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Nonlinear Terahertz Studies of Ultrafast Quasiparticle Dynamics
in Semiconductors
Michael Woerner and Thomas Elsaesser

Quasiparticle concepts play a fundamental role in describing the linear andnonlinear
responses of semiconductors to an external electric field [1, 2]. Basic optical excita-
tions in the range of the fundamental bandgap are the Wannier exciton and the
exciton-polariton, whereas the polaron, an electron coupled to the Coulomb-medi-
ated distortion of a polar crystal lattice, is essential for charge transport. Such
quasiparticles display nonequilibrium dynamics in the femto- to picosecond time
domain, governed by microscopic couplings in the electronic system and between
charge carriers and lattice excitations. Ultrafast optical spectroscopy [3] in combi-
nation with extensive theoretical work [1, 4, 5] has provided detailed insight into
quantum coherent quasiparticle dynamics and into a hierarchy of relaxation phe-
nomena, including decoherence, carrier thermalization, and carrier cooling as well
as trapping and recombination.

In recent years, the generation of ultrashort electric field transients in the terahertz
(THz), that is, far-infrared frequency range has made substantial progress [6]. In
particular, THzfield strengths of up to 1MV/cmand (sub)picosecond time structures
have been achievedwith the help of THz sources driven by femtosecond laser pulses.
Such transients open new ways for studying charge transport in semiconductors
under high-field nonequilibrium conditions [7]. Both ballistic transport phenomena,
where the strong interaction of the carriers with the external field leads to negligible
friction of transport on a short timescale, and the regimeof coherent quantumkinetic
transport become accessible. In the latter, the quantum nature of quasiparticles and
their coherent quantum phase are essential, requiring a theoretical description well
beyond the traditional Boltzmann equation approach based on scattering times. New
phenomena occur in the time range below such scattering times, for example,
quantum coherent electron–phonon interactions [8] and extended real- and k-space
motions of electron wave packets.

In this chapter, we review our recent work in this exciting new area of THz
research. The main emphasis is on polaron dynamics in the polar semiconductor
GaAs [9] and on coherent high-field transport of electrons in the femtosecond time
domain. Following this introduction, we discuss a theoretical description of the static
and dynamic properties of polarons (Section 1.1.1). We then present a summary of
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the experimental techniques in Section 1.1.2, followed by our results on quantum
kinetic polaron dynamics (Section 1.1.3) and coherent high-field transport (Section
1.1.4). Conclusions are presented in Section 1.1.5.

1.1
Linear Optical Properties of Quasiparticles: The Polarization Cloud around a Charge
Carrier

In a polar or ionic solid, a free electron distorts the crystal lattice, displacing the atoms
from their equilibrium positions. One considers the electron together with its
surrounding lattice distortion a quasiparticle [10, 11], the Fr€ohlich polaron
[12, 13]. In thermal equilibrium, a Fr€ohlich polaron is characterized by a self-
consistent attractive potential for the electron caused by a surrounding cloud of
longitudinal optical (LO) phonons. In Figure 1.1, the polarized lattice (Figure 1.1a)
and the potential energy as a function of the relative distance between the electron
and the center of the LO phonon cloud (Figure 1.1b and c) are shown schematically.
The electron–phonon coupling strength a ¼ 0:067 [14] determines the polaron
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Figure 1.1 (a) Lattice distortion of the Fr€ohlich
polaron in GaAs. Self-induced polaron potential
(b, contour plot and solid line in (c)) and
electron wave function (dashed line in (c)) of
a polaron at rest. (d and e) Linear transport: For
low applied electric fields, the total potential is
the sum of the applied potential and the zero-
field polaron potential. (f and g) Nonlinear
transport: In a strong DC field (which has been
subtracted from the potentials shown in (f) and

(g)), the drifting electron (red dot) is displaced
from theminimumof the LO phonon cloud and
generates coherent phonon oscillations in its
stern wave. As the amplitude of coherent LO
phonons exceeds a certain threshold, the
polaron potential eventually causes electron
oscillations (shown as open circles) along the
relative coordinate r on top of the drift motion of
the entire quasiparticle. (Please find a color
version of this figure on the color plates.)
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binding energy of 5meV, its radius of 2.7 nm (at room temperature), and its effective
mass, which is slightly larger than the effective mass of the quasifree electron.

1.1.1
Theoretical Models Describing Static and Dynamic Properties of Polarons

In this section, we first give a brief overview of the theoretical literature on polaron
physics, followed by a short description of the theoretical model we used for
simulations of our nonlinear THz experiments on Fr€ohlich polarons in n-type GaAs.

Beginning with the late 1940s, polaron physics has been the subject of extensive
theoretical literature. Pioneering work was performed by Lee et al. [13] and by
Feynman [15] who introduced the path integralmethod – a standard tool being applied
in a wide range of theoretical studies – for describing polaron behavior. Peeters and
Devreese calculated the radius, the self-induced potential, and the number of virtual
optical phonons of a polaron at rest [14]. More recently, the quasistationary high-field
properties were investigated. Jensen and Sauls studied polarons near the Cerenkov
velocity [16] and found that strong velocity (or momentum) fluctuations on top of the
drift velocity cause the strong friction force around the threshold velocity for phonon
emission. Janssen and Zwerger studied the nonlinear transport of polarons [17] with
the important result that �. . . quantum effects become irrelevant for large fields or
transport velocities . . . .� This interesting fact establishes a link to the so-called classical
polaron model [18] that has much in common with the treatment by Magnus and
Schoenmaker [19] who calculated �an exact solution� of the time-dependent electron
velocity in the linear regime within the Caldeira–Leggett model [20]. The results
of Refs [19, 21] have clearly shown that memory effects in the electron–
phonon interaction or energy nonconserving transitions (or collisional broadening)
lead to interferences between the electron–electric field and the electron–phonon
interaction prolonging in turn the ballistic transport on ultrafast timescales.

Based on such theoreticalwork,we developed anewapproach to get amore specific
insight into the microscopic nonlinear dynamics of polarons on ultrafast timescales.
We performed calculations within a nonlinear and time-dependent extension of the
linear model presented in Ref. [19]. We consider a single electron interacting with
the local electric field in the x-direction and with the phononmodes of the crystal via
different types of electron–phonon interactions. The quantum mechanical Hamil-
tonian [13] reads

HðtÞ ¼ eð~pÞþ exElocðtÞþ
X
b;~q

P2
b;~q þv2

bð~qÞQ2
b;~q

2

þ
X
b;~q

Mbð~qÞ � ½Pb;~q cos~q~r þvbð~qÞQb;~q sin~q~r �;
ð1:1Þ

where~r ¼ ðx; y; zÞ and~p ¼ ðpx; py; pzÞdenote the position andmomentumoperators
of the electron, respectively. The dispersive band structure of the lowest conduction
band is described by eð~pÞ that can be obtained from, for example, pseudopotential
calculations [22–24]. For small excursions of the electronwithin the lowestminimum
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of the conduction band, the effective mass approximation eð~pÞ ¼~p2=2meff is
sufficient to describe the polaron correctly. The local electric field ElocðtÞ is the sum
of the externally applied electric field and the field re-emitted by the coherent motion
of all electrons. The latter contains the linear and nonlinear responses of the system
and accounts for the radiative damping of the electron motion [25].Qb;~q and Pb;~q are
the coordinate and the conjugate momentum of the phonon of branch b with the
wave vector~q ¼ ðqx; qy; qzÞ and angular frequencyvbð~qÞ. For simplicity, we limit our
calculations to the polar coupling to longitudinal optical phonons (b¼ LO) with
a constant frequency vLOð~qÞ ¼ vLO ¼ const.

MLOð~qÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2

e0V
1
e1

� 1
eS

� �s
� 1
j~qj ð1:2Þ

and coupling to acoustic phonons (b¼AC) via the deformation potential J with an
averaged sound velocity cS,

MACð~qÞ ¼
ffiffiffiffiffiffiffiffiffiffi
J2

rVc2S

s
; ð1:3Þ

vACð~qÞ ¼ 2cSqzb
p

sin
pj~qj
2qzb

� �
: ð1:4Þ

eS is the static relative dielectric constant and e1 is the dielectric constant for
frequencies well above the optical phonon frequency, but below electronic excita-
tions. The difference e�1

1 �e�1
S is proportional to the polar electron–LO phonon

coupling constant a [14]. V is the quantization volume that determines the dis-
cretization of the k- and q-spaceswith the zone boundary qzband r stands for themass
density of the crystal.

