
1111
2
3
4
5
6
7
8
9
10
1
2
3
4111
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3111

Introducing Software Reuse

1.1 First of All . . .
Of his many accomplishments, Erwin Schumacher is best remembered for
telling us that ‘small is beautiful’. His phrase became established in the late
twentieth century mindset.

Software reuse, the subject of this book, is about a twofold promise, that soft-
ware projects can be small, and that they can create beautiful software – that
is if you accept that high quality, in the form of clean design, fitness for
purpose and a low defect count, constitutes ‘beauty’ in software.

We have become accustomed to software projects that are ugly and uncon-
trollable monsters, devouring seemingly endless resources, and delivering
products that are ill-structured, over-sized and bug-infested, and which
often fail to meet our real needs. Under the name of ‘the software crisis’ we
have accepted that state of things for thirty years. Fred Brooks’ familiar and
well-argued assertion that there is ‘no silver bullet’ may paradoxically have
made things worse: convince people that there is no one simple medicine,
and they may shrink from undergoing more radical treatments.

1

� 1 �

This opening Chapter offers an overview of the main issues in software
reuse. It defines what we mean by reuse, and discusses a number of
fundamental concepts essential to a balanced understanding of reuse.

ABSTRACT

Properly understood, and deployed in the right context, reuse offers the
opportunity to achieve radical improvement. It should still, however, not be
regarded as a silver bullet, a simple recipe that we can depend on to rid us of
monstrous projects and bad software.

In one sense this is a modest book. It seeks to present just the essentials of
software reuse. It is neither an academic textbook, nor a cookbook with
ready-made recipes telling practitioners or managers ‘how to do it’. It offers,
simply and without unnecessary detail or jargon, an introductory overview
of the issues involved in the successful practice of reuse.

In another sense, however, the book’s aim is far from modest. It is to set out
the vision and concepts of reuse, and the experiences of some of its pioneers,
in the hope that you may be encouraged to think about adopting reuse your-
self as a new way of life. It aims, in other words, to be a gateway to the
wonderland of reuse. If it succeeds in meeting that aim for you, so that you
pass through the gateway, then will be the time to start exploring the large
(and rapidly growing) body of excellent detailed literature on reuse, for more
detailed information on cost models, class libraries, organizational struc-
tures, repository management, reuse maturity assessments, framework and
component technologies and many other important issues. For now, we
hope you will find in these pages excitement, surprise, challenge and new
visions of what it is possible to achieve in the difficult business of creating
software.

1.2 Definition and Basic Essentials
The objective of this introductory Chapter is to present an outline map of the
reuse landscape, identifying the essential ideas of software reuse, before they
are developed further in later Chapters. We start with a definition.

2

Practical Software Reuse CHAPTER ONE

Software reuse is the systematic practice of developing software from a
stock of building blocks, so that similarities in requirements and/or archi-
tecture between applications can be exploited to achieve substantial
benefits in productivity, quality and business performance.

Definition

A definition cannot include everything that might be said about the term
being defined. It should incorporate a choice of features that are necessary
and sufficient for understanding the term. The above definition is based on
four key features of software reuse.

� Reuse is a systematic software development practice.

� Reuse employs a stock of building blocks.

� Reuse exploits similarities in requirements and/or architecture between
applications.

� Reuse offers substantial benefits in productivity, quality and business
performance.

Let’s now look at each of those ideas in turn.

1.2.1 Reuse Is a Systematic Software
Development Practice

Software reuse has a wide spectrum of possible meanings. On the one hand,
it is possible to interpret much of the progress in software practice in the past
half-century in terms of increasing levels of reuse (see Section 1.4, later in
this Chapter). On the other hand, advanced and sophisticated approaches to
reuse exist at the current leading edge between research and practice, which
are probably outside the competence range of most software developing
organizations (so-called generative reuse is an example). The definition does
not embrace that whole range of meanings, but focuses attention on the
centre of the range – an approach to reuse which is practically feasible for
most developers here and now, which is a substantial advance on accepted
practice, and which can offer major benefits.

One result of that definition strategy is the inclusion of the word ‘systematic’.
‘What about non-systematic reuse’, you may have wondered; ‘isn’t that
still reuse?’ You are right: of course it is! Strictly we have offended against
logic in defining reuse as only a part of itself. It’s like equating soccer with
just the premier league game, or describing drama just in terms of Molière,
Pirandello and Shakespeare.

The justification for offending against logic in that way is that it is not
possible, except by undertaking software reuse systematically, to realize the
bold claims made on its behalf. It is the bold claims, the large benefits, and
the substantial commitment needed to achieve them, that form the subject-
matter of this book. We do not want to waste your time telling you about

1111
2
3
4
5
6
7
8
9
10
1
2
3
4111
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3111

3

CHAPTER ONE Introducing Software Reuse

something that is everyday or casual, but rather to set out a big vision of how
software capability can be transformed. Having said that, what distinguishes
systematic from non-systematic reuse?

Some of the key features of the systematic practice of software reuse are set
out in Fig. 1.1. Non-systematic reuse is, by contrast, ad hoc, dependent on
individual knowledge and initiative, not deployed consistently throughout
the organization, and subject to little if any management planning and
control. If the parent software organisation is reasonably mature and well
managed, it is not impossible for non-systematic reuse to achieve some good
results. The more probable outcome, however, is that non-systematic reuse
is chaotic in its effects, feeds the high-risk culture of individual heroics and
fire-fighting, and amplifies problems and defects rather than damping them.

1.2.2 Reuse Employs a Stock of Building Blocks
The term ‘building block’ is used in the definition because the properties of
physical building blocks, and the way we use them, are well understood, and
they convey very well the conceptual flavour that is appropriate for
explaining software reuse. Let us consider some of those properties (Fig. 1.2).

