Plxy,...,zn] =B

We only use this shorthand when the action list plays no role; i.e. action names
are not renamed on process instantiation. Thus, a process definition such as

P:=uxz;y; stop

cannot be invoked as



2.3 Primitive Basic LOTOS 37
Pz, w]

Example. As an example of process definition and instantiation, the medium
in the communication protocol example could be specified as a process called
Medium and defined as follows.

Medium[send, receive] :=

send; (i; Medium [send, receive] [| receive ; Medium [send, receive])

This is actually a one-slot medium; i.e. it deals with one message at a time.
A one-slot medium is suitable for a stop and wait protocol because only one
message is in transit between the sender and receiver at any time. The process
named Medium performs a send action with the sender. Then the medium
will either nondeterministically lose the message or offer the action receive
with which the receiver may interact. After either of these alternatives, the
behaviour recurses by invoking Medium again, thus preparing the process for
the next send action from the sender.

We can also specify a possible behaviour for the sender process as follows.

Sender [get, send, receive Ack] :=

get; send; Sending [get, send, receive Ack]

Sending [get, send, receive Ack] :=

hide timeout in ( receiveAck ; Sender [get, send, receive Ack]

[

timeout ; send; Sending [get, send, receive Ack] )

The top-level process here is Sender, which invokes the process Sending. We
use the convention that process identifiers are written with a capital first let-
ter, whereas action names are written with a small first letter. The process
Sender obtains a message to deliver by performing the action get (remem-
ber this interaction takes place between the Sender and its environment); it
transmits the message by performing send and then it invokes Sending.

The role of Sending is to ensure successful transmission of the mes-
sage sent. In order to do this, Sending waits for an acknowledgement (the
receiveAck) action; if it does not arrive in time a timeout occurs and the
message is resent, modelled by offering the action send again. Notice that, if
a receiveAck is successfully received then the recursive call takes us back to
Sender, indicating that the message has been successfully transmitted, and we
are ready to send another message. In contrast, after timing out and resend-
ing, we recurse back to the start of Sending and try for an acknowledgement
to the resend.

Although they are the same actions, the two references to send are con-
ceptually different: the send in Sender is an initial transmission, whereas the
send in Sending is a retransmission of an old message. This distinction is
justified because an initial transmission send is preceded by the action get.



38 2 Process Calculi: LOTOS

You can think of the effect of the action get as being to fill the send buffer
with a new message.

In this example, you should notice the approach of invoking a subprocess,
which enables a repetition to be set up by recursing on the name of the
subprocess. The definition and invocation of the process Sending is just such
an example. In terms of state machines, Sending can be viewed as a state
back to which the machine iterates. In fact, all constituent behaviours of a
pbLOTOS specification can be viewed as states. For example, the behaviour
expression:

get; send; Sending|. . ]

can be viewed as a state from which a transition labelled get can be performed
and the system evolves into state,

send; Sending]|. . .|

which is a state from which a transition labelled send can be performed and
the system evolves into state,

Sending .. .]

To complete the set of processes in the communication protocol example, the
receiver process and acknowledgement mediums can be specified as follows:
Receiver [put, receive, sendAck] :=

receive ; put ; sendAck ; Receiver [put, receive, send Ack]

AckM edium [send Ack, receive Ack| :=
sendAck ; receive Ack ; AckMedium [sendAck, receive Ack]
As indicated earlier, we have assumed a reliable acknowledgement medium.
Thus, the receiver simply receives messages and sends acknowledgements and

the acknowledgement medium passes these messages on (and does not lose
any of them).

Divergence. An important technical issue arising through recursion is the
possibility of infinite internal behaviour, which is called divergence. The fol-
lowing behaviours give different examples of the phenomenon.