From Eq. (1.1), we derive the Heisenberg equations of motion for the expectation
values of quantummechanical operators like xh i, pxh i, and so on. In this process, new
quantum mechanical operators containing combinations of canonical variables, for
example, hPb;~q sinð~q~rÞi, appear on the right-hand side of the equations of motion.
Since we are interested only in the expectation values of the relevant observables
andwould like to close the infinite hierarchy of equations at some level, we expand and
subsequently approximate those expectation values. In lowest order, one exactly
obtains the equations of motion of the classical polaron [18, 26]. The classical polaron
model predicts, however, an unrealistically high binding energy in the self-induced
potential as classical particles correspond to infinitely smallwavepackets. Toovercome
this problem, one has to go one step further in the expansion of the expectation values
of quantum mechanical operators and consider the finite size of the electron wave
packet Dx2 ¼ hx2i�hxi2. As shown in detail in Refs [27, 28], the dynamics of Dx2 is
inherently connected with the dynamics of both the variance of its conjugate mo-
mentum Dp2x ¼ hp2xi�hpxi2 and Dxp ¼ xpx þ pxxh i=2� xh i pxh i, which is the covari-
ance of x and p. The main result of Refs [27, 28] is that under certain circumstances
(which are fulfilled in our case), continuous position measurements of the electron
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caused by various fluctuating forces of the environment lead to decoherence
phenomena in such a way that an initially Gaussian electron wave packet (in Wigner
space) stays Gaussian in its further evolution and adjusts its sizeDx2 continuously to
the respectivemomentumuncertainty according toDx2 ¼ �h2=4Dp2x (cf.minimumof
Heisenberg�s uncertainty relation). Such continuous position measurements of the
electron also lead to a small randomwalk in phase space, that is, diffusion of both the
position andmomentumof the particle. According to the arguments of the authors of
Refs [27, 28], this diffusion is ineffectual in comparison to the wave packet
localization and, thus, we completely neglect it in the following. The application of
the approximations and arguments discussed above lead to the following system of
equations of motion for the expectation values of the operators:

d xh i
dt

¼ vxh i; with the velocity operator vx ¼ qeð~pÞ
qpx

; ð1:5Þ

dhpxi
dt

¼ eElocðtÞþ
X
b;~q

exp � 1
2
~q2Dx2

2
4

3
5Mbð~qÞ

� hPb;~qiqx sin qxhxi�vbð~qÞhQ b;~qiqx cos qxhxi
� �

;

ð1:6Þ

dhQ b;~qi
dt

¼ hPb;~qiþMbð~qÞ cos qxhxiexp � 1
2
~q2Dx2

� �
; ð1:7Þ

dhPb;~qi
dt

¼ �v2
bð~qÞhQ b;~q i�Mbð~qÞvbð~qÞ sin qxhxiexp � 1

2
~q2Dx2

� �
: ð1:8Þ

For simplicity, we use here spherical Gaussian wave packets withmomentum pxh i in
the x-direction and isotropic momentum fluctuations Dp2x ¼ Dp2y ¼ Dp2z. Conse-
quently, the expectation values of the kinetic energy eð~pÞh i ¼ ekin pxh i;Dp2x

	 

and

the velocity operator vxh i ¼ Vx pxh i;Dp2x
	 


are functions of both pxh i and Dp2x.
Both two-dimensional functions have been derived from pseudopotential calcula-
tions [22–24]. The so far missing dynamical variable Dp2x (in turn determining
Dx2 ¼ Dy2 ¼ Dz2 ¼ �h2=4Dp2x) can be inferred from an equation of motion of the
kinetic energy

d eð~pÞh i
dt

¼ qekin pxh i;Dp2x
	 

q pxh i

d pxh i
dt

þ qekin pxh i;Dp2x
	 

qDp2x

dDp2x
dt

ð1:9Þ

using the following arguments. The temporal change of the total electron energy
d Eð~pÞh i=dt splits naturally into a ballistic coherent (first term) and an incoherent
contribution (second term), the latter of which is connected to the velocity fluctua-
tions of the electron (see also discussion of Eqs. (16) and (A4) of Ref. [16]). Since the
acceleration of the electron in the external field does not change its momentum
fluctuations, it exclusively contributes to the first term on the rhs of Eq. (1.9). In
general, the friction force due to phonon scattering (second term rhs of Eq. (1.6)) will
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contribute to both terms in Eq. (1.9). In the typical situation, however, the energy
relaxation time is distinctly longer than themomentum relaxation time (cf. Figure 13
of Ref. [29]). Thus, in good approximation, we assume that the friction force
exclusively contributes to the incoherent contribution of electron energy change
leading to the following implicit equation of motion for the expectation value of the
momentum fluctuations Dp2x:

qekinðhpxi;Dp2xÞ
qDp2x

dDp2x
dt

¼ Vxðhpxi;Dp2xÞ
X
b;~q

exp � 1
2
~q2Dx2

2
4

3
5Mbð~qÞ

� hPb;~qiqx sin qxhxi�vbð~qÞhQ b;~qiqx cos qxhxi
� �

þClossðpx;Dp2x;TLÞ
� ekinðhpxi;meff kBTLÞ�ekinðhpxi;Dp2xÞ
� �

:

ð1:10Þ
Emission and absorption of incoherent phonons are described by the energy
relaxation rate Clossðpx;Dp2x;TLÞ, which is generally a �slow� process occurring on
a timescale of several hundreds of femtoseconds (cf. Figure 13 of Ref. [29]). Thus, it
can be well described by the Fermi�s golden rule (FGR) approach like in the
semiclassical Boltzmann transport equation. In the absence of external electric
fields, this term relaxes the wave packet size to its value at thermal equilibrium,
that is, Dp2x ¼ meff kBTL.

Equations (1.5)–(1.8) are similar to those of the classical polaron [18, 26]. Quantum
mechanics, that is, Planck�s constant �h, enters this system of equations only through
the bandwidth-limited wave packet size Dx2 ¼ �h2=4Dp2x, the dynamics of which is
determined by Eq. (1.10). We would like to stress the fact that the corresponding
dynamics of the velocity (or momentum) fluctuations is determined by incoherent
heating and cooling processes, both typically occurring on a timescale of several
hundreds of femtoseconds. As a consequence, one expects negligible changes ofDx2

on ultrafast timescales <200 fs.
Our main motivation for developing the nonlinear set of polaron equations of

motion, (1.5)–(1.8) and (1.10), is their conceptual simplicity and the fact that they are
tractable for arbitrary driving fields EðtÞ on a standard personal computer. Before
applying them to our nonlinear THz experiments, we calculate some linear and
quasistationary properties of the polaron and compare the results with other theories
and experiments.

1.1.2
Experimental Signatures of Linear and Quasistationary Polaron Properties

1.1.2.1 The Fr€ohlich Polaron at Rest
The radius, the self-induced potential, and the number of virtual optical phonons of
a polaron at rest have been calculated by Peeters and Devreese [14]. In ourmodel, the
stationary ground state of the polaron can be simply determined by setting xh i, pxh i,
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and all time derivatives of Eqs. (1.5)–(1.8) and (1.10) to zero and solving the implicit
equations for Dp2x, Q b;~q

� �
, and Pb;~q

� �
. The electric field created by the self-induced

polaron potential acting on an electron at a position hxi 6¼ 0 can be calculatedwith the
help of the second term on the rhs of Eq. (1.6). The corresponding self-induced
potential atTL ¼ 300 K is shown in Figure 1.1b and c.Wefind an excellent agreement
with the result of the path integral method in Ref. [14].

As sketched in Figure 1.1a, the electron (yellow cloud) polarizes the surrounding
lattice of cations and anions via the Coulomb interaction, resulting in turn in a self-
induced potential trap for the electron (solid line in Figure 1.1c). The size and depth
of this polaron potential depends self-consistently on the electron–LO phonon
interaction strength a and the temperature TL of the coupled system. In addition
to the thermodynamically averaged self-induced polaron potential, the electron
experiences the fluctuating Coulomb potential of the surrounding ions caused by
the quantum mechanical zero-point motion and thermal fluctuations of the latter.
These fluctuating forces determine the spatial extension of the electron wave packet
Dx2 (dashed line in Figure 1.1c), which is called polaron radius in Ref. [14]. With
increasing lattice temperature TL, the coherence length of the electron shrinks
leading to an enhanced interaction with LO phonons of higher q vectors and
concomitantly to an increased average number of virtual phonons in the polaron
cloud. This extended interaction with high-q LO phonons deepens and narrows the
self-induced potential trap and reduces significantly the polaron radius. As already
discussed in the conclusion of Ref. [14], this leads to the counterintuitive result that
the polaron binding energy, that is, the depth of the self-induced trap, increases with
the temperature.

