

2

Clauses and Predicates

Chapter Aims

After reading this chapter you should be able to:

• Identify the components of rules and facts

• Explain the meaning of the term predicate

• Make correct use of variables in goals and clauses.

2.1 Clauses

Apart from comments and blank lines, which are ignored, a Prolog program
consists of a succession of clauses. A clause can run over more than one line or
there may be several on the same line. A clause is terminated by a dot character,
followed by at least one 'white space' character, e.g. a space or a carriage return.

There are two types of clause: facts and rules. Facts are of the form

head.

head is called the head of the clause. It takes the same form as a goal entered by
the user at the prompt, i.e. it must be an atom or a compound term. Atoms and
compound terms are known collectively as call terms. The significance of call
terms will be explained in Chapter 3.

14 Logic Programming With Prolog

Some examples of facts are:

christmas.

likes(john,mary).

likes(X,prolog).

dog(fido).

Rules are of the form:

head:-t1,t2, … , tk. (k>=1)

head is called the head of the clause (or the head of the rule) and, as for facts,
must be a call term, i.e. an atom or a compound term.

:- is called the neck of the clause (or the 'neck operator'). It is read as 'if'.

t1,t2, … , tk is called the body of the clause (or the body of the rule). It specifies
the conditions that must be met in order for the conclusion, represented by the
head, to be satisfied. The body consists of one or more components, separated by
commas. The components are goals and the commas are read as 'and'.

Each goal must be a call term, i.e. an atom or a compound term. A rule can be
read as 'head is true if t1, t2, …, tk are all true'.

The head of a rule can also be viewed as a goal with the components of its body
viewed as subgoals. Thus another reading of a rule is 'to achieve goal head, it is
necessary to achieve subgoals t1, t2,…, tk in turn'.

Some examples of rules are:

large_animal(X):-animal(X),large(X).

grandparent(X,Y):-father(X,Z),parent(Z,Y).

go:-write('hello world'),nl.

Here is another version of the animals program, which includes both facts and

rules.

/* Animals Program 2 */

dog(fido). large(fido).

cat(mary). large(mary).

dog(rover). dog(jane).

dog(tom). large(tom). cat(harry).

 Clauses and Predicates 15

dog(fred). dog(henry).

cat(bill). cat(steve).

small(henry). large(fred).

large(steve). large(jim).

large(mike).

large_animal(X):- dog(X),large(X).

large_animal(Z):- cat(Z),large(Z).

fido, mary, jane etc. are atoms, i.e. constants, indicated by their initial lower

case letters. X and Y are variables, indicated by their initial capital letters.
The first 18 clauses are facts. The final two clauses are rules.

2.2 Predicates

The following simple program has five clauses. For each of the first three clauses,
the head is a compound term with functor parent and arity 2 (i.e. two arguments).

parent(victoria,albert).

parent(X,Y):-father(X,Y).

parent(X,Y):-mother(X,Y).

father(john,henry).

mother(jane,henry).

It is possible (although likely to cause confusion) for the program also to

include clauses for which the head has functor parent, but a different arity, for
example

parent(john).

parent(X):-son(X,Y).

/* X is a parent if X has a son Y */

It is also possible for parent to be used as an atom in the same program, for

example in the fact

animal(parent).

but this too is likely to cause confusion.

16 Logic Programming With Prolog

All the clauses (facts and rules) for which the head has a given combination of
functor and arity comprise a definition of a predicate. The clauses do not have to
appear as consecutive lines of a program but it makes programs easier to read if
they do.

The clauses given above define two predicates with the name parent, one with
arity two and the other with arity one. These can be written (in textbooks, reference
manuals etc., not in programs) as parent/2 and parent/1, to distinguish between
them. When there is no risk of ambiguity, it is customary to refer to a predicate as
just dog, large_animal etc.

An atom appearing as a fact or as the head of a rule, e.g.

christmas.

go:-parent(john,B),

 write('john has a child named '),

 write(B),nl.

can be regarded as a predicate with no arguments, e.g. go/0.