1. P:=¢; P

2. P:=ux;stop|li; P

3. P:=u; stop || y; hidey in P

4. hide x in (y; B[] z; P) where P:=x;z; P



2.3 Primitive Basic LOTOS 39

(1) 2 i

©)

where 4
B’=hide x in B @

Fig. 2.17. Divergent Behaviour



40 2 Process Calculi: LOTOS

The behaviour of these expressions is depicted in Figure 2.17; both infinite
expansions and cyclic depictions are presented.

Thus, (1) is a straightforward form of divergence; (2) offers the possibility,
at every state, of not diverging by performing an x, but nonetheless it could
diverge if the environment is never willing to perform an z; (3) shows how
hiding can create divergence; and (4) shows how hiding can create divergence
deep inside a subprocess.

The correct interpretation of divergence is a hotly debated issue, with one
school of thought viewing divergence as degenerate in the extreme [96]. For
example, extreme cases of divergence, where the recursive call is not even
“guarded” by an internal action, are certainly problematic, viz:

P=P
We discuss these issues in some depth in Sections 5.1.4 and 7.2.6.

Relabelling. In order to correctly model the effect of process instantiation,
another operator is required called relabelling. This has the form,

B[yl/xlv"wyn/xn]

and has the effect of relabelling the ;s with the y;s in the behaviour B (i.e.
buttons are renamed). Notice that z; € Act for all 1 < ¢ < n, so internal
actions cannot be relabelled; this also applies to the special (pseudo internal)
action J, which we introduce in Section 2.3.7. In the standard LOTOS lan-
guage, the relabelling operator is not available to the specifier, rather it is used
in defining the semantics of the language. This is because the basic form, i.e.
renaming through binding actual gate names to formal gate names is viewed
to be more usable from the specifier’s point of view. However, the basic form
is really just syntactic sugar for direct application of the relabelling operator.
In particular, an invocation,

Plyi,...yn]
of a process definition,
Plxy,...,zn] =B
can always be rewritten using our simplified form of process instantiation and
relabelling, i.e.,
Plyi/z1,. . Yn/Tn)
with a process definition,
P:=B

This approach of completely dividing the mechanisms for process invocation
and the mechanisms for relabelling leads to more elegant semantic definitions
and is thus, generally used in our chapters on semantics. However, the basic
form is kept for presentation of examples.



2.3 Primitive Basic LOTOS 41

2.3.6 Concurrency
2.3.6.1 Independent Parallelism

We begin with a special case of concurrency; this is given by the operator |||,
and has the general form,

By ||| Ba,

which states that the two behaviours B; and Bs evolve independently in
parallel. Independent in this context means that there is no shared behaviour,
which would arise if B; and By performed some actions together.

We might, for example, use this construct to specify that the behaviour of
two philosophers that do not share chopsticks are independent:

pick_stickl; pick_stick2; put_stickl; put_stick2; stop |||
pick_stick3; pick_stick4 ; put_stickd ; put_stick3; stop

Of course, if they share a chopstick there would be some overlapping be-
haviour; we come to this situation shortly.

How though should we view such independent behaviour? In fact, the
choice of interpretation to put on parallelism is one of the main issues in
our discussion of semantics. However, here we focus on what is the standard
interpretation: interleaving.

Interleaved interpretations of concurrency are justified by our assumption
that all actions are atomic. Specifically, as discussed earlier, a direct conse-
quence of actions being assumed to be atomic is that no two actions can
occur simultaneously. Thus, in terms of action occurrences, there is no true
simultaneity and any execution path through the specification will be a linear
sequence of actions. As an illustration, consider the following simple example,

a; stop ||| y; stop

This behaviour specifies that the action x will be offered independently in
parallel with the action y. Now, assuming atomicity of actions, we know that
the occurrences of x and y cannot overlap, which implies that one must occur
before the other. So, we obtain the following relationship,

x; stop ||| y; stop = x;y; stop || y; x; stop

where = means “are equivalent” (we make precise such notions of equivalence
later in this book). This states that = occurring in parallel with y is the same
as either the occurrence of x being followed by the occurrence of y or the
occurrence of y being followed by the occurrence of x. Thus, interleaving al-
lows parallelism to be expressed in terms of sequence and choice and although
behaviours may be “truly in parallel”, no two actions occur “truly” simulta-
neously. This interpretation allows us to depict independent concurrency very
easily; a depiction of x; stop ||| y; stop is given in Figure 2.18.