Experimentally, it is very difficult to access any of the characteristic properties of
the polaron at rest. For instance, strong magnetic fields have been applied to n-type
semiconductor structures to measure the cyclotron resonance frequency [30]. One
expects polaronic effects once the magnetic length meets the polaron radius or once
the Landau level splitting meets the LO phonon energy. The experiments of Ref. [30]
have shown that a separation of polaronic signatures from other effects, for example,
band structure nonparabolicity, is extremely difficult.

1.1.2.2 Frequency-Dependent Mobility of the Fr€ohlich Polaron
Here, we briefly reconsider the linear response as discussed inRef. [19]. In particular,
we shall show that the linear limit of our theory, that is, qx xh ij j � 1 for all qx , gives the
quantitatively correct frequency- and temperature-dependentmobility of the polaron
mðv;TÞ, ranging from the DCmobility up to the free carrier absorption (FCA) in the
mid-infrared (MIR) spectral range.

The linearized versions of Eqs. (1.5)–(1.8) are those of linearly coupled harmonic
oscillators. Similar to Eq. 16 in Ref. [19], the frequency-dependent mobility mðvÞ is
obtained from an integro-differential equation, which is solved by means of the
Laplace transformation:

d vðtÞh i
dt

¼ e
meff

EðtÞ�
ðt
�1

dt0aðt�t0Þ vðt0Þh i: ð1:11Þ
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This equation contains the memory kernel aðtÞ that in general allows describing the
influence of quantum coherences on the transport behavior, that is, quantum kinetic
phenomena. For a common frequencyvLO for all LO phononmodes (the interaction
of the electronwith acoustic phonons via the deformation potential plays aminor role
in the linear regime and, thus, is neglected), one has to introduce a damping
mechanism to the memory kernel aðtÞ (cf. Eq. 14 in Ref. [19]) in order to ensure
an irreversible energy loss to the lattice. In contrast to the standard exponential
damping, we apply here the following memory kernel:

aðt;TÞ ¼ V2
trapðTÞ

t cosðvLOtÞ
tþ t

; ð1:12Þ

V2
trapðTÞ ¼

e2

e0meffV
1
e1

� 1
eS

� �X
~q

q2xexp �~q2Dx2ðTÞ	 

j~qj2 ; ð1:13Þ

where t ¼ 300 fs (for GaAs at T ¼ 300 K) is the decoherence time of the memory in
the electron–phonon interaction. The frequency- and temperature-dependent mo-
bility mðv;TÞ (solid line in Figure 1.2) calculated from Eq. (1.11) with the memory
function Eq. (1.12) fits a broad range of experimental data in a quantitative way,
from theDCmobility mDCð300 KÞ � 9000 cm2=ðV sÞup to the free carrier absorption
in the mid-infrared spectral range: aFCAðl ¼ 10 mm; T ¼ 300 KÞ � 10 cm�1 for
Ne ¼ 1017 cm�3 [31]. The theoretical model predicts correctly the aFCAðv;TÞ
/ v�3 dependence for mid-infrared frequencies v above the LO phonon (cf. dotted
line in Figure 1.2). The temperature dependence of both mDCðTÞ and aFCAðv;TÞ is
essentially determined by the temperature-dependent V2

trapðTÞ (a comparison with
the experiment shows that t is almost insensitive to T ).

The discussion of the linear mobility of the Fr€ohlich polaron in thermal equilib-
rium shows that the FCA in themid-infrared spectral range is a sensitive probe of the
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Figure 1.2 Calculated linear frequency-dependent mobility.
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incoherent LO phonon population in the polaron cloud around the electron.
Previously, this probe was exploited in mid-infrared pump–probe experiments on
n-type InAs [32] to measure photoexcited incoherent hot, that is, nonequilibrium,
phonon populations as a function of time via the transient enhancement of the free
carrier absorption in the mid-infrared spectral range. So far, the theoretical descrip-
tion of such phenomena was based on second-order perturbation theory neglecting
any coherence in the LO phonon density matrix and thus excluding possible
interferences between different quantum mechanical pathways. The different the-
oretical approach discussed in this chapter, which is based on the quantum kinetic
theory presented in Ref. [19], deals intrinsically with coherent phonons and, thus, is
predetermined to describe novel FCA phenomena connected to coherent nonequilib-
rium LO phonons in the polaron cloud around the electron.

1.1.2.3 Quasistationary High-Field Transport of Polarons
In this section, we discuss the quasistationary high-field transport of polarons in
GaAs. In particular, we shall show that the quasistationary drift velocity and energy of
polarons are identical to results from a semiclassical Boltzmann transport equation
approach. To this end, we compare the result of our polaron model with ensemble
Monte Carlo simulations performed by M.V. Fischetti [29].

An external electricfieldE acting on the polaron (Figure 1.1d and e) induces charge
transport, which is described by the drift velocity vd. In the regime of linear response,
the separation of the electron from the center of the polaron potential is negligible
(Figure 1.1e) and the response to an externalfield is fully determined by the center-of-
mass motion of the entire quasiparticle. A weak DC field (Figure 1.1d) induces
a dissipative drift motion along the real space coordinate xðtÞ ¼ vdt ¼ mEt with
a mobility m ¼ et=m � 9000 cm2=ðV sÞ determined by the electronic charge e, the
momentum relaxation time t of the electron–phonon interaction, and the effective
polaron mass m.

Above the electric field strength of�3 kV/cm, the drift velocity vd starts to depend
in a nonlinear way on the applied DC field E. In this regime, the quasistationary
polaron potential is strongly distorted. In the frame of reference of the quasiparticle,
a coherent standing wave of LO phonon oscillations appears as a stern wave of
the moving electron (Figure 1.1f), similar to wake fields in plasmas [33, 34]. The
enhanced generation of coherent nonequilibrium phonons in the stern wave of the
quasiparticle creates the strong friction force in the nonlinear regime of polaron
transport. In addition, the term with the drift velocity times the friction force in
Eq. (1.10) drives the incoherent momentum fluctuations of the electron, which in
turn provide access to interactions with phonons of larger q values. As a result, the
wave packet size of the electron Dx2 shrinks leading to an enhanced coupling to
lattice degrees of freedom, in this way creating even higher friction forces.

The limit of quasistationary transport is achieved when we apply an electric field
ElocðtÞ to Eqs. (1.5)–(1.8) and (1.10), which varies distinctly slower in time than the
inverse of the incoherent energy loss rate Clossðpx;Dp2x;TLÞ (Eq. (1.10)) that is of the
order of several hundreds of femtoseconds. The result of such a calculation is shown
as symbols in Figure 1.3. In (b), we plot the drift velocity of polarons as a function of
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the applied electric field strength. If the electron–phononmatrix elements (Eqs. (1.2)
and (1.3)) depend exclusively on the phonon wave vector j~qj, one gets a common drift
velocity–friction force characteristics for all electrons independent of the conduction
band valley they drift in. (It is worth tomention that an additional dependence of (1.2)
and (1.3) on the electronmomentum~p could be easily incorporated into our model.)
The dashed lines showdrift transport of polaronswith various fixed values of thewave
packet size Dx2 ¼ �h2=4Dp2x. Such a transport behavior is expected on a timescale,
which is shorter than the respective energy relaxation time, but long enough to
ensure transport in the drift limit, that is, outside the quantum kinetic regime. If this
time window is large enough, one expects in this regime the well-known phenom-
enon of incoherent velocity overshoot, which is at the heart of theGunn effect [35, 36].
In contrast, the polaron energy as a function of the applied field strength (Figure 1.3a)
obviously depends on the electron valley. We show here the energy of the polarons in
both the C-valley (solid symbols) and the X-valley (open symbols). The L-valley shows
similar values (not shown).

(a)

(b)

Figure 1.3 Calculated quasistationary high-
field transport of polarons (symbols) in GaAs.
For comparison, the black solid lines show the
result of the semiclassical Boltzmann transport
equation, that is, ensemble Monte Carlo
simulations of M.V. Fischetti [29]. (b) Stationary
drift velocity of polarons (symbols) as a function

of the applied electric field. The dashed lines
show drift transport of polarons with various
fixed values of the wave packet size
Dx2 ¼ �h2=4Dp2x . (a) Corresponding energy of
the polarons in both theC-valley and the X-valley
of the crystal.
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Now, we compare our polaron model with the result (solid lines Figure 1.3) of
the semiclassical Boltzmann transport equation calculated within the ensemble
Monte Carlo approach by M.V. Fischetti [29]. The two models and experiments [37]
agree excellently in the drift regime of high-field carrier transport. Thus, we have
proven that our dynamic polaron model contains the results of the semiclassical
Boltzmann transport equation [29] as a limiting case for a timescale on which
the drift transport picture is still valid. On ultrafast timescales (i.e., t < 300 fs),
however, the semiclassical Boltzmann transport equation fails and predicts wrong
scenarios of high-field transport phenomena, as will be demonstrated in the
experiments discussed in the following. In contrast, the presented polaron model,
that is, Eqs. (1.5)–(1.8) and (1.10), provides correct predictions in the ultrafast time
domain as well.