There are five predicates defined in Animals Program 2: dog/1, cat/1, large/1,
small/1 and large_animal/1. The first 18 clauses are facts defining the predicates
dog/1, cat/1, large/1 and small/1 (6, 4, 7 and 1 clauses, respectively). The final
two clauses are rules, which together define the predicate large_animal/1.

Declarative and Procedural Interpretations of Rules

Rules have both a declarative and a procedural interpretation. For example, the
declarative interpretation of the rule

chases(X,Y):-dog(X),cat(Y),write(X),

 write(' chases '),write(Y),nl.

is: 'chases(X,Y) is true if dog(X) is true and cat(Y) is true and write(X) is true,
etc.'

The procedural interpretation is 'To satisfy chases(X,Y), first satisfy dog(X),
then satisfy cat(Y), then satisfy write(X), etc.'

Facts are generally interpreted declaratively, e.g.

dog(fido).

is read as 'fido is a dog'.

The order of the clauses defining a predicate and the order of the goals in the
body of each rule are irrelevant to the declarative interpretation but of vital
importance to the procedural interpretation and thus to determining whether or not
the sequence of goals entered by the user at the system prompt is satisfied. When

 Clauses and Predicates 17

evaluating a goal, the clauses in the database are examined from top to bottom.
Where necessary, the goals in the body of a rule are examined from left to right.
This topic will be discussed in detail in Chapter 3.

A user's program comprises facts and rules that define new predicates. These
are called user-defined predicates. In addition there are standard predicates pre-
defined by the Prolog system. These are known as built-in predicates (BIPs) and
may not be redefined by a user program. Some examples are: write/1, nl/0,
repeat/0, member/2, append/3, consult/1, halt/0. Some BIPs are common to all
versions of Prolog. Others are version-dependent.

Two of the most commonly used built-in predicates are write/1 and nl/0.

The write/1 predicate takes a term as its argument, e.g.

write(hello)

write(X)

write('hello world')

Providing its argument is a valid term, the write predicate always succeeds and
as a side effect writes the value of the term to the user's screen. To be more precise
it is output to the current output stream, which by default will be assumed to be the
user's screen. Information about output to other devices is given in Chapter 5. If the
argument is a quoted atom, e.g. 'hello world', the quotes are not output.

The nl/0 predicate is an atom, i.e. a predicate that takes no arguments. The
predicate always succeeds and as a side effect starts a new line on the user's screen.

The name of a user-defined predicate (the functor) can be any atom, with a few
exceptions, except that you may not redefine any of the Prolog system's built-in
predicates. You are most unlikely to want to redefine the write/1 predicate by
putting a clause such as

write(27).

or

write(X):-dog(X).

in your programs, but if you do the system will give an error message such as
'illegal attempt to redefine a built-in predicate'.

The most important built-in predicates are described in Appendix 1. Each
version of Prolog is likely to have others – sometimes many others – and if you
accidentally use one of the same name and arity for one of your own predicates
you will get the 'illegal attempt to redefine a built-in predicate' error message,
which can be very puzzling.

It would be permitted to define a predicate with the same functor and a
different arity, e.g. write/3 but this is definitely best avoided.

18 Logic Programming With Prolog

Simplifying Entry of Goals

In developing or testing programs it can be tedious to enter repeatedly at the
system prompt a lengthy sequence of goals such as

?-dog(X),large(X),write(X),write(' is a large dog'),nl.

A commonly used programming technique is to define a predicate such as go/0
or start/0, with the above sequence of goals as the right-hand side of a rule, e.g.

go:-dog(X),large(X),write(X),

 write(' is a large dog'),nl.

This enables goals entered at the prompt to be kept brief, e.g.

?-go.

Recursion

An important technique for defining predicates, which will be used frequently later
in this book, is to define them in terms of themselves. This is known as a recursive
definition. There are two forms of recursion.

(a) Direct recursion. Predicate pred1 is defined in terms of itself.