Building blocks are not only children’s playthings. The concept is widespread
throughout industry, and it is intrinsic to product breakdown structures.
The design of a subsystem, assembly, sub-assembly or part may be common
to several different models of motor car, washing machine, industrial
pump or machine tool. Even the complete architecture of a product may
be carried over from one model to subsequent models. Reusable building
blocks are fundamental to the goal of not reinventing the wheel, and to

4

Practical Software Reuse CHAPTER ONE

Fig. 1.1 Systematic software reuse.

SYSTEMATIC SOFTWARE REUSE MEANS . . .

Understanding how reuse can contribute toward the goals of the whole business.

Defining a technical and management strategy to achieve maximum value from reuse.

Integrating reuse into the total software process, and into the software process
improvement programme.

Ensuring all software staff have the necessary competence and motivation.

Establishing appropriate organisational, technical and budgetary support.

Using appropriate measurements to control reuse performance.

making progress by building on previous experience of what works. It has
been central to industrial development for the past two centuries.

Software reuse is based on exactly the same concepts as children’s building
blocks or reusable designs in industry. Although systematic reuse is not yet
widely practised in software development, it will be seen in the future to be
as essential to progress in software as it has been to progress in manufac-
turing and other sectors of industry.

In the software reuse literature, building blocks are most commonly called
reusable assets (or reuse assets; often just assets for short), and we will use
those terms from now on. Assets are work products of any kind, from any
part of the software process. ‘Asset’ is an appropriate word, since software
work products capture knowledge that is important to the enterprise, and
therefore carry potential value. Reuse is a powerful means of exploiting that
value-adding potential.

Assets may be of a technical or management nature, large-grained or fine-
grained, simple or composite. They may have varying degrees of leverage
(leverage is said to occur when reuse of one asset makes possible the reuse
of a chain of other related assets further ‘downstream’ in the process). The
belief by some people that source code modules are the only kind of reusable
assets is mistaken; assets may include such things as requirements, project
plans, estimates, architectures, designs, user interfaces, test plans, test cases,
data, quality plans, and documentation. The concept of reusable assets is
developed more fully in Chapter 2.

1111
2
3
4
5
6
7
8
9
10
1
2
3
4111
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3111

5

CHAPTER ONE Introducing Software Reuse

Fig. 1.2 Some important properties of building blocks.

Building blocks are artefacts, which can be put together to make larger-scale artefacts.

They may or may not have been designed primarily for use as building blocks (compare a
box of toy blocks with off-cut pieces of wood).

They may or may not have been designed to fit together in a standard way (compare a box
of toy blocks with the Lego system).

The greater the diversity of building blocks (in terms, for instance, of size, shape, colour,
material), the greater the diversity of structures that can be created from them.

If a building block has unusual properties, its use is likely to be restricted to a smaller
number of specific structures. The more general its properties, the more general its use.

There may be large building blocks that define a partial ‘architecture’ into which smaller
ones can be fitted (for example, a Lego baseboard or chassis).

Building blocks may be combined into sub-assemblies, so that a sub-assembly can then be
incorporated into various different end-products.

The definition refers to ‘a stock of building blocks’. If that stock comprises
more than a small number of items, we need to make arrangements to
know what items we have, where to find them and whether they are worth
keeping; otherwise we will not derive the best return from having established
the stock. In this respect, a stock of reusable software assets is no different
from any other kind of stock. A small shopkeeper can see or remember
the contents of his store-room; the big store needs techniques of stock
control and management. Managing a stock of reusable software assets,
described in Chapter 3, uses concepts such as the asset catalogue and the
asset repository.

Having an effective catalogue is often essential in achieving systematic
reuse. Its absence can be a major contributor to chaos. It is rather like the
situation, familiar no doubt to many parents, where Lego blocks are scat-
tered all over the house, in every room, so that you don’t know which ones
you’ve got, the ones you need you can’t find, and the ones you find by chance
you probably don’t need.

If a catalogue lists what assets we have and where they are stored, then a
repository (like a library or a warehouse) is where we store and retrieve them.
Reusable software assets may be stored in a single repository, or there may
be multiple repositories: that is like the difference between keeping all Lego
blocks in a single big box, or keeping the members of different sets in their
separate boxes.

As can be easily imagined, how to design repositories for reusable software
is of great interest to those of a technical inclination, and there is much
discussion of it in the technical literature. Should we use database tech-
nology, or a configuration management system, or the repository of an
integrated software engineering environment? Should the catalogue and
repository functions be combined or separate? How should assets be classi-
fied for storage and retrieval, and how should search requirements be
specified?

As already indicated, such questions may not be important to small software
organisations (like small shopkeepers), whose asset collection is not big or
complex enough to justify such a volume of technical fire-power. In this book
the intention is to limit the discussion of catalogue and repository questions
to the essential issues, and not to become entangled with too many techni-
calities.

6

Practical Software Reuse CHAPTER ONE

1.2.3 Reuse Exploits Similarities in
Requirements and/or Architecture Between
Applications

This key idea is discussed in two stages. First, we will discuss what is meant
by an application, and some related concepts. Second, we will look at how
the potential for reuse arises from fundamental similarities between appli-
cations.

What Is Meant by Applications?

For our purposes, an application means a collection of one or more
programs, together with all necessary supporting work products, that under-
take some substantial user function. It may be alternatively called a system
or a product in some contexts. Examples of applications might include word
processing, payroll, engine control, seat reservations, vehicle routing, survey
analysis and so on.

Note that the term application domain, which is an important concept in
software reuse, is not the same as an individual application. The application
domain of word processing, for example, refers to the general problem area
of word processing. By contrast, an individual word processing application
represents one specific solution within that general problem area. The same
distinction applies in the case of payroll, engine control, and the other appli-
cations listed as examples in the previous paragraph.

An enterprise may develop one or more applications in the same domain.
The need for different applications may arise because of the existence of a
range of users with different needs, and/or because of changes in user needs
over time.

The possibility of employing reuse to handle changes over time raises the
question of whether maintenance is a form of reuse. Opinions differ. We
would propose that maintenance and reuse are in principle independent,
but in practice may be related. Maintenance, like initial development, can
(but need not) employ reusable assets; reusable assets, like all software, need
to be maintained.