1.2
Femtosecond Nonlinear Terahertz and Mid-Infrared Spectroscopy

Most of the THz experiments performed so far apply THz radiation as a linear probe.
Studies of the nonlinear optical response and transport require THz fields of
sufficient strength. In the mid-infrared spectral range, the generation and field-
resolved detection of high-field transients [38] has allowed the field-resolved non-
linear experiments on intersubband transitions in n-type modulation-doped GaAs/
AlGaAs quantum wells providing valuable information on both intersubband Rabi
oscillations [39–41] and nonlinear radiative coupling phenomena between quantum
wells [42, 43]. Recently, we developed a simple and reliable method to generate THz
pulses with high electric field amplitudes in the spectral range below 5THz [44]. In
following we first present this THz source. We then discuss nonlinear THz experi-
ments on n-type GaAs, providing new insight into quantum kinetic transport
phenomena. Such results are in sharp contrast to the predictions of the semiclassical
Boltzmann transport equation [29].

1.2.1
Generation of High-Field Terahertz Transients

Despite many advances in recent years, the generation, detection, and use of
electromagnetic radiation [45, 46] in the frequency range of 0.1–10 THz are still far
less developed than in other frequency ranges. Most THz generation schemes
[6, 47, 48] provide small electric field amplitudes in the spectral range n � 1 THz.
The highest amplitudes (150 and 350 kV/cm) reported so far [49, 50] have been
obtained using large-aperture photoconductors with bias voltages up to 45 kV. Here,
we present a simple method to generate electric field amplitudes of more than
400 kV/cm. Using electro-optic sampling, we directly measure the electric field as a
function of time. In this way, we fully characterize the electric fields in amplitude and
phase, in contrast to interferometric methods requiring additional assumptions for
field reconstruction.
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The nonlinear interaction of the fundamental (frequency v) and the second
harmonic (2v) of femtosecond optical pulses in a laser-generated plasma in nitrogen
gas is applied to generate intense THz transients. Compared to previous imple-
mentations of this method [47, 51, 52], we achieve much higher electric field
amplitudes using tighter focusing and shorter pulses (both leading to higher
intensities). The spectrum of the THz pulses generated extends to 7 THz, consid-
erably higher than previously demonstrated.

Our setup for THz generation is shown schematically in Figure 1.4. ATi:sapphire
oscillator amplifier system generates pulses with a spectral width of 40 nm (corre-
sponding to a bandwidth-limited pulse length of 22 fs) with pulse energies up to
0.5mJat a repetition rate of 1 kHz.Both the pulse energy and the chirp of these pulses
(and thus the actual pulse length) can be varied by an acousto-optic pulse shaper
[53, 54] between the oscillator and the amplifier. These pulses are focused by a fused
silica lens with 50mm focal length. A 0.1mm thick BBO crystal cut for type-I SHG is
inserted in the convergent beam about 5mm before the focus. The THz radiation is
generated in the plasma in the focal region. Both the focal length of the lens and the
position of the BBO crystal are results of an optimization aimed at high electric field
amplitudes. If one moves the BBO crystal closer to the focus, the intensity of the
second harmonic and – as a result – the THz amplitudes become higher. This
approach is, however, limited by damage in the crystal [55].

An undoped Si plate under Brewster�s angle serves to separate the generated THz
radiation from the remaining pump beam. Apart from its high transmission, Si has
the further advantage of very low dispersion in the THz range, so it does not distort
the electric field transients.

Using off-axis parabolic mirrors, the THz radiation is focused onto either a (110)
ZnTe crystal or onto a (110) GaP crystal for electro-optic sampling (cf. Figure 1.7) [38].
To combine the THz radiation and the probe pulses, we use a second Si plate under
Brewster�s angle, which has high reflection for the s-polarized probe beam and high
transmission for the p-polarized THz beam. The whole setup is enclosed and purged

Figure 1.4 Schematic of the setup for THz
generation. Incident on the lens is the output of
a Ti:sapphire amplifier with pulse energies of up
to 500mJ and pulse lengths down to 25 fs. The
BBO crystal of 0.1mm thickness is cut for type-I

phase-matched second-harmonic generation.
In the focal region, the intensity is high enough
to generate a plasma in nitrogen gas,which then
acts as the source of THz radiation.
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with dry nitrogen gas to prevent absorption from the rotational lines of water
molecules.

Electric field transients measured with a 0.4mm thick ZnTe electro-optic crystal
are shown in Figure 1.5a. The THz detection range of ZnTe is limited [56, 57] by its
optical phonon resonance (5.3 THz) to frequencies below about 4 THz. To check
whether the spectrum (Figure 1.5c) of the THz transient generated with the 25 fs
input pulse extends to higher frequencies, we havemeasured the same transient with
a GaP (optical phonon frequency of 11 THz) electro-optic crystal (Figure 1.5b). The
latter measurement gives a much broader spectrum and an even higher amplitude
of the electric field of more than 400 kV/cm, corresponding to a THz pulse energy of
about 30 nJ.

Apart from providing very high electric field amplitudes, the present method of
THz generation has the additional advantage of being easily tunable by changing the
pulse length of the input pulse, that is, by changing the chirp with the acousto-optic
pulse shaper. Transients measured with the ZnTe electro-optic crystal for different
lengths of the input pulse are shown in Figure 1.5a and the corresponding spectra in
Figure 1.5c.

Another interesting property of our THz plasma source is its bandwidth. A
transient measured with our setup using a 0.4mm thick ZnTe electro-optic crystal
is shown in Figure 1.6a. The THz detection range of ZnTe has a gap at its optical
phonon resonance around 5.3 THz. This transient was optimized for a high-fre-
quency cutoff of the THz radiation as shown in Figure 1.6b.

1.2.2
Electric Field-Resolved THz Pump–Mid-Infrared Probe Experiments

In this section, we present the first nonlinear THz pump–mid-infrared probe
experiment, which shows an interesting quantum kinetic phenomenon of
the electron–LO phonon dynamics of rapidly accelerated carriers in n-type GaAs.
The experimental setup is shown in Figure 1.7. Both a high-field THz transient
generated by four-wavemixing in a dry nitrogen plasma [44] and a synchronizedmid-
infrared transient generated by difference frequencymixing in GaSe [38] are focused
collinearly onto the sample, a 500 nm thick layer of Si-doped (n-type) GaAs with
a carrier concentration of 1017 cm�3 (for details see Ref. [58]). After interaction with
the sample, the time-dependent electric fields of the THz and MIR pulses are
measuredwith electro-optic sampling in a thinZnTe crystal [38]. Both the THz pump
and the MIR probe beam are chopped with different frequencies allowing indepen-
dent measurements of ETHzðtÞ, EMIRðt; tÞ, and EBothðt; tÞ, the latter transient with
both pulses interacting with the sample. t is the delay between the THz and theMIR
pulse and t is the real time. Figure 1.8 shows such transients for t ¼ 77 fs. The
nonlinear signal of interest is obtained by subtracting the two single-color measure-
ments fromEBothðt; tÞ:ENLðt; tÞ ¼ EBothðt; tÞ�ETHzðtÞ�EMIRðt; tÞ. The sample shows
a coherent, nonlinear emission, which is for this particular t in phase with the MIR
pulse, demonstrating a THz field-induced MIR gain of the sample. The nonlinear
transmission change is given by
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(c)

Figure 1.5 (a) Electric field transients
measured by electro-optic sampling in ZnTe for
different pulse lengths of the incoming pulse
(pulse energy held constant at 0.5mJ), varied by
changing the amount of chirp. (b) Electric field
transient for a 25 fs pulse measured by electro-

optic sampling in a 0.1mm thickGaP crystal. (c)
Spectra obtained by Fourier transform of the
transients. For the shortest pulse length of
25 fs, the spectrum measured with ZnTe as
electro-optic crystal shows a high-frequency
cutoff around 4 THz.
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DT
T0

ðt; tÞ ¼
ðt
�1

ENLðt0; tÞEMIRðt0; tÞdt0=
ð1
�1

EMIRðt0; tÞ
2dt0; ð1:14Þ

which is for t!1 identical to the usual pump–probe signal.