Figure 2.19 shows the following larger example of interleaved parallelism.



42 2 Process Calculi: LOTOS

Fig. 2.18. Interleaved Parallelism

(z;y; stop) ||| (y; 25 stop)

Fig. 2.19. Interleaved Parallelism 2

We have once again mapped concurrency to sequence and choice, but this time
the possible alternatives are far greater. This is characteristic of interleaving:
the number of states in the interleaved representation increases very rapidly
as the complexity of the parallel behaviour increases. Also, notice that the y
actions on both sides of the parallel behaviour occur independently. These two
actions would have to be explicitly identified for synchronisation if they were
to occur together. In addition, notice that some subbranches of the complete
behaviour are repeated. Such repetitions could be pruned out.
Nondeterministic choices can also be created through parallel composition.
For example, if the environment performs the action x, then the behaviour,

(@3 stop) [|| (=3 y; stop)

will internally decide whether to offer just an x and then a y or an external
choice between y and x, with the former evolving to offering an = and the



2.3 Primitive Basic LOTOS 43

latter evolving to offering a y. This behaviour is depicted in Figure 2.20. You
should also notice that a similar instance of nondeterminism is embedded into
the behaviour depicted in Figure 2.19; the nondeterminism is on the action
y. Forms of nondeterminism based on internal actions can also be created
through parallel composition.

Fig. 2.20. Interleaving Creating Nondeterminism

2.3.6.2 General Form

As already stated, independent parallelism is one specific class of concurrent
behaviour. Concurrency, in its most general form, is denoted

Bl |[$1,...7l’n]| BQ

with the operator parameterised on the observable actions that must be syn-
chronised, the z1,...,z,. This behaviour states that B; and By evolve inde-
pendently in parallel subject to the synchronisation of actions 1, ..., T,; i.e.
an action z; (1 < ¢ < n) appearing in either By or By can only be executed
if it synchronises with an x; in the other behaviour. Also notice that internal
actions cannot synchronise; this is because they are not externally visible and,
thus, cannot be interacted with.
As examples, consider the following behaviours.

(i) (z;y; stop) Y]l (y; 2; stop)
(i) (x;y; stop) |

(iti) (z; stop) |[y]
(iv) (x;y; stop) |[y]| (=; stop)
(v) (2;y;w;stop) |[z,y]| (2 z; stop)
(Vi) (=;y;stop) |[y]] (s z; stop)



44 2 Process Calculi: LOTOS

Their behaviour trees are depicted in Figure 2.21. For each of the behaviours,
independent parallelism is constrained by synchronisation of the actions in
the gate set.

e (i) Synchronisation on y results in a totally sequential behaviour. In par-
ticular, notice that the y on the right-hand side of the behaviour cannot
occur without the left-hand side offering a y with which to synchronise.
Thus, the  must be performed first.

e (ii) Synchronisation on z still allows y and z to be arbitrarily interleaved
once x has occurred.

e (iii) The interleaving of the two behaviours is unconstrained because y
does not appear in either behaviour.

e (iv) The interleaving of x and z is unconstrained, but because the y action
is identified for synchronisation and does not appear on both sides of the
parallel operator, it does not occur. The behaviour on the left-hand side
is, in fact, unable to proceed once the x action has been performed; i.e. it
is locally deadlocked.

e (v) Firstly, the = action is synchronised on, then the z action can occur,
but, once again, the y action is deadlocked. The inability to perform a y
blocks the w action from being offered as well.

e (vi) The interleaving of x and ¢ is unconstrained by the synchronisation
on y and the z action can follow the occurrence of i. However, the y action
is blocked from being offered.