There is no universal or clear-cut way of defining the boundaries between
one application and another within a domain, or between one domain and
another. Different organizations define such boundaries according to their
own perceptions and business circumstances. In some cases organizations
refer to applications in a common domain as a product line. Software
product lines are discussed briefly later in this Chapter.

1111
2
3
4
5
6
7
8
9
10
1
2
3
4111
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3111

7

CHAPTER ONE Introducing Software Reuse

What Is the Source of Similarities Between Applications?

Why is it that a piece of source code, for example, or any other kind of asset,
might prove to be usable in the context of two or more different applications,
in the same domain or even perhaps in different domains? The reason must
obviously be that there is a demand that the applications have in common,
that can be satisfied by using common assets. The applications are similar in
respect of that common demand.

A good illustration is provided by Reed (1995).1 ‘On Wall Street, some
companies are structured as several small development teams, each
supporting a trader. Most, if not all, of these teams are building similar appli-
cations. This type of development organization can capitalize substantially
on software reuse.’

Of course, if two applications were similar in every respect, they would be
identical. In that case, there would be no need to design and build the appli-
cation a second time: the original application would simply be replicated.
(Mere replication of a complete application is not regarded as reuse,
according to the conventional usage of the term – just as we do not conven-
tionally say that every Fiat Uno car is a reuse of the Fiat Uno design.) Thus,
reuse of assets between one application and another is dependent on there
being both similarities and differences between the applications – just as
there are similarities and differences between the Uno and other Fiat
models. The more similarities exist, the more potential there is for assets to
be reused.

There are two ultimate sources of similarities among applications – their
requirements and their architecture. Requirements specify the problem, that
is the objectives of an application, in terms of a set of characteristics with
which the eventual specific solution must comply. An architecture specifies
what might be called a general category or mode of solution. Both require-
ments and architecture thus constrain or delimit the solution space within
which the specific solution must be located, and it is those constraints or
delimitations that are the root causes of similarities and differences between
applications.

The process of determining requirements begins at the start of a project, and
may continue, at greater or lesser intensity, until close to the end. Early atten-
tion focuses on high-level (or whole-system, or user) requirements. Those
early requirements lead to design decisions that in turn generate further
requirements at lower levels, perhaps for individual subsystems or parts.

Requirements may address any of the dimensions of the solution space,
which include functionality, performance, reliability, maintainability, user

8

Practical Software Reuse CHAPTER ONE

interface, cost, delivery date, operational platform (hardware and software),
development platform (methods, languages and tools), portability, length of
life, interactions with other systems (support systems, peer systems and
contextual systems) and so on. Adopting a specified architecture may itself,
in some circumstances, be a high-level requirement; conversely, it may be a
design decision arising from the need to meet other requirements. In either
case, adopting a specific architecture is likely to influence downstream
requirements. In other words, requirements and architecture may not be
wholly independent of each other.

Architectures are commonly thought of as defining categories or modes of
solutions in three of the above dimensions: functionality, user interface,
and operational platform. Functional architectures relate to application
domains, and are consequently often referred to as domain architectures.
Domain architectures are very important in reuse, and a good deal will be
said about them later. User interface architectures define stylistic features of
interfaces, such as menus, forms, command lines, hot buttons and so on,
and the ways in which they are combined. Operational platform architec-
tures (often called implementation architectures) define common patterns
in which hardware, operating systems, other software utilities and middle-
ware are configured to provide the infrastructural support which the
application-specific software uses. User interface and operational platform
architectures relate to what may be called technical domains.

In general, the term vertical reuse is used to refer to reuse which exploits
functional similarities in a single application domain. It is contrasted with
horizontal reuse, which exploits similarities across two or more application
domains. There are two forms of horizontal reuse. The first refers to the
exploitation of functional similarities across different domains; an example
might be loans and reservations functions in the domains of libraries and car
hire. The second refers to the exploitation of similarities in technical
domains (user interface and operational platform), which are independent
of application domains. This distinction is discussed further in Chapter 2.

Opportunities for reuse are like defects: the sooner they are found the better.
If a defect is introduced during requirements definition, and is found at the
same stage, the cost of correction is small; if it is not found until, say, a late
stage of testing, the cost can be enormous. Likewise, if similarities between
applications are identified at the stage when requirements and architecture
are being determined, and if that leads at once to a recognition of opportu-
nities for reuse, the potential benefit is hugely greater than if the opportunity
is only recognized at, say, the coding stage.

Note that we say ‘potential benefit’. Whether the benefit can be fully realized
doesn’t depend only on early recognition of similarities and of the

1111
2
3
4
5
6
7
8
9
10
1
2
3
4111
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3111

9

CHAPTER ONE Introducing Software Reuse

corresponding reuse opportunities. It also depends on how well the ‘flow-
down’ from requirements and architectural decisions to later downstream
decisions was recorded in the earlier system. If it was well recorded, then the
chances of ‘replaying’ that flowdown in the new application are high, which
means that a greater number of downstream assets can be reused and high
leverage can be achieved.

We are now encountering again the difference between systematic and non-
systematic reuse. Non-systematic reuse depends upon individuals casually
recognizing similarities at any stage of development, based on their previous
experience with other applications. It depends on their using their own
initiative about whether to exploit those similarities, and whether to pass the
information on to colleagues (who might or might not make use of it).
Systematic reuse means a continual conscious and organized search for
reuse opportunities in all work products, so that the opportunities are
detected as early as possible, and so that maximum leverage is obtained. It
also means augmenting the chances that future applications can exploit
reuse opportunities, by building in traceability from upstream requirements
and architecture decisions to other downstream work products.

Let us try to summarize. Opportunities for reuse from one application to
another originate in their having similar requirements, or similar architec-
tures, or both. The search for similarities should begin as close as possible to
those points of origin – that is, when requirements are identified and archi-
tecture decisions are made. The possibilities for exploiting similarities
should be maximized by having a development process that is designed and
managed so as to give full visibility to the flowdown from requirements and
architecture to all subsequent work products.