1.2.3
Nonlinear Terahertz Transmission Experiments

Inmost experiments, to study the time-resolved high-field transport, one uses a static
electric field [59–61]. Time resolution is obtained by photogenerating charge carriers
withashortvisibleornear-infraredpulse.Thedrawbacksof thisschemeare that (i) one
always has electrons and holes, making it difficult to extract the electron response,
and (ii) the possible electric field strengths are limited by electrical breakdown. To
overcome such problems, we apply a strong time-dependent electric field in the THz
range on n-doped GaAs, so that only electrons contribute to the transport.

The sample investigated was grown by molecular beam epitaxy and consists of
a 500 nm thick freestanding layer of Si-doped (donor concentration of ND ¼ 2�
1016 cm�3) GaAs clad between two 300 nm thick Al0.4Ga0.6 As layers [62]. A few cycle

(a)

(b)

Figure 1.6 (a) Electric field transient measured by electro-optic sampling in a thin ZnTe crystal.
(b) Spectrum of the pulse obtained by Fourier transform of the transient. For the shortest pump
pulse length of 25 fs, we observe spectral components up to 20 THz.
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THz pulse with a center frequency of 2 THz and a field strength in the range up to
300 kV/cm was generated by optical rectification of 25 fs pulses from a Ti:sapphire
oscillator–amplifier laser system and excites the sample placed in the focus of
a parabolic mirror. The direction of the electric field is along the [100] direction
of the sample. With a further pair of parabolic mirrors, the electric field of the
transmitted THz pulse is transferred to a thin ZnTe crystal, where it is measured via
electro-optic sampling [44, 63, 64]. The optics used ensures that, apart from a sign
change, the electric field transients at the sample and at the electro-optic crystal are
identical (Figure 1.9a). The entire optical path of the THz beam is placed in vacuum
(for experimental details, see Refs [58, 62]). The electron current density [6]

jðtÞ ¼ �envðtÞ ¼ �2EemðtÞ=ðZ0dÞ ð1:15Þ
in the sample is proportional to the coherently emitted field EemðtÞ ¼ EtrðtÞ�EinðtÞ,
which is given by the difference of EtrðtÞ, the field transmitted through the sample,
andEinðtÞ, thefield incident on the sample (n is the electron density in the sample and
Z0 ¼ m0c ¼ 377V is the impedance of free space). As the thickness of our sample
d¼ 500 nm is much less than the THz wavelength l � 150 mm, all electrons in the
sample experience the same driving field, which is identical to EtrðtÞ [25, 42, 62]. It
should be noted that the detection scheme applied here is different from the
frequently used setup where a large area of the sample is imaged as a small focal
spot on the electro-optic crystal (Figure 1.9b). In the latter case, the electric field
measured at the electro-optic crystal is proportional to the time derivative of the
electric field at the sample.

Figure 1.7 THz pump–MIR probe setup: Both
terahertz ETHzðtÞ and mid-infrared transients
EMIRðt; tÞ propagate collinearly through a
500 nm thick n-type GaAs sample and are
measured subsequently by electro-optic
sampling in a thin ZnTe crystal. t is the delay

between the THz and the MIR field. Dual-
frequency chopping of both incoming beams
allow independentmeasurements of ETHz, EMIR,
and EBoth (both pulses are transmitted through
the sample).
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Figure 1.8 Measured transients for t ¼ 77 fs. The curve at the bottom shows the buildup of the
transmission change according to Eq. (1.14).

(b)
ff f

(a)

Figure 1.9 (a) Schematic of the optics used for
transferring the electric field from the sample to
the electro-optic crystal, EOX (in the actual
setup, instead of lenses parabolic mirrors are

used). Here, the on-axis (r ¼ 0) electric field at
the sample is equal to minus the on-axis field at
EOX, Esampleð0; tÞ ¼ �Edetð0; tÞ. In contrast, in
(b) Edetð0; tÞ / d=dtEsampleð0; tÞ.
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1.3
Ultrafast Quantum Kinetics of Polarons in Bulk GaAs

In this section, we show that a high electric field in the terahertz range drives
the polaron in aGaAs crystal into a highly nonlinear regimewhere – in addition to the
drift motion – the electron is impulsively moved away from the center of the
surrounding lattice distortion [65].

1.3.1
Experimental Results

The time-dependent electric field ENLðt; tÞ radiated from the nonlinear intraband
polarization ENLðt; tÞ ¼ EBothðt; tÞ�ETHzðtÞ�EMIRðt; tÞ is shown as the solid line in
Figure 1.10a. The sample shows a coherent nonlinear emission, which is for this
particular t in phase with the MIR pulse, demonstrating a THz field-induced MIR
gain of the sample. From ENLðt; tÞ, we calculate the time-integrated mid-infrared
transmission changeDT=T0ðtÞ (circles in Figure 1.10b). This nonlinear signal shows
an oscillatory behavior with a period of 120 fs, the period of the LO phonon in GaAs.
Such oscillations correspond to a periodic switching between optical gain
(DT=T0 > 0) and absorption (DT=T0 < 0) on the intraband transitions probed.

We observe the oscillatory behavior of intraband absorption and gain for THz
driving fields of ETHz between 10 and 30 kV/cm, the maximum field applied in

(a)

(b)

Figure 1.10 (a) ETHzðtÞ (dashed line), EMIRðt; tÞ (dotted line), and ENLðt; tÞ(solid line) for t ¼ 77 fs.
(b) Transmission change DT=T0ð1; tÞ of the mid-infrared pulse as a function of t (dots). Black
dashed line: sine wave with the LO phonon frequency for comparison.
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our measurements. In this range, the oscillation period does not depend on ETHz

and is always identical to the LO phonon period. For ETHz < 10 kV=cm, oscillations
are absent. Experiments with a sample of five times lower doping density do
not show any nonlinear THz response. Thus, the oscillatory pump–probe
signal stems exclusively from the THz excitation of electrons present by n-type
doping.

The oscillatory behavior of transmission observed here for the first time is
a manifestation of the highly nonlinear response of polarons to a strong external
field. We analyze our findings in a nonlinear transport picture discussed in the
following and described from a theoretical point in the next section. The duration of
the positive half-cycle of ourTHzpulse (Figure 1.8) iswell below the energy relaxation
time of the polaron. Thus, in the drift limit, an external electric field E acting on the
polaron (Figure 1.1d and e) induces charge transport, which is described by the drift
velocity vd shown as the leftmost dashed line in Figure 1.3b.

As the electron approaches the characteristic velocity of v0 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2�hvLO=m

p ¼ 435 km=s, that is, the threshold kinetic energy sufficient for emission
of a LO phonon, the drift velocity vd depends in a nonlinear way on the applied
DC field E, as shown in Figures 1.3(b) (leftmost dashed line) and 1.11b and discussed
in Refs [16–18, 26]. In this regime, the electron motion is described by the momen-
tary electron velocity veðtÞ and the differential mobility mdiff ðveÞ ¼ ½qEðveÞ=qve��1. In
our experimental scheme, we monitor such motion via the electric field ENLðt; tÞ
(Eq. (1.14)) that is radiated from the moving charge interacting with both the driving
THz field and the field EMIRðt; tÞ of the probe pulse. The resulting change of themid-
infrared transmission DT=T0ð1; tÞ / � mdiff ½veðtÞ�ð Þ�1 is determined in sign and
amplitude by the inverse differential mobility.

In our experiments, the polaron potential is strongly distorted by the femto-
second terahertz field. First, the strong external field accelerates the electron,
leading to a finite distance of the electron from the center of the polaron (along
the coordinate r shown in Figure 1.1g). This distance is generated impulsively, that
is, on a short timescale compared to the LO phonon oscillation period. As soon as
the kinetic energy of the electron reaches �hvLO, the electron velocity saturates by
transferring energy to the lattice. Due to the impulsive character of this transfer,
coherent LO phonon oscillations appear as a stern wave of the moving electron
(Figure 1.1f). With increasing strength of such oscillations, the related electric
field (polarization) alters the motion of the electron so that electron oscillations
occur along the coordinate r with a frequency vLO (Figure 1.1g). On top of the
drift motion of the entire quasiparticle with vpolaronðtÞ � v0, the electron oscilla-
tions along the internal coordinate rðtÞ are connected to a periodic modulation of
the momentary electron velocity veðtÞ ¼ drðtÞ=dtþ vpolaronðtÞ. In this way, the
electron explores velocity regions that are characterized by different mdiff ðveÞ½ ��1

of positive and negative signs (Figure 1.11b), thereby modulating the transmission
of the mid-infrared probe pulses in an oscillatory manner (circles in Figure 1.10b).
The oscillatory internal motion of the polaron is exposed to the fluctuating
interaction with thermally excited LO phonons and influenced by other scattering
mechanisms. Such processes result in a dephasing of the oscillations on
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a timescale of 0.5–1 ps, substantially longer than the time window studied in our
experiments.