Generalised parallelism, |[.. ]|, has two special cases, one of them we have seen
already:

By ||| Ba,
which is equivalent to writing, By |[ ]| Bz, i.e. general parallel composition

with an empty synchronisation set; and,
B || By

which is equivalent to generalised parallelism with a synchronisation set con-
taining all the actions of B; and Bs or alternatively containing all the actions
in £. Thus, ||| gives the composition of independent concurrent threads and
|| gives fully synchronised parallelism.

As illustrations of fully synchronised parallelism, consider the following
behaviours (behaviour trees for which are presented in Figure 2.22).

(i) (@;y;stop) || (w3 y; 25 stop)
(ii) (@;y; 25 stop) || (25y; 2; stop)
(iii) (a; stop[|y; stop[] z; w; stop) || (x; stop|]i; y; stop)

Thus, (i) can successfully synchronise on x and then y, but then is unable to
progress, as the z action is only offered on one side of the parallel composition.



2.3 Primitive Basic LOTOS 45

x </ \
Y Z X
: (i)
() (i)
Y < x
Z X <
v ™

Fig. 2.21. Generalised Parallelism

@ (i) (iii)
Fig. 2.22. Fully Synchronised Parallelism

In contrast, (ii) can perform no actions and thus induces the indicated trivial
behaviour tree, because it cannot even synchronise on an initial action. (iii)
illustrates how choice and internal actions behave through fully synchronised
parallelism. In particular, notice how one of the branches of the left-hand
choice is blocked because z is not offered as an initial action of the right-hand
choice. In addition, the internal action is not subject to synchronisation, so
appears in the resultant behaviour.



46 2 Process Calculi: LOTOS

As a reflection of the relationship between generalised parallelism and

the two operators ||| and ||, only |[...]| is included in pbLOTOS; ||| and ||
are viewed as derived operators; i.e. ||| = |[ ]| and || = |[z1,...,2zn]| where
{z1,...,2,} = L.

2.3.6.3 Example

As a more concrete illustration of parallel composition, in the communication
protocol example we might compose the two mediums together to form a
duplex medium as follows,

DupMedium [send, receive, send Ack, receive Ack] :=

Medium [send, receive] ||| AckMedium [sendAck, receive Ack)

This states that the behaviour of the two mediums is independent, which is
as expected, because the two directions of communication do not affect each
other. We can now define the top-level behaviour of the protocol as follows:

((Sender [get, send, receive Ack] ||| Receiver [put, receive, sendAck] )
|[send, receive, send Ack, receive Ack]|

DupMedium [send, receive, send Ack, receive Ack] )

So, the Sender and Receiver processes evolve independently, but commu-
nicate by synchronising on the commmon gates send, receive, sendAck and
receive Ack through the duplex medium.

2.3.6.4 Why Synchronous Communication?

As indicated already, in LOTOS concurrent threads of control interact by
synchronous communication. Synchronous message passing is chosen because
it can be viewed as the primitive mechanism from which other communication
paradigms, e.g. asynchronous communication or remote procedure call, can be
defined.

The particular class of synchronous communication employed in LOTOS
is multiway synchronisation. Thus, any number of behaviour expressions can
be involved in a synchronous communication. For example, in the following
behaviour,

Plz,y] |l Qa] |[]] Rz, 2]

all three of the processes, P, @ and R, have to synchronise in order to perform
the action z.

The LOTOS multiway synchronisation plays an important role in the
constraint-oriented style of specification [171, 195]. The term constraint-
oriented is used to refer to an incremental system development style in which
system specifications are refined by imposing behavioural constraints on the



2.3 Primitive Basic LOTOS 47

system. This is done by composing the system in parallel with a piece of be-
haviour, which reflects this constraint. It is suggested that such an approach
offers a powerful incremental development methodology [195].

You should also be aware of the important role that hiding plays in rela-
tion to multiway synchronisation. Specifically, hiding is used to “close off” an
interaction and prevent further synchronisation on a particular action. This
implies a very specific order to the application of operators in constraint-
oriented styles of specification. In particular, an interaction cannot be hidden
until the behaviour has been fully constrained through parallel composition.