1.2.4 Reuse Offers Substantial Benefits in
Productivity, Quality and Business Performance

Perhaps you are beginning to think that reuse seems a lot of effort. Right! In
that case, you may also be wondering whether it is worth it. That is the ques-
tion to which we now turn.

In orderly systems, you don’t get something for nothing, and big changes
usually demand big and sustained efforts. It is only by resting content in the
arms of chaos that you open yourself to the chance of a small cause leading
to a large change. Unfortunately, in a state of chaos, any change is unpre-
dictable, and its effects are as likely to be harmful as they are to be beneficial.
Prominent management writers have some striking things to say about
achieving big changes for the better: see Fig. 1.3.

10

Practical Software Reuse CHAPTER ONE

What these writers agree in saying, in different ways and from different view-
points, is (a) big changes are both necessary and possible, (b) the changes we
undertake should address business-critical problems and be based on
understanding the root causes of those problems, (c) the changes will take a
lot of sustained effort, but (d) the resulting value can far outweigh the effort.
Experience shows that those propositions are all relevant to software reuse.

Reuse may generate value from three kinds of improvement: productivity,
quality and business performance.

Productivity improvements arise essentially because reuse means less effort
through writing less (there are two ways to increase productivity: write faster,
or write less, and writing less is easier!). Higher productivity through reduced
effort leads in turn to lower development costs and shorter time to market.
It can also lead to higher quality (see the next paragraph).

Quality improvements arise in two ways. First, if assets have achieved proven
quality in one project, that quality can be carried over to another. Second, if
the effort on a project is substantially reduced, there will be fewer defects.
Higher quality in turn leads to lower maintenance and service costs, and
higher customer satisfaction.

Beware, however! The quality argument has hidden risks. Reusers must not
take the original quality of reused assets for granted, nor assume that what
constitutes quality in one context necessarily constitutes quality in a
different context. Further, substantial reductions in effort may lure reusers

1111
2
3
4
5
6
7
8
9
10
1
2
3
4111
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3111

11

CHAPTER ONE Introducing Software Reuse

Fig. 1.3 Some views on business change.

What companies require is seldom anything so ‘reasonable’ and ‘realistic’ as a 10 per cent
improvement in some performance measure or other. What we actually require is more
often something like a 50 per cent improvement, or a 75 per cent improvement.

(Michael Hammer/James Champy, talking about business process reengineering)

Good things happen only when planned; bad things happen on their own . . . One doesn’t
just go from awful to wonderful in a single bound.

(Philip Crosby, talking about quality)

Tackling a difficult problem is often a matter of seeing where the high leverage lies, a
change which – with a minimum of effort – would lead to lasting significant improvement.
High-leverage changes are usually non-obvious. So people shift the burden of the problem
to other solutions – well intentioned, easy fixes, which seem extremely efficient.
Unfortunately the easier solutions only treat the symptoms; they leave the underlying
problem unaltered . . . and the system loses whatever abilities it had to solve the underlying
problem.

(Peter Senge, talking about learning organizations)

into assuming that the development task is easier than it really is, and may
induce carelessness.

Business performance improvements of course include lower costs, shorter
time to market, and higher customer satisfaction, which have already been
noted under the headings of productivity and quality improvements. They
also include improved predictability (smaller amounts of effort are more
predictable than larger ones). Such benefits can in turn initiate a virtuous
circle of higher profitability, growth, greater competitiveness, increased
market share, entry to new markets and so on. These benefits may be direct,
if the company’s main business is software, or indirect if the software it
develops is embedded in its products or supports its business processes.

Let us now look at some examples of estimated benefits that have been
reported from systematic software reuse: see Fig. 1.4. The examples cover the
use of various programming languages, ranging from Ada to Cobol and C++.
The examples are presented in alphabetical order of company.

These estimates should be treated with a degree of caution. They all claim
improvements in a key performance indicator, such as productivity, quality
or cycle time; in some cases those improvements are set against a level of
reuse (which roughly means the proportion of the total work product that
was reused). We do not know how those measures were calculated or the reli-
ability of the values obtained. They should therefore be treated as being
subject to perhaps substantial margins of error, and as presenting rather
rough impressions of achievement. We should not, however, throw out the
baby with the bathwater: however error-prone or ill-defined, these impres-
sions are impressive.

The examples compare a situation with reuse against a situation without
reuse. The comparison may be done in one of two ways. The first way is to
compare the actual values of a performance indicator at two points in time,
one before the introduction of reuse and one after; note that the length of the
time lapse is in no case stated. The second way is to compare the estimated
value of a performance indicator for a project without reuse against the
actual value with reuse.

The examples are of claimed results in practice. An alternative way of inves-
tigating the potential of reuse is shown in Table 1.1, which sets out a range of
hypothetical possibilities for the purposes of illustration. It assumes the
ability to estimate a reduction factor and a reuse index. The reduction factor
(column 1) is an indicator of what is saved on average (in terms, say, of effort,
time or cost) for those work products that exploit reuse. The reuse index
(column 2) is an indicator of the proportion of the total work product that
exploits reuse: it is closely related to the concept of reuse level as shown in

12

Practical Software Reuse CHAPTER ONE

Fig 1.4. Multiplying the reduction factor and the reuse index gives an indi-
cator of the broad level of overall savings (column 3) that can in principle be
achieved, ranging from one-quarter of total development effort, time or cost
to nearly three-quarters.

The important thing to realize about this table is that the values shown for
both the reduction factors (50 per cent to 80 per cent) and the reuse index
(50 per cent to 90 per cent) are known to be achievable in practice. Although
it is hypothetical, therefore, it is nevertheless realistic.

It is worth spending some time reflecting carefully on the reported and hypo-
thetical figures presented in Fig. 1.4 and Table 1.1, and asking what the effect

1111
2
3
4
5
6
7
8
9
10
1
2
3
4111
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3111

13

CHAPTER ONE Introducing Software Reuse

Fig. 1.4 Some reported estimates of actual improvements due to reuse.