1.3.2
Discussion

Thenonlinear response is analyzed quantitatively by considering the time-dependent
self-consistent interaction potential between the electron and the LO phonon cloud
already discussed in Section 1.1.1. The total local field acting on the electron is the
sumof the externally applied fields [ETHzðtÞ and EMIRðt; tÞ], the field caused by the LO
phonon cloud and the radiation reaction field leading to radiative damping. In
Figure 1.11, the time-dependent electron velocity veðtÞ (solid line in (a)) and theMIR
transmission change (solid line in (c)) calculated for a 500 fs long terahertz pulse of
20 kV/cm amplitude (dashed line in (a)) are plotted as a function of delay time t.

(a)

(c)

(b)

Figure 1.11 Results of model calculations. (a)
Transient electron velocity (solid line) after
nonlinear excitation with a strong THz field
(dashed line). (b) DC drift velocity ve as a
function of the applied field EDC. The transient
modulationof the electron velocity in (a) and the
mid-infrared transmission in (c) is causedby the
periodic oscillation of ve around the inflection
point of the ve�EDC characteristics changing

periodically from a positive differential mobility,
that is, absorption, to a negative differential
mobility, that is, gain in themid-infrared spectral
range. (c) Calculated nonlinear transmission
change DT=T0ðtÞ (solid line) of a short mid-
infrared pulse as a function of t. The
transmission reduction due to linear
intraband absorption is shown for comparison
(dashed line).

22j 1 Nonlinear Terahertz Studies of Ultrafast Quasiparticle Dynamics in Semiconductors



Similar to the data in Figure 1.10b, the nonlinear transmission change shows an
oscillatory behavior changing periodically with the frequency of the LO phonon
between gain and absorption. Even the strength of the nonlinear effect, which is
approximately 10 times larger than the linear intraband absorption (dashed line in
Figure 1.11c), is verywell reproduced by the theory. A comparison of Figure 1.11a and
c shows that – as expected and well reproduced by the theory – the oscillatory
modulation of the mid-infrared transmission is directly connected to the transient
motion of the electron along the internal coordinate r.

Our results highlight the quantum kinetic character of the nonlinear polaron
response: the crystal lattice responds with coherent vibrations to the impulsive
motion of electric charge. The timescale of such noninstantaneous process is
inherently set by the LO phonon oscillation period and the picosecond decoherence
of the LO phonon excitation. It is important to note that this nonlinear phenomenon
occurs at comparably low electric field amplitudes of the order of jEj ¼
10 kV/cm¼ 0.1 V/(100 nm). Thus, the quantum kinetic response plays a key role in
high-frequency transport on nanometer length scales, in particular for highly polar
materials such as GaN and II–VI semiconductors.

All theoretical results presented in this section were calculated on the basis of
Eqs. (1.5)–(1.8) and (1.10) already discussed in Section 1.1.1. It is interesting to note
that the size of the electron wave packetDx2 ¼ �h2=4Dp2x remains almost constant on
ultrafast timescales. There are two reasons for this behavior: (i) We start with a
comparably large radius of C-valley polarons at room temperature, which, thanks to
their highmobility, experience only a very weak friction force in the beginning. Thus,
on ultrafast timescales, the first term on the rhs of Eq. (1.10) feeds the incoherent
momentum fluctuations of the electron only weakly. (ii) In the quantum kinetic
regime, the direction of the friction force strongly oscillates relative to that of the
electron velocity leading in turn to canceling phenomena: a shrinkage and a growth of
the wave packet size. This phenomenon is absent in the drift limit of carrier
transport: here, the drift velocity and driving electric field are always in phase causing
a strictly positive sign of the first term on the rhs of Eq. (1.10).

1.4
Coherent High-Field Transport in GaAs on Femtosecond Timescales

Eighty years ago, Felix Bloch showed that electron wave functions in the periodic
Coulomb potential of the nuclei in a crystal are periodically modulated plane
waves [66]. The spatially periodicmodulation of the so-calledBloch functions restricts
the allowed energies of the electrons, leading to a dispersive band structure eð�h~kÞ (cf.
first term on the rhs of Eq. (1.1)) containing both allowed (bands) and forbidden
energy regions (gaps) [22]. Without scattering, an electron (charge �e) in an electric
field~E is expected to follow the dispersion of its band at a constant rate inmomentum
space [67]

�hd~k=dt ¼ �e~E ; ð1:16Þ
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which is identical to Eq. (1.6)without the electron–phonon interaction term.A simple
integration of Eq. (1.16) reads

~kðtÞ ¼~kð0Þ�e=�h
ðt
0

~Eðt0Þdt0: ð1:17Þ

The corresponding velocity~v in real space is given by

~v ¼ �h�1r~k
eð�h~kÞ: ð1:18Þ

Thus, an electron moving in the periodic Coulomb potential of a crystal under the
action of a constant external electric field is expected to undergo a coherent periodic
oscillation both in real andmomentumspace. So far, suchBloch oscillations [66] have
been observed only in artificial systems such as semiconductor superlattices [68–70],
atoms and/or Bose–Einstein condensates in optical lattices [71], Josephson junction
arrays [72], or optical waveguide arrays [73]. The absence of Bloch oscillations in
electron transport through bulk crystals has been attributed to efficient scattering of
electrons on a 100 fs timescale.

Inthefollowing,wedemonstrateanovel regimeofelectrontransport inbulkcrystals
drivenbyultrashorthigh-field transients in the terahertz frequency range.Electrons in
bulk n-type GaAs are subject to ultrashort electric field transients with very high field
amplitudes of up to 300 kV/cm.Thefield transmitted through the sample ismeasured
in amplitude and phase using the techniques described in Section 1.2.3. Under such
conditions, electrons at room temperature performa coherent ballisticmotionwithin
the lowest conduction band, in this way performing a partial Bloch oscillation. The
coherent currentobservedatacrystal temperatureof300Kagreeswellwith thecurrent
expected for negligible scattering. This result, which is again in strong contrast to the
predictionof thesemiclassicalBoltzmanntransportequation[29], is fullyconfirmedby
the dynamic polaron theory based on Eqs. (1.5)–(1.8) and (1.10).

1.4.1
Experimental Results

InFigure1.12,wepresentexperimental results atasample temperatureof300Kforan
incident THz pulse with an amplitude of 300 kV/cm. Figure 1.12 a and b shows the
transients of the incident EinðtÞ and of the transmitted EtrðtÞ pulses. The difference
between these transients yields the field EemðtÞ emitted by the sample, as shown in
Figure 1.12c. The velocity scale on the right-hand side is obtained from Eq. (1.15).
Figure1.12dshows�kðtÞ calculatedaccording toEq. (1.17) fromEtrðtÞ. kð0Þwas taken
as zero, since the electrons initially occupy the conduction bandminimumnear k ¼ 0
(Figure1.12e). If onenowplots vðtÞ from(c) versus�kðtÞ from(d), oneobtains thedots
in (f). To clarify the connection between the curves in (c) and (d)with the dots in (f), we
have marked five moments t1–t5 (vertical lines in Figure 1.12a–d). Comparing these
experimental results with the v versus k relationship from the conduction band
structure (solid line in (f) calculated from Eq. (1.18)), one finds a good agreement,
strongly pointing to ballistic transport across half the Brillouin zone.