2.3.7 Sequential Composition and Exit

Action prefix defines sequencing for actions, however, we would also like to
define sequential composition of complete behaviours. This is supported by
the sequential composition operator (also called enabling),

B1 >> By

which will evolve as By then; if B; terminates successfully, it will behave as
Bs. The concept of successful termination is pivotal here. We do not wish
B1 >> B> to evolve to By unless By completes its evolution. In particular,
if By is in a deadlock state we would wish By >> By to evolve to the same
deadlock state. Thus, we introduce a special distinguished behaviour,

exit

to denote successful termination. For example, consider the following be-
haviour expressions.
i) (z;y;exit) >> (z; stop)
i) (z;y;stop) >> (z; stop)
iti) (x; stop [ y; exit) >> (x; stop)

(
(
(
(iv) (z;exit|||y; exit) >> (z; stop)
(v) (=z; stop ||| y; exit) >> (z; stop)
(vi) (z;exit [[z]| y; exit) >> (z; stop)
(vii) z;y; exit

Behaviour trees for expressions (i) to (vi) are depicted in Figure 2.23 and
expression (vii) is shown in Figure 2.24. We consider each of the examples in
turn.

e (i) The left-hand behaviour is performed first (z followed by y), then an
internal action is performed (reflecting the successful termination at exit)
and this is followed by the right-hand behaviour (performing the z action).



48 2 Process Calculi: LOTOS

e (ii) Only the left-hand behaviour is performed here. This is because the
left-hand behaviour does not successfully terminate, i.e. there is no ewit,
so, the right-hand behaviour is not enabled.

e (iii) Only one branch of the choice successfully terminates and thus, only
this branch is postfixed with the right-hand behaviour.

e (iv) It is important to note that, in the behaviour on the left side of
>> both sides of the parallel composition successfully terminate. Thus, in
whatever state the left-hand behaviour terminates, it will be followed by
the right-hand behaviour.

e (v) In contrast to (iv), because only one side of the parallel composition
concludes with an exit, the behaviour on the left of >> cannot successfully
terminate and, thus, the right-hand behaviour cannot follow. This is an
important aspect of sequential composition. Both branches of a parallel
composition must successfully terminate in order for the whole of a parallel
composition to successfully terminate. With some thought you will be able
to convince yourself that this correctly reflects the behaviour of concurrent
threads of execution.

e (vi) Because it is in deadlock after performing action y, the left-hand side
of this behaviour is not able to successfully terminate.

e (vii) The behaviour successfully terminates by performing a § action (see
Figure 2.24). However, there is no behaviour to enable, thus, the § action is
left dangling. § is a special action used to signal successful termination and,
thus, enable a sequential composition. It is really a semantic device, which
enables sequential composition to work. We postpone a full discussion of
its behaviour until we consider actual semantic approaches. However, you
should note that § cannot be explicitly used by a specifier, thus, § &€ Act;
it is a distinguished event, which has some similarities to .

As a more concrete example of the use of successful termination, consider the
Dining Philosophers example. We might want to specify that a philosopher
can only perform the behaviour of putting his chopsticks down once he has
performed the behaviour of picking his chopsticks up:

(pick_stickl; exit ||| pick_stick2; exit)
>> (put_stickl; stop ||| put_stick2; stop)

Notice that this expresses that the chopsticks can be picked up and put down
in any order, modelled by actions on stick 1 and stick 2 being placed indepen-
dently in parallel. But, it is only after both chopsticks have been picked up
that a successful termination can occur and we can evolve to putting down
the chopsticks. This behaviour is depicted in Figure 2.25.