� DEC
– cycle time: 67%–80% lower (reuse levels 50%–80%)

� First National Bank of Chicago
– cycle time: 67%–80% lower (reuse levels 50%–80%)

� Fujitsu
– proportion of projects on schedule: increased from 20% to 70%
– effort to customize package: reduced from 30 person-months to 4 person-days

� GTE
– cost: $14M lower (reuse level 14%; baseline costs not specified)

� Hewlett-Packard
– defects: 24% and 76% lower (two projects)
– productivity: 40% and 57% higher (same two projects)
– time to market: 42% lower (one of the above two projects)

� NEC (Nippon Electric Company)
– productivity: 6.7 times higher
– quality: 2.8 times better

� Raytheon
– productivity: 50% higher (reuse level 60%)

� Toshiba
– defects: 20%–30% lower (reuse level 60%)

� Sample of 75 projects in 15 companies
– quality: 10 times better (reuse levels 10%–18%)

� Sample of 15 projects in 9 companies (reuse levels up to about 95%)
– productivity: 10 times higher than cross-industry benchmark
– time to market: 70% lower than cross-industry benchmark
– cost: 84% lower than cross-industry benchmark

would be if you could achieve comparable results in your business. Then you
will be ready to ask the next question – whether you are prepared to under-
take the substantial, sustained and systematic effort without which such
results are not achievable.

1.3 Some Further Introductory Essentials
With the four main ideas about software reuse now in place, we will look in
this Section at some other related ideas that are important for completing
the outline map of the reuse landscape which Chapter 1 aims to present.
They are as follows.

� There are various routes by which assets achieve reuse.

� There is an important relationship between reuse and software process
maturity.

� Reuse is an investment, whether or not you call it that.

� Reuse may be pursued within the wider business context of product line
practice.

14

Practical Software Reuse CHAPTER ONE

Table 1.1 Illustrations of hypothetical levels of savings.

Reduction factor Reuse index Overall savings
(reduction in effort, time (proportion of total effort, time (saving in total
or cost achieved for work or cost attributable to work development effort, time

products that are developed products that are developed or cost achieved
with reuse) with reuse) as a result of reuse)

[1] [2] [3] = [1] × [2]

50% 50% 25%
50% 70% 35%
50% 90% 45%
60% 50% 30%
60% 70% 42%
60% 90% 54%
70% 50% 35%
70% 70% 49%
70% 90% 63%
80% 50% 40%
80% 70% 56%
80% 90% 72%

1.3.1 There Are Various Routes by Which Assets
Achieve Reuse

This is a surprisingly complicated matter, which we will try to present as
simply as possible. The route to reuse is determined by the answers to seven
questions, as set out in Fig. 1.5.

The answers to those seven questions are in principle independent –
meaning there are 288 different routes for an asset to be reused! Some of the
combinations, however, are less probable than others. Some comments on
the above questions and answers may be helpful.

1111
2
3
4
5
6
7
8
9
10
1
2
3
4111
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3111

15

CHAPTER ONE Introducing Software Reuse

Fig. 1.5 Some of the factors influencing the life history of a reusable asset.

1 What was the original source of the asset?
� It was developed in-house.
� It was acquired externally.

2 What was the original purpose of the asset (with respect to reuse)?
� It was intended for immediate use on a specific project, without reuse in mind.
� It was intended for immediate use on a specific project, with reuse in mind.
� It was intended not for immediate use on a specific project, but entirely for

purposes of reuse.

3 Was the asset reengineered for reuse (prior to its current reuse)?
� It was reengineered for reuse at some earlier time (eg to be put into a reuse

repository).
� It has remained unchanged since its original development or acquisition.

4 Was the asset designed for reuse by setting parameters (grey box reuse)?
� It has grey box capability.
� It does not have grey box capability.

5 Was the asset retrieved from a repository for its current reuse?
� It was retrieved from a repository.
� It was in a repository but not retrieved from it.
� It was not in a repository.

6 Was it necessary to ‘look inside’ the asset in order to assess whether it meets the
requirements for reuse (glass box reuse)?
� Glass box reuse was necessary.
� Glass box reuse was not necessary.

7 Was it necessary to reengineer the asset for its current reuse (white box reuse)?
� White box reuse was necessary.
� White box reuse was not necessary.

NOTE: the terms ‘glass box’, ‘grey box’ and ‘white box’ reuse are explained below.

Some people say that buying an asset (question 1) is itself a form of reuse.
Their reason is presumably that selling the asset to many customers means
it is being reused. That, however, is true only in the trivial sense that selling
many cars of the same design represents reuse. It does not, in itself, consti-
tute systematic reuse as defined in this book. Of course, the vendor of the
asset may have employed systematic reuse in developing it; and the buyer of
the asset may employ it as a reusable asset in a systematic reuse programme.
In principle, however, acquisition and reuse are independent concepts, just
as we have argued that maintenance and reuse are independent.

A reusable asset may exist in many versions throughout its lifecycle,
including being reengineered specifically to make it (more) reusable
(questions 3 and 7). This indicates the important need for configuration
management in reuse, and for the careful control of maintenance on
reusable assets. Reengineering is one of two ways in which an asset may be
adapted for reuse; the other is by setting parameters (question 4). Adaptation
by setting parameters is only possible if the asset has been designed that way,
either originally or by subsequent reengineering. Setting parameters means
making selections among predesigned sets of options, so as to determine the
exact properties of the asset.

If an asset is reused without the need for any adaptation, that is known as
black box reuse. If reengineering is necessary, that is to say if it is necessary
to change the internal body of an asset in order to obtain the required prop-
erties, that is known as white box reuse. The intermediate situation, where
adaptation is achieved by setting parameters, is known as grey box reuse.
Glass box reuse refers to the situation where it is necessary to ‘look inside’ an
asset, on a ‘read-only’ basis, in order to discover its properties, in the case
where the available description of those properties is inadequate.