(b) Indirect recursion. Predicate pred1 is defined using pred2, which is defined
using pred3, …, which is defined using pred1.

The first form is more common. An example of it is

likes(john,X):-likes(X,Y),dog(Y).

which can be interpreted as 'john likes anyone who likes at least one dog'.

Predicates and Functions

The use of the term 'predicate' in Prolog is closely related to its use in mathematics.
Without going into technical details (this is not a book on mathematics) a predicate
can be thought of as a relationship between a number of values (its arguments)
such as likes(henry,mary) or X=Y, which can be either true or false.

This contrasts with a function, such as 6+4, the square root of 64 or the first
three characters of 'hello world', which can evaluate to a number, a string of
characters or some other value as well as true and false. Prolog does not make use
of functions except in arithmetic expressions (see Chapter 4).

 Clauses and Predicates 19

2.3 Loading Clauses

There are two built-in predicates that can be used to load clauses into the Prolog
database: consult/1 and reconsult/1. Both will cause the clauses contained in a text
file to be loaded into the database as a side effect. However, there is a crucial
difference between them, which is illustrated by the following example. Supposing
file file1.pl contains

dog(fido).

dog(rover).

dog(jane).

dog(tom).

dog(fred).

cat(mary).

cat(harry).

small(henry).

large(fido).

large(mary).

large(tom).

large(fred).

large(steve).

large(jim).

and file file2.pl contains

dog(henry).

dog(fido).

cat(bill).

cat(steve).

large(mike).

large_animal(X):- dog(X),large(X).

large_animal(Z):- cat(Z),large(Z).

then entering the two goals

?-consult('file1.pl').

20 Logic Programming With Prolog

?-consult('file2.pl').

in succession at the prompt will put these clauses in the database.

dog(fido).

dog(rover).

dog(jane).

dog(tom).

dog(fred).

dog(henry).

dog(fido).

cat(mary).

cat(harry).

cat(bill).

cat(steve).

small(henry).

large(fido).

large(mary).

large(tom).

large(fred).

large(steve).

large(jim).

large(mike).

large_animal(X):- dog(X),large(X).

large_animal(Z):- cat(Z),large(Z).

Effectively, the clauses loaded from the second file are added to those already

loaded from the first file, predicate by predicate, after those already there. Note that
dog(fido) now appears in the database twice. There is nothing in the Prolog system
to prevent this.

By contrast, entering the two goals

?-consult('file1.pl').
?-reconsult('file2.pl').

in succession at the prompt will put these clauses in the database.

 Clauses and Predicates 21

dog(henry).

dog(fido).

cat(bill).

cat(steve).

small(henry).

large(mike).

large_animal(X):- dog(X),large(X).

large_animal(Z):- cat(Z),large(Z).

This is most unlikely to be what is intended. The predicate definitions in file2.pl

completely replace any previous clauses for the same predicates in the database.
New predicates are loaded in the usual way. In the above example:

• the definitions of dog/1, cat/1 and large/1 replace those already in the
database

• the definition of small/1 in file1.pl remains in the database

• the definition of large_animal/1 in file2.pl is placed in the database.

Although this example shows reconsult at its most unhelpful, in normal
program development reconsult is routinely used. Some program developers may
choose to load a large program in several parts (taking care that they have no
predicates in common) using several consult goals, but a far more common
method of program development is to load an entire program (set of clauses) as a
single file, test it, then make changes, save the changes in a new version of the file
with the same name and reload the clauses from the file. For this to work properly
it is imperative to ensure that the old versions of the clauses are deleted each time.
This can be achieved by using consult the first time and then reconsult each
subsequent time.

The predicates consult and reconsult are used so frequently that in many
versions of Prolog a simplified notation is available, with ['file1.pl'] standing for
consult('file1.pl') and [-'file1.pl'] standing for reconsult('file1.pl').

2.4 Variables

Variables can be used in the head or body of a clause and in goals entered at the
system prompt. However, their interpretation depends on where they are used.