As suggested by this example, the main role of the sequential composition
operator is in enabling specifiers to subdivide their specifications into phases.
Here we have decomposed into a picking-up phase and a putting-down phase
and there will be a synchronisation (the successful termination) before moving
between phases. We could specify this example using just action prefix and



2.3 Primitive Basic LOTOS

X x X
Y y y
i .
14
(i)
z Ve
@) )
X y
y X y

) (vi)

Fig. 2.23. Sequential Composition and Exit

™
X
¢
y
¢
)
)
(vii)

Fig. 2.24. Further Sequential Composition and Exit Illustration

49



50 2 Process Calculi: LOTOS

pick_stickl pick_stick2

pick_stick2 pick_stickl
i i
put_stickl put_stick2 put_stickl put_stick2
put_stick2 put_stickl put_stick2 put_stickl

Fig. 2.25. Sequential Composition in the Dining Philosophers

choice (and possibly concurrency), but the specification would be far more
complex and difficult to understand without the high-level description pro-
vided by >>. For example, the following is a specification of this behaviour
that avoids the use of >>,

(pick_stickl; pick_stick2; i; (put_stickl; stop ||| put_stick2; stop))

[| (pick_stick2; pick_stickl; i; (put_stickl; stop ||| put_stick2; stop))

and more complex specifications can be given.

2.3.8 Syntax of pbLOTOS

This section brings together the constructs that we have introduced to give
an abstract syntax for ppLOTOS. The syntax defines an arbitrary pbLOTOS
specification S € pbLOTOS as follows.
S == B | BwhereD
D := (Plz1,...,z2):=B) | (Plz1,...,2z,):=B) D
B = stop | exit | a; B | By [ B2 | B1llx1,...,2zn]| By |
By >> By | hidexy,...,xnin B | Bly1/T1,...,Yn/%n] |
P[Ila"'axn]

a € Act U{i}, x;,y; € Act, D €DefList (the set of ppLOTOS definition lists),
P € PIdent (the set of process identifiers) and B € Beh. The set of pbLOTOS



2.3 Primitive Basic LOTOS 51

definitions is denoted Defs. Also note that the body of a definition (denoted
B above) could contain a reference to the process identifier (P), thus setting
up a recursive behaviour.

So, the top-level structure of a pbLOT'OS specification (the first clause) is
either a behaviour or a behaviour and an associated list of process definitions.
Definitions have the expected form. There can be many such definitions. Be-
haviours are the main syntactic construct; they can be constructed using any
of the operators and constructs that we have introduced.

In many circumstances we simplify the expression of action sets and map-
pings in parallel composition, hiding and relabelling operators, as follows,

Bl HG” BQ é B1 |[$1,...,$n]| B2
where, G = {z1,...,z, }
hide G in B £ hide T1,...,Tn in B

where, G = {z1,...,z, }

[I>

B[H] B[yl/l'laayn/xn]

where, H : ActU{i,6} — ActU{i,d}
and H(a) £ ifa=x; (1 <i<n)theny; elsea

We typically simplify presentation, by assuming the following operator prece-
dences,

action prefix > choice > parallel composition > enabling > hiding >
relabelling

where A > B states that A binds more tightly than B. So, for example, the
expression:

hide y in y; x; stop [| z; exit ||| z; exit >> z; stop
would be fully parenthesised as:
hideyin ((((y; (z; stop)) [ (2 exit) ) ||| (v exit) ) >> (z; stop))

It should also be pointed out that the different operators of pbLOTOS can
be subdivided according to their character. For example, we can view the
operators, stop, action prefix, choice and process instantiation as “low-level”
(more primitive) operators, whereas the operators, such as parallel compo-
sition, enabling, hiding and relabelling, can be viewed as more “high-level”
operators. This is in the sense that the high-level operators facilitate high-
level specification structuring. Such high-level structuring may, for example,
reflect real-world identifiable components. Identification of such components
in specifications using just low-level operators is often less straightforward.
In fact, a behaviour expressed using high-level operators can typically be
mapped to an equivalent behaviour expressed purely in terms of the low-level



52 2 Process Calculi: LOTOS

operators. A very important example of such a mapping is the expansion law
for a calculus [101, 148], which relates parallel composition to action prefix
and choice. In effect, the expansion law realises the interleaved interpretation
of parallelism. As a reflection of this, parallel composition cannot so naturally
be viewed as a high-level operator when true concurrency semantics are being
considered, which they are in Chapter 4.