A final note concerns the continuing usefulness, or value, of reusable assets.
In just the same way that the fitness of software in general is known to decay
as a result of increasing age and continuing maintenance, so the fitness of a
reusable software asset decays with age and maintenance. The reasons for
this are well understood, and derive from the difficulty of maintaining soft-
ware to keep pace with the rate of change both in user requirements and in
technological architectures such as user interfaces and implementation
platforms.

1.3.2 There Is an Important Relationship
Between Reuse and Software Process Maturity

Software process maturity is a measure of an organisation’s capability
to produce software to meet goals of quality, cost and schedule. Maturity

16

Practical Software Reuse CHAPTER ONE

increases to the extent that the software process becomes more repeatable,
defined, managed, and subject to continual improvement. There are various
approaches to measuring software process maturity: the best known is the
Capability Maturity Model (CMM) for Software. Initiatives to increase the
maturity of an organisation’s software process are usually referred to under
the umbrella term software process improvement (SPI).

In the software domain, as in other business processes, process is conven-
tionally distinguished from technology. Process means broadly what you do,
and technology means broadly the technical practices that determine how
the process is performed. Thus, the software process refers to activities such
as product engineering, project management, quality assurance or configu-
ration management, irrespective of the particular methods and tools
(software technology) that may be selected to support those different parts
of the process.

A mature process is one that is well managed and continually improving,
independently of the technology used to support it. Of course, it is part of a
well managed and continually improving process to be sure that appropriate
technology is used; but judgments about maturity do not imply judgments
about the appropriateness or otherwise of technology.

An important belief of the software process maturity movement is that a
technology change on its own does not guarantee improvements in quality,
cost, schedule or any other key indicator: the outcome is unpredictable, and
change may even make things worse. That belief is clearly justified, for
instance, by the relative failure of Computer Aided Software Engineering
(CASE) technology. Even so, the more mature your process, the greater are
your chances of ensuring that technology changes are assimilated success-
fully and profitably.

Reuse undoubtedly has a strong technology dimension, in the sense that
it normally implies major changes in development and maintenance
methods, and will probably need support from specialized tools. Technically
oriented staff, such as programmers or software developers/ engineers, may
see reuse primarily in such technological terms. But introducing systematic
reuse is far more than a change in technology: it must be understood and
managed in terms of a major set of changes to the software process. Two
Chapters are devoted later in the book to process and management issues;
the purpose here is no more than to introduce the essential process-related
ideas into this introductory overview of systematic reuse. Those ideas are set
out in Fig. 1.6.

1111
2
3
4
5
6
7
8
9
10
1
2
3
4111
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3111

17

CHAPTER ONE Introducing Software Reuse

1.3.3 Reuse Is an Investment, Whether or
Not You Call It That

Investment means giving up some benefit in the present, to produce some
greater benefit in the future. Undertaking a programme of systematic reuse
is undoubtedly an investment, although we may less readily think of it that
way than in the case of more conventional investments in land, industrial

18

Practical Software Reuse CHAPTER ONE

Fig. 1.6 Reuse and the software process.

Systematic reuse is a key practice within the overall software process, and must be treated
in the same way as other key practices.
� Goals for reuse must be set.
� Commitment to reuse must be gained.
� Staff must be given the required abilities to perform reuse.
� The detailed activities involved in systematic reuse, and the corresponding work

products, must be defined and documented.
� Means of reviewing and measuring the success of reuse must be defined and

implemented.

The relationships between systematic reuse and other key practices must be considered, so
that reuse becomes an integrated part of the complete process.
� Systematic reuse will impact other key practices, and vice versa. Consider the intimate

relationships between reuse and (for instance) requirements management, project
planning, configuration management, product engineering, and inspections (or peer
reviews).

The relationship between systematic reuse introduction, and any corporate programme of
software process improvement (SPI), should be carefully considered and understood.

Reuse does not play a great part in most software process maturity models. That means
that, where such a model drives an organisation’s SPI programme, there will not be a natural
encouragement to include a reuse initiative as part of that programme. Different
organisations may handle the relationship in different ways. The following are possible
examples, all of which have been observed in practice.

� A SPI programme and a reuse programme may be regarded as distinct major initiatives,
each sufficiently large and challenging to have its own goals and support organisation.
This case may be described as ‘parallel reuse and SPI’. There are two sub-cases, which
may be called ‘parallel coupled’ and ‘parallel disjoint’, depending on the extent to which
they are effectively integrated.

� Reuse may be identified as an improvement priority within an existing SPI programme.
This case may be described as ‘SPI-driven reuse’.

� Reuse may be identified as the initial driver for major change, and a reuse programme
may be launched with little or no allowance made for the principles of successful SPI. If
the organisation subsequently discovers and adopts the factors that underlie success in
SPI, and ultimately embarks on a wider programme of SPI, this case may be described as
‘reuse-driven SPI’. Otherwise it may be described as ‘isolated reuse’.

plant and tools, buildings, skills, parts inventories, futures, standard manu-
facturing designs, information and so on. The substantial and sustained
management and technical effort involved in introducing reuse over a
period of time has a cost, even if it is only the ‘opportunity cost’ of replacing
effort that might otherwise yield more immediate returns; and that cost is
incurred in the hope of larger returns in the future. Systematic reuse, as we
have seen, involves developing a collection of reusable software assets. The
very word asset is rich with overtones of investment.

More conventional investments are normally subject to careful and often
sophisticated decision making, involving calculated estimates of net present
value or payback period, and comparisons with competing investment
proposals or with return on investment benchmarks. Actual investment
costs are accounted for separately from costs incurred on current account; if
benefits and savings can accurately be attributed to a specific investment,
then a sound basis exists for computing the actual return on investment after
a given period of time.