Variables in Goals

Variables in goals can be interpreted as meaning 'find values of the variables that
make the goal satisfied'. For example, the goal

22 Logic Programming With Prolog

?-large_animal(A).

can be read as 'find a value of A such that large_animal(A) is satisfied'.

A third version of the Animals Program is given below (only the clauses
additional to those in Animals Program 2 in Section 2.1 are shown).

/* Animals Program 3 */

/* As Animals Program 2 but with the additional rules

given below */

chases(X,Y):-

 dog(X),cat(Y),

 write(X),write(' chases '),write(Y),nl.

/* chases is a predicate with two arguments*/

go:-chases(A,B).

/* go is a predicate with no arguments */

A goal such as

?-chases(X,Y).

means find values of variables X and Y to satisfy chases(X,Y).

To do this, Prolog searches through all the clauses defining the predicate chases
(there is only one in this case) from top to bottom until a matching clause is found.
It then works through the goals in the body of that clause one by one, working
from left to right, attempting to satisfy each one in turn. This process is described
in more detail in Chapter 3.

The output produced by loading Animals Program 3 and entering some typical
goals at the prompt is as follows.

?-consult('animals3.pl'). System prompt
0.01 seconds to consult animals3.pl

animals3.pl loaded

?- chases(X,Y).
fido chases mary
X = fido ,
Y = mary ;

fido chases harry
X = fido ,
Y = harry

User backtracks to find first two
solutions only.

Note use of write and nl predicates

 Clauses and Predicates 23

?-chases(D,henry).
no

?-go.
fido chases mary
yes

Nothing chases henry

Note that no variable values are output.
(All output is from the write and nl
predicates.) Because of this, the user has
no opportunity to backtrack.

It should be noted that there is nothing to prevent the same answer being

generated more than once by backtracking. For example if the program is

chases(fido,mary):-fchasesm.

chases(fido,john).

chases(fido,mary):-freallychasesm.

fchasesm.

freallychasesm.

The query ?-chases(fido,X) will produce two identical answers out of three by

backtracking.

?- chases(fido,X).
X = mary ;
X = john ;
X = mary
?-

Binding Variables

Initially all variables used in a clause are said to be unbound, meaning that they do
not have values. When the Prolog system evaluates a goal some variables may be
given values such as dog, -6.4 etc. This is known as binding the variables. A
variable that has been bound may become unbound again and possibly then bound
to a different value by the process of backtracking, which will be described in
Chapter 3.

Lexical Scope of Variables

In a clause such as

parent(X,Y):-father(X,Y).

the variables X and Y are entirely unrelated to any other variables with the same
name used elsewhere. All occurrences of variables X and Y in the clause can be

24 Logic Programming With Prolog

replaced consistently by any other variables, e.g. by First_person and
Second_person giving

parent(First_person,Second_person):-

 father(First_person,Second_person).

This does not change the meaning of the clause (or the user's program) in any

way. This is often expressed by saying that the lexical scope of a variable is the
clause in which it appears.

Universally Quantified Variables

If a variable appears in the head of a rule or fact it is taken to indicate that the rule
or fact applies for all possible values of the variable. For example, the rule

large_animal(X):-dog(X),large(X).

can be read as 'for all values of X, X is a large animal if X is a dog and X is large'.

Variable X is said to be universally quantified.

Existentially Quantified Variables

Suppose now that the database contains the following clauses:

person(frances,wilson,female,28,architect).

person(fred,jones,male,62,doctor).

person(paul,smith,male,45,plumber).

person(martin,williams,male,23,chemist).

person(mary,jones,female,24,programmer).

person(martin,johnson,male,47,solicitor).

man(A):-person(A,B,male,C,D).

The first six clauses (all facts) comprise the definition of predicate person/5,

which has five arguments with obvious interpretations, i.e. the forename, surname,
sex, age and occupation of the person represented by the corresponding fact.

The last clause is a rule, defined using the person predicate, which also has a
natural interpretation, i.e. 'for all A, A is a man if A is a person whose sex is male'.
As explained previously, the variable A in the head of the clause (representing
forename in this case) stands for 'for all A' and is said to be universally quantified.