24j 1 Nonlinear Terahertz Studies of Ultrafast Quasiparticle Dynamics in Semiconductors



(a)
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(c)

(d)

(e)

(f)

Figure 1.12 (a) Measured incident electric
field as a functionof time,EinðtÞ. (b) Electric field
transmitted through the sample, EtrðtÞ. (c)
Emitted electric field EemðtÞ ¼ EtrðtÞ�EinðtÞ. (d)
�kðtÞ calculated from the time integral of the
electric field EtrðtÞ (Eq. (1.17)), in units of 2p=a.
(e) Lowest conduction band of GaAs in the [100]

direction. The negative mass regions are
hatched. (f) Dots denote EemðtÞ plotted versus
ðe=�hÞAðtÞ. Crosses show the values at the times
t1–t5, marked by vertical lines in (a)–(d). (e)
Solid lines denote velocity v calculated from the
conduction band eðkÞby v ¼ �h�1deð�hkÞ=dk.
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To illustrate the effect of the band structure on the electron velocity, let us consider,
for example, the time interval between t2 and t3. During this whole time, the electric
field acting on the electron is negative (Figure 1.12b). The electron velocity is negative
at t2, then gets positive, and then gets negative again (Figure 1.12c). Thus, although
the electricfield has the samedirection during thewhole time between t2 and t3, there
are times with positive and times with negative acceleration. This can be reconciled
with equation of motion (Newton�s law) only if the effective mass of the electron
changes sign, which is exactly what happens. The effective mass of a band electron is
given by meff ¼ �h2½d2eð�hkÞ=dk2��1, that is, the sign of the effective mass is deter-
mined by the curvature of the band. In the conduction band of GaAs, the effective
mass is positive around theC and the X points and negative around the bandmaxima
(hatched areas in Figure 1.12e), explaining the change of the sign of the acceleration
between t2 and t3. One should note that even for times as late as t5, the data still agree
with the velocity–momentum relationship expected for ballistic transport.

Our interpretation of the results is in agreement with the experimental data for all
THz electric field amplitudesmeasured (not shown). For the two lowest applied field
amplitudes (20–50 kV/cm), the emitted field EemðtÞ is approximately proportional to
the time integral of the incident field, showing a linear Drude response. As we
increase thefield amplitude,we observe higher frequency components and a clipping
of the emitted field amplitude around jEemðtÞj < 7 kV/cm. Since the emitted field is
proportional to the electron velocity (Eq. (1.15)), this clipping is caused by the
maximum velocity possible in the band structure. Figure 1.13 shows the emitted
field (solid lines) for a particularly interesting field amplitude of 200 kV/cm of the
incident field EinðtÞ. At this field strength, a simulation with the traditional Boltz-
mann transport equation (dashed line in Figure 1.13b) completely fails, whereas our
dynamic polaron model (dashed line Figure 1.13a) predicts correctly a quasiballistic
high-field transport on ultrafast timescales.

1.4.2
Discussion

While our experimental results agree very well with the assumption of ballistic
transport across half the Brillouin zone, the results do not agree with calculations
based on the Boltzmann transport equation [29, 74]. While these calculations using
Fermi�s golden rule yield long scattering times (�200 fs) for electrons near the
conduction band minimum, the scattering times decrease markedly for electrons
with an energy enabling them to scatter into side valleys (L and X). Very short times
(down to 3 fs) are obtained for electrons in the negativemass regions.With such short
scattering times, it would be impossible on our timescale (100 fs) to have ballistic
transport across these regions. Instead, one would expect that nearly all electrons are
scattered into the side valleys before reaching the negative mass regions. Since
electrons in the side valleys have rather low velocities (<200 km/s) [29, 37, 59],
scattering into the side valleys would result in a drastic reduction of the electron
velocity and thus of the emitted field. Since the return of electron into the C-valley
takes quite long (>1 ps) [75], they would remain in the side valleys for the rest of the
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pulse. Accordingly, one expects a strong signal EemðtÞ at the beginning of the pulse,
but only very weak signals at later times, as shown by the dashed line in Figure 1.13b.
This is in obvious disagreement with the experimental results.

To understand why calculations based on FGR do not agree with our experimental
results,wehave to consider the requirements forFGRtobevalid. Inourcase, themain
scatteringmechanism for electrons is electron–phonon scattering, both deformation
potential scattering with acoustic phonons and polar optical scattering with longitu-
dinal optical phonons. For such periodic perturbations, FGR is only valid for times t
largecomparedtotheperiodoftheperturbation[76], t � n�1

LO ¼ 110 fs [77].Thus,FGR
isnotvalidfor thetimescaleofourexperiment, inwhichtheelectronsareacceleratedin
one direction for about 250 fs. This is in contrast to most other experiments on high-
field transport, which use a DC field for acceleration.

The dynamic polaron theory, which goes beyond Fermi�s golden rule, predicts
correctly a quasiballistic high-field transport in the quantum kinetic regime. The
application of Eqs. (1.5)–(1.8) and (1.10), already discussed in Section 1.1.1, gives the
result that the size of the electron wave packet Dx2 ¼ �h2=4Dp2x remains almost
constant in our experiments on ultrafast timescales. In particular, a wave packet with

(a)

(b)

Quasiballistic Transport:
Polaron Model

Boltzmann Transport Equation:
Fermi’s Golden Rule

Figure 1.13 (a and b) Solid lines: emitted field
transient EemðtÞ for an incident electric field
EinðtÞ with an amplitude of 200 kV/cm. (a)
Dashed line: result of the model calculation
based on polaron model within the conduction
band structure of GaAs. (b) Same experimental

data as in (a), now compared to the results
(dashed line) of a calculation assuming the
intervalley scattering rates of Ref. [29]. At the
time marked by the arrow, the electron energies
are high enough for scattering into the side
valleys.
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largeDx2 couples only weakly to phononswith large wave vectors, whichwould allow
scattering into the side valleys. Thus, on ultrafast timescales, that is, t < 200 fs,
intervalley scattering is effectively suppressed, which yields long momentum relax-
ation times allowing ballistic transport over several 100 fs. On longer timescales,Dx2

decreases.
Insummary,wehaveobservedballistic transportofelectrons inGaAsacrosshalf the

Brillouin zone by time-resolved high-field THz measurements. We present a model
for high-field transport using polarons that agrees quantitatively with our experimen-
tal results on short timescales and yields the drift velocity on long timescales.

1.5
Conclusions and Outlook

The results presented here demonstrate the potential of nonlinear terahertz spec-
troscopy tounravel transportphenomena in thehighlynonlinearandquantumkinetic
regime. In contrast to studies on longer timescales, the ultrashort time structure of
the electric field transients allows for driving fields with amplitudes up to MV/cm.
While theworkpresentedconcentrateson transport in thepolar semiconductorGaAs,
there is amuchwider range of systems to be studied by such techniques. Beyondbulk
and nanostructured semiconductors andmetals, the transfer and transport of charge
in inorganic and organic molecular materials is readily accessible.

The present emphasis of nonlinear terahertz studies is on understanding the basic
physical processes and interactions that govern charge transport and other field-
driven phenomena.With themethods of coherent pulse shaping at hand, onemay go
beyond such analysis and steer charge transport by interaction with phase-tailored
field transients or sequences of terahertz pulses. This may lead to new concepts for
electronic and optoelectronic devices.

Acknowledgments

We would like to thank our former and present coworkers P. Gaal, W. Kuehn, T.
Bartel, K. Reimann, and R. Hey for their important contributions to the work
reviewed here. In part, the experiments were supported by the Deutsche
Forschungsgemeinschaft.

References

1 Haug,H. and Koch, S.W. (1993)Quantum
Theory of the Optical and Electronic
Properties of Semiconductors, World
Scientific, Singapore.

2 Mahan, G.D. (2000)Many-Particle Physics,
3rd edn, Kluwer, New York.

3 Shah, J. (1999) Ultrafast Spectroscopy of
Semiconductors and Semiconductor
Nanostructures, 2nd edn, Springer, Berlin.

4 Haug,H. and Jauho, A.P. (1996)Quantum
Kinetics in Transport and Optics of
Semiconductors, Springer, Berlin.

28j 1 Nonlinear Terahertz Studies of Ultrafast Quasiparticle Dynamics in Semiconductors



5 Kuhn, T. (1998) Density matrix theory of
coherent ultrafast dynamics, in Theory of
Transport Properties of Semiconductor
Nanostructures (ed. E. Sch€oll), Chapman&
Hall, London, pp. 173–214.

6 Reimann, K. (2007) Table-top sources of
ultrashort THz pulses. Rep. Prog. Phys.,
70, 1597–1632.

7 Ganichev, S.D. and Prettl, W. (2006)
Intense Terahertz Excitation of
Semiconductors, Oxford University Press,
Oxford.

8 Betz, M., G€oger, G., Laubereau, A.,
Gartner, P., B�anyai, L., Haug, H., Ortner,
K., Becker, C.R., and Leitenstorfer, A.
(2001) Subthreshold carrier-LO phonon
dynamics in semiconductors with
intermediate polaron coupling: a purely
quantum kinetic relaxation channel. Phys.
Rev. Lett., 86, 4684–4687.

9 Gaal, P., Kuehn, W., Reimann, K.,
Woerner, M., Elsaesser, T., and Hey, R.
(2007) Internal motions of a quasiparticle
governing its ultrafast nonlinear
response. Nature, 450, 1210–1213.