Software is seldom if ever regarded as an asset that carries value, either by
management or in accountancy practice. There is seldom if ever any provi-
sion for separating the costs incurred in developing software into investment
costs and current costs, or even separating current costs into variable and
overhead. Too often all software costs are simply lumped together as over-
head. That is one important reason why return on investment figures for
improvement initiatives (whether for reuse or for SPI in general) are rarely
available and rarely credible.

But let us return to the point that, whether or not we are able to account
for it as such, reuse is an investment. Investment unavoidably involves
uncertainty, risk and forecasting the unknowable. Even if techniques for
forecasting are used, and however smart they are, they cannot remove
uncertainty or risk, and successful investment consequently often depends
additionally on the subjective element of intuition or flair – characteristics of
the entrepreneur. Deciding whether to invest in software in not just an exer-
cise in technical and management analysis: in the end it also needs an
element of entrepreneurial instinct.

1.3.4 Reuse May Be Pursued Within the Wider
Business Context of Product Line Practice

While relatively new, software product line practice is rapidly attracting the
attention of leading-edge software development organisations. According to
a frequently used definition, a software product line is a group of software
products sharing a common managed set of features that satisfy specific needs
of a selected market or mission.

1111
2
3
4
5
6
7
8
9
10
1
2
3
4111
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3111

19

CHAPTER ONE Introducing Software Reuse

Product line practice seeks to leverage the potentially high-payoff tech-
nology of reuse by deploying it in the context of a well-defined business
strategy and an appropriately modified software process. Application sectors
in which PLP applications are to be found include the following:

� TV, VCR, DVD and audio;

� cell phones;

� digital cameras;

� printer peripherals;

� e-commerce systems;

� smart cards;

� geographic information system terminals;

� banking applications;

� telephone switch management and maintenance;

� medical imaging (magnetic resonance imaging, radiography, computer-
aided tomography) and medical image archiving and communication;

� car supervision systems, including engine control, parking assistance,
pre-crash applications, blind spot detection, autonomous parking, adap-
tive cruise control and integrated dashboards;

� diesel engine control, for trucks, buses, boats, railroad units, mining and
farming equipment, etc.;

� ground vehicle simulators;

� command and control systems and simulators;

� fighter aircraft avionics;

� air traffic control;

� satellite attitude and orbit control;

� elevator control;

� pressure safety release valves and booster pumps.

The above list indicates that product line practice (PLP) is predominantly
associated with the development of embedded software (often real-time) for

20

Practical Software Reuse CHAPTER ONE

industrial and defence systems and consumer products. There is a striking
absence of representation of ‘commercial’ software, to support business
processes or services, and of ‘shrink-wrapped’ or ‘package’ software.

PLP extends the reuse concept, of identifying commonalities and variations
in software, upward to the products in which the software is embedded. The
opportunities for software reuse influence the specification, design and
economics of the products themselves, and vice versa. PLP handles
commonalities and variabilities among products explicitly rather than acci-
dentally. It should be requirements-driven, architecture-centric and
components-based. A product line architecture is adaptable across the set of
products constituting the product line, and should contain change and
maximize reuse.

A product line aims to achieve large-grained reuse of assets, and rapid and
inexpensive building of high-quality applications within the product line
domain using the asset base. It must be able to evolve to incorporate new
vendor technology and to provide new functionality required by customers.
On their side customers may need to adjust their expectations to fit product
line capabilities.

Making decisions about product lines requires understanding their implica-
tions on three dimensions: technical (product line architecture,
development methods and tools etc.); organisational (team structure, oper-
ating models, individual roles and interfaces, communication etc.); business
(business goals, divisional charters, market environment etc.).

PLP is driven by the ‘produce, consume and customize’ principle, which
divides software development into two distinct life cycles: domain engi-
neering (which produces reusable assets such as requirements, architectures
and components, constituting a domain model that captures both the
commonalities and the variabilities within the domain), and application
engineering (which consumes and customizes assets to derive individual
products within the domain).

Each software development project is important to an organisation, but
the project for setting up a product line is far more important. It builds the
basis for many specific development projects within the product line. It
should be related to overall business and IT strategy, and look several years
ahead.

1111
2
3
4
5
6
7
8
9
10
1
2
3
4111
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3111

21

CHAPTER ONE Introducing Software Reuse

1.4 Systematic Reuse – Crossing Frontiers
The purpose of this Section is to discuss systematic reuse as a critical point
of transition in the history of computing, and to discuss why it has taken the
software industry so long to achieve what has long been accepted common
practice in other industries.

1.4.1 Systematic Reuse as a Critical Transition
We will look at systematic reuse first in the context of the 50-year-long
history of software, and then in the context of the 10-year-long history of
software process improvement.

Software started in 1948, in the UK. In that year the Manchester ‘Baby’ was
the first machine to demonstrate the execution of stored-program instruc-
tions. The following year, in Cambridge, EDSAC was the first stored-program
machine to execute a complete program producing ‘real-world’ results.
From the start, the EDSAC group was using subroutines, which can be
regarded as an early form of reuse. Reuse was there at the very beginning.

Since then, there has been a continuous stream of innovations that have
pushed forward the frontiers of reuse. They include such things as assembly
codes, high-level languages, macro-assemblers, code generators, customiz-
able packages, class libraries, test-pack generators and so on. A charac-
teristic of those innovations is that they have been largely on the supply side.
They have enabled computer manufacturers and other suppliers to package
reusable assets (such as very small chunks of functionality, in the case of
high-level languages) in such a way as to raise the plateau on which appli-
cation developers work, and thus to reduce their workload. Of course, these
innovations have been indispensable to the progress of computing, which
would have been impossible without them.

On the user side, however, application developers have largely been
limited to ad hoc reuse, almost entirely at the code level, using the facilities
(subroutines, macros, classes, copy-and-paste, and so on) provided by
manufacturers and other vendors. The promise of systematic reuse is that
it will enable reuse to ‘jump the species barrier’ (like mad cow disease!)
from the supplier side to the developer side, and bring about the very
large improvements in quality, productivity and business benefit that are
necessary and possible. That point of crossover, at which we may now be
standing, may prove to be a critical frontier in the 50-year history of software,
during all of which time reuse has been trying to break through to its full
potential.