What about variables B, C and D? It would be a very bad idea for them to be
taken to mean 'for all values of B, C and D'. In order to show that, say, paul is a
man, there would then need to be person clauses with the forename paul for all
possible surnames, ages and occupations, which is clearly not a reasonable

 Clauses and Predicates 25

requirement. A far more helpful interpretation would be to take variable B to mean
'for at least one value of B' and similarly for variables C and D.

This is the convention used by the Prolog system. Thus the final clause in the
database means 'for all A, A is a man if there a person with forename A, surname B,
sex male, age C and occupation D, for at least one value of B, C and D'.

By virtue of the third person clause, paul qualifies as a man, with values smith,
45 and plumber for variables B, C and D respectively.

?- man(paul).
yes

The key distinction between variable A and variables B, C and D in the
definition of predicate man is that B, C and D do not appear in the head of the
clause.

The convention used by Prolog is that if a variable, say Y, appears in the body
of a clause but not in its head it is taken to mean 'there is (or there exists) at least
one value of Y'. Such variables are said to be existentially quantified. Thus the rule

dogowner(X):-dog(Y),owns(X,Y).

can be interpreted as meaning 'for all values of X, X is a dog owner if there is some
Y such that Y is a dog and X owns Y'.

The Anonymous Variable

In order to find whether there is a clause corresponding to anyone called paul in
the database, it is only necessary to enter a goal such as:

?- person(paul,Surname,Sex,Age,Occupation).

at the prompt. Prolog replies as follows:

Surname = smith ,
Sex = male ,
Age = 45 ,
Occupation = plumber

In many cases it may be that knowing the values of some or all of the last four
variables is of no importance. If it is only important to establish whether there is
someone with forename paul in the database an easier way is to use the goal:

?- person(paul,_,_,_,_).
yes

The underscore character _ denotes a special variable, called the anonymous
variable. This is used when the user does not care about the value of the variable.

26 Logic Programming With Prolog

If only the surname of any people named paul is of interest, this can be found
by making the other three variables anonymous in a goal, e.g.

?- person(paul,Surname,_,_,_).
Surname = smith

Similarly, if only the ages of all the people named martin in the database are of
interest, it would be simplest to enter the goal:

?- person(martin,_,_,Age,_).

This will give two answers by backtracking.

Age = 23 ;
Age = 47

The three anonymous variables are not bound, i.e. given values, as would
normally be expected.

Note that there is no assumption that all the anonymous variables have the same
value (in the above examples they do not). Entering the alternative goal

?- person(martin,X,X,Age,X).

with variable X instead of underscore each time, would produce the answer

no

as there are no clauses with first argument martin where the second, third and fifth
arguments are identical.

Chapter Summary

This chapter introduces the two types of Prolog clause, namely facts and rules and
their components. It also introduces the concept of a predicate and describes
different features of variables.

 Clauses and Predicates 27

Practical Exercise 2

(1) Type the following program into a file and load it into Prolog.

/* Animals Database */

animal(mammal,tiger,carnivore,stripes).

animal(mammal,hyena,carnivore,ugly).

animal(mammal,lion,carnivore,mane).

animal(mammal,zebra,herbivore,stripes).

animal(bird,eagle,carnivore,large).

animal(bird,sparrow,scavenger,small).

animal(reptile,snake,carnivore,long).

animal(reptile,lizard,scavenger,small).

Devise and test goals to find (a) all the mammals, (b) all the carnivores that are

mammals, (c) all the mammals with stripes, (d) whether there is a reptile that has a
mane.

(2) Type the following program into a file

/* Dating Agency Database */

person(bill,male).

person(george,male).

person(alfred,male).

person(carol,female).

person(margaret,female).

person(jane,female).

Extend the program with a rule that defines a predicate couple with two

arguments, the first being the name of a man and the second the name of a woman.
Load your revised program into Prolog and test it.