The term monolithic specification is often associated with a specification
expressed purely in terms of the low-level operators. Thus, there is a clear
distinction between specifications expressed in a constraint-oriented style, as
highlighted in Section 2.3.6.4, and those expressed in a monolithic style.

2.4 Example

The following is a specification in pbLOTOS of the behaviour of the commu-
nication protocol with reliable acknowledgement. The top-level behaviour of
the protocol is specified as a process called Protocol.

Protocol [start, get, put] :=

start ;
hide send, receive, sendAck, receiveAck in
((Sender [get, send, receive Ack] ||| Receiver [put, receive, send Ack] )
|[send, receive, send Ack, receive Ack]|

DupMedium [send, receive, send Ack, receive Ack)] )

So, the action start initiates the behaviour of the protocol. This causes the
processes Sender, Receiver and DupM edium to be invoked according to the
required parallel composition. Notice, all the actions send, receive, sendAck
and receive Ack are hidden from outside the protocol. Such hiding reflects the
fact that the actions involved in implementing the protocol are hidden from
users of the protocol. The behaviour of the sender could be specified as follows
(this is the behaviour we discussed earlier).

Sender [get, send, receive Ack] :=
get; send; Sending [get, send, receive Ack]

Sending [get, send, receive Ack] :=
hide timeout in (receiveAck ; Sender [get, send, receive Ack]

[| timeout ; send ; Sending [get, send, receiveAck] )
The behaviour of the receiver could be specified as follows.

Receiver [put, receive, sendAck] :=

receive ; put ; sendAck ; Receiver [put, receive, send Ack|



2.4 Example

The top-level behaviour of the medium could be specified as

DupMedium [send, receive, send Ack, receive Ack] :=

Medium [send, receive] ||| AckMedium [sendAck,receive Ack]
which in turn uses the following sending medium,
Medium[send, receive] :=
send ;
(i; Medium [send, receive]

[| receive ; Medium [send, receive] )
and the following acknowledgement medium,

AckMedium [send Ack, receive Ack| :=
sendAck ; receive Ack ; AckMedium [sendAck, receive Ack)]

®
get start put|  Protocol
Sender Receiver
® timeout
receiveAck send receive sendAck
Medium
AckMedium
DupMedium

Fig. 2.26. Box Diagram of the Communication Protocol

53

We can explicitly depict the structure of the protocol specification using a box
diagram, such as in Figure 2.26. This diagram shows the process structure
of the specification; you should notice that the structure closely resembles
our original depiction of the protocol in Figure 2.1. The process Sending is



54 2 Process Calculi: LOTOS

not included in this diagram as it sets up a mutual recursion with Sender,
which is difficult to depict. Such diagrams as these are only really useful for
representing static process structure, the dynamics of process instantiation
quickly become unrepresentable.

The interface of each process is directly represented. For example, the
process protocol has three external gates, start, get and put, which are distin-
guished from internal gates by being linked to the exterior of the Protocol box.
In addition, the fact that subprocesses interact on external gates is indicated
by a line segment, e.g. the attachment of get to Sender. In contrast, start
is not interacted with by any subprocess. All actions in the specification are
depicted (apart from the ¢ action in Medium). Notice also that the diagram
shows that timeout is completely internal to the process Sender and that the
gates receiveAck, send, receive and sendAck are hidden from the interface
of the process Protocol.

Finally, the top-level behaviour of the protocol specification will invoke
the process Protocol and thus initiate its evolution, e.g.

Protocol [sstart, ssend, rreceive]

where the external gates of the protocol have been renamed, start to sstart,
get to ssend and put to rreceive.