22

Practical Software Reuse CHAPTER ONE

Let us now turn to the history of software process improvement (SPI), which
effectively spans a much shorter period of about 10 years. As we saw earlier
in this Chapter, the driving concept in SPI has been process maturity, which
simply assesses the degree to which processes are institutionalized, inde-
pendently of the technical practices which constitute the real fabric of the
processes. As we presently understand and use it, SPI offers great benefits in
raising us from the swamp of level 1 chaos; but nevertheless it has inherent
limitations. Radical progress will come not just from managing the process
better, irrespective of its substance, but from improving both substance and
management together. Systematic reuse offers arguably the most promising
means of improving the substance of the process; pursued in parallel with
SPI, it offers exciting prospects of transforming software capability to an
extent that SPI could not achieve unaided.

1.4.2 Why So Long?
It may thus be that systematic software reuse by application developers is an
idea whose time has finally come. Why, however, has it taken so long? Reuse
can be described simply as not reinventing the wheel. The need and the
benefits of not reinventing the wheel are understood in all areas of human
activity, and much successful ingenuity has been devoted over centuries to
achieving that goal. The result has been that as a species we have made
progress (according to the saying) by ‘standing on our predecessors’ shoul-
ders and not their toes’. Except in software. Why?

As a familiar example of reuse, consider automobiles. When developing a
new model, a manufacturer may well decide to retain an engine design used
in one or more earlier models. The decision whether or not to do so will be
influenced by questions such as whether the power production and fuel
consumption of the existing engine meet the objectives defined for the new
car, and whether its shape fits the new layout.

According to the answers to such questions, it may be possible to use the
existing engine design without adaptation. On the other hand, it may turn
out that some change is necessary. In that case, further questions will arise
about the extent of the adaptations, and how much (for instance) they will
incur heavy costs in redesigning the engine production line.

That kind of scenario occurs equally for other parts of a car. It also occurs
across other manufactured products, across production plant (such as
assembly lines or oil refineries), and across the construction industry. It
extends further still, beyond the production of physical artefacts, to
commercial services (such as financial products or telecommunications
services), internal business processes (such as contracting or double-entry

1111
2
3
4
5
6
7
8
9
10
1
2
3
4111
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3111

23

CHAPTER ONE Introducing Software Reuse

accounting) and information formats (such as application forms or tabloid
newspaper layouts).

It is important to recognize what are being reused in all these cases. They are
generalized abstractions – designs, methods, plans, formats – not the
specific instances which eventually embody those abstractions. To return to
the car engine, it is the design that is reused, by being transferred from one
model to another. Reusing an individual physical engine is quite a different
thing, and occurs when a second-hand dealer transfers an engine from one
car that is to be scrapped to another that is to be sold!

Much is conventionally made of the unique nature of software, and the
difference between software and other products. Software, it is said, is
abstract, and its production is a design-intensive process. As we have seen,
however, reuse normally means precisely the reuse of design-like abstrac-
tions. ‘Not reinventing the wheel’ means not reinventing the concept of the
wheel, rather than a specific instance of a wheel. The supposed uniqueness
of software does not thus appear to be a terribly good justification for its slow
take-up of reuse.

The real difference between software and other products and processes in
business is probably a cultural one, which arises from the nature of the
product, but which has had very destructive consequences for the manage-
ment of the process. There are more technical degrees of freedom
throughout the development of a software product than exist for other arte-
facts. Non-software artefacts are constrained by natural laws and the known
capacities of the human brain, which reduce the technical options open to
designers. It is possible, in contrast, to approach each new software product
as a blank sheet, awaiting the full range of the designer’s creative inspiration.

A software culture has been allowed to develop in which designers tend to
regard their task in just that way, as one of creative inspiration, rather like (for
example) artists. Instinctively, they tend to look down on reuse, just as a
‘serious’ novelist might look down on those authors of cheap romantic
fiction who construct storylines out of standard elements. The (not invented
here) NIH syndrome is alive and flourishing throughout the software
industry, and it is encouraged to thrive by the degrees of freedom that are
technically available.

It has also been allowed to thrive by weak management, who generally have
had little understanding of the economics of software production, who fail
to adapt and apply normal practices of good management, and who are
blinded with technicalities by specialists seeking to preserve their vested
interests.

24

Practical Software Reuse CHAPTER ONE

Thus reinventing the wheel in software has gone on, and on, and on. We may
hope, and indeed with some help from this book, it will not, perhaps, go on
much longer.

1.5 A Note on the Experience Base
Used in This Book

An important source for the writing of this book has been the real-world
experience, elicited through interviews, of a number of organizations that
have experimented with introducing reuse into their software development
practice. Most of the points made in the book are illustrated by means of
experience notes, drawn from that repository of practical experience. The
repository represents experiences of reuse as seen through the eyes of the
people who have really done it. They are the people who know best what they
have done, what their successes and problems were, and the business setting
into which reuse was introduced. The experience base is an informal
summary of these people’s stories, of how it seemed to them.

Of the companies that contributed to the experience base, it proved possible
to obtain information about four in more depth. These depth studies were
used as the basis for comparative case histories, that are presented in parallel
in Chapters 8 and 9. These four companies have permitted their identities to
be used, and they are referred to by name in both the experience notes and
in the case histories: they are Chase Computer Services (UK), ELIOP (Spain),
Sodalia (Italy) and Thomson-CSF (France). The other companies remain
anonymous.

Reference
1. Reed, D. (1995) Tools for Software Reuse. Object Magazine (Feb. 1995).

1111
2
3
4
5
6
7
8
9
10
1
2
3
4111
5
6
7
8
9
20
1
2
3
4
5
6
7
8
9
30
1
2
3
4
5
6
7
8
9
40
1
2
3111

25

CHAPTER ONE Introducing Software Reuse