10 Hase, M., Kitajima, M., Constantinescu,
A.M., and Petek, H. (2003) The birth of
a quasiparticle in silicon observed in
time–frequency space. Nature, 426,
51–54.

11 Huber, R., Tauser, F., Brodschelm, A.,
Bichler, M., Abstreiter, G., and
Leitenstorfer, A. (2001) How many-
particle interactions develop after ultrafast
excitation of an electron–hole plasma.
Nature, 414, 286–289.

12 Fr€ohlich, H. (1954) Electrons in lattice
fields. Adv. Phys., 3, 325–361.

13 Lee, T.D., Low, F.E., and Pines, D. (1953)
The motion of slow electrons in a polar
crystal. Phys. Rev., 90, 297–302.

14 Peeters, F.M. and Devreese, J.T. (1985)
Radius, self-induced potential, and
number of virtual optical phonons of
a polaron. Phys. Rev. B, 31, 4890–4899.

15 Feynman, R.P. (1955) Slow electrons in
a polar crystal. Phys. Rev., 97, 660–665.

16 Jensen, J.H. and Sauls, J.A. (1988)
Polarons near the Cerenkov velocity.
Phys. Rev. B, 38, 13387–13394.

17 Janssen, N. and Zwerger, W. (1995)
Nonlinear transport of polarons.Phys. Rev.
B, 52, 9406–9417.

18 B�anyai, L. (1993) Motion of a classical
polaron in a dc electric field. Phys. Rev.
Lett., 70, 1674–1677.

19 Magnus, W. and Schoenmaker, W. (1993)
Dissipativemotion of an electron–phonon
system in a uniform electric field: an exact
solution. Phys. Rev. B, 47, 1276–1281.

20 Caldeira, A.O. and Leggett, A.J. (1983)
Path integral approach to quantum
Brownian motion. Physica, 121, 587–616.

21 Rossi, F. and Jacoboni, C. (1992)
Enhancement of drift-velocity overshoot
in silicon due to the intracollisional
field effect. Semicond. Sci. Technol., 7,
B383–B385.

22 Chelikowsky, J.R. and Cohen, M.L. (1976)
Nonlocal pseudopotential calculations for
the electronic structure of eleven diamond
and zinc-blende semiconductors. Phys.
Rev. B, 14, 556–582: erratum, 1984, 30,
4828.

23 Cohen M.L. and Bergstresser, T.K. (1966)
Band structures andpseudopotential form
factors for fourteen semiconductors of the
diamondandzinc-blende structures.Phys.
Rev., 141, 789–796.

24 Walter, J.P. and Cohen, M.L. (1969)
Calculation of the reflectivity, modulated
reflectivity, and band structure of GaAs,
GaP, ZnSe, and ZnS. Phys. Rev., 183,
763–772: erratum, 1970, B1, 942.

25 Stroucken, T., Knorr, A., Thomas, P., and
Koch, S.W. (1996) Coherent dynamics of
radiatively coupled quantum-well
excitons. Phys. Rev. B, 53, 2026–2033.

26 Meinert, G., B�anyai, L., and Gartner, P.
(2001) Classical polarons in a constant
electric field. Phys. Rev. B, 63, 245203.

27 Bhattacharya, T., Habib, S., and Jacobs, K.
(2002) The emergence of classical
dynamics in a quantumworld. Los Alamos
Sci., 27, 110–125.

28 Bhattacharya, T., Habib, S., and Jacobs,
K. (2003) Continuous quantum
measurement and the quantum to
classical transition. Phys. Rev. A, 67,
042103.

29 Fischetti, M.V. (1991) Monte Carlo
simulation of transport in technologically
significant semiconductors of the
diamond and zinc-blende structures. I.
Homogeneous transport. IEEE Trans.
Electron Devices, 38, 634–649.

References j29



30 Sigg, H., Wyder, P., and Perenboom,
J.A.A.J. (1985) Analysis of polaron effects
in the cyclotron resonance of n-GaAs and
AlGaAs–GaAs heterojunctions. Phys. Rev.
B, 31, 5253–5261.

31 Spitzer, W.G. and Whelan, J.M. (1959)
Infrared absorption and electron effective
mass in n-type gallium arsenide. Phys.
Rev., 114, 59–63.

32 Elsaesser, T., B€auerle, R.J., and Kaiser, W.
(1989) Hot phonons in InAs observed via
picosecond free-carrier absorption. Phys.
Rev. B, 40, 2976–2979.

33 Bingham, R. (2007)On the crest of a wake.
Nature, 445, 721–722.

34 Blumenfeld, I., Clayton, C.E., Decker, F.-
J., Hogan, M.J., Huang, C., Ischebeck, R.,
Iverson, R., Joshi, C., Katsouleas, T., Kirby,
N., Lu, W., Marsh, K.A., Mori, W.B.,
Muggli, P., Oz, E., Siemann, R.H., Walz,
D., and Zhou, M. (2007) Energy doubling
of 42GeV electrons in a metre-scale
plasma wakefield accelerator. Nature, 445,
741–744.

35 Gunn, J.B. (1963) Microwave oscillations
of current in III–V semiconductors. Solid
State Commun., 1, 88–91.

36 Ridley, B.K. and Watkins, T.B. (1961) The
possibility of negative resistance effects in
semiconductors. Proc. Phys. Soc., 78,
293–304.

37 Windhorn, T.H., Roth, T.J., Zinkiewicz,
L.M., Gaddy, O.L., and Stillman, G.E.
(1982) High field temperature dependent
electron drift velocities in GaAs. Appl.
Phys. Lett., 40, 513–515.

38 Reimann, K., Smith, R.P., Weiner, A.M.,
Elsaesser, T., and Woerner, M. (2003)
Direct field-resolved detection of
terahertz transients with amplitudes of
megavolts per centimeter. Opt. Lett., 28,
471–473.

39 Luo, C., Reimann, K., Woerner, M., and
Elsaesser, T. (2004) Nonlinear terahertz
spectroscopy of semiconductor
nanostructures. Appl. Phys. A, 78,
435–440.

40 Luo, C.W., Reimann, K., Woerner, M.,
Elsaesser, T., Hey, R., and Ploog, K.H.
(2004) Phase-resolved nonlinear response
of a two-dimensional electron gas under
femtosecond intersubband excitation.
Phys. Rev. Lett., 92, 047402–1–04740-4.

41 Luo, C.W., Reimann, K., Woerner, M.,
Elsaesser, T., Hey, R., and Ploog, K.H.
(2004) Rabi oscillations of intersubband
transitions in GaAs/AlGaAs MQWs.
Semicond. Sci. Technol., 19, S285–S286.

42 Shih, T., Reimann, K., Woerner, M.,
Elsaesser, T., Waldm€uller, I., Knorr, A.,
Hey, R., and Ploog, K.H. (2005) Nonlinear
response of radiatively coupled
intersubband transitions of quasi-two-
dimensional electrons. Phys. Rev. B, 72,
195338-1–195338-8.

43 Shih, T., Reimann, K., Woerner, M.,
Elsaesser, T., Waldm€uller, I., Knorr, A.,
Hey, R., and Ploog, K.H. (2006) Radiative
coupling of intersubband transitions in
GaAs/AlGaAs multiple quantum wells.
Physica E, 32, 262–265.

44 Bartel, T., Gaal, P., Reimann, K., Woerner,
M., and Elsaesser, T. (2005) Generation
of single-cycle THz transients with high
electric-field amplitudes. Opt. Lett., 30,
2805–2807.

45 Dragoman, D. and Dragoman, M. (2004)
Terahertz fields and applications. Prog.
Quantum Electron., 28, 1–66.

46 Schmuttenmaer, C.A. (2004) Exploring
dynamics in the far-infraredwith terahertz
spectroscopy.Chem. Rev., 104, 1759–1780.

47 Kress, M., L€offler, T., Eden, S., Thomson,
M., and Roskos, H.G. (2004) Terahertz-
pulse generation by photoionization of air
with laser pulses composed of both
fundamental and second-harmonic
waves. Opt. Lett., 29, 1120–1122.

48 L€offler, T., Kreß, M., Thomson, M., Hahn,
T., Hasegawa, N., and Roskos,H.G. (2005)
Comparative performance of terahertz
emitters in amplifier-laser-based systems.
Semicond. Sci. Technol., 20, S134–S141.

49 Budiarto, E., Margolies, J., Jeong, S., Son,
J., and Bokor, J. (1996) High-intensity
terahertz pulses at 1-kHz repetition rate.
IEEE J. QuantumElectron., 32, 1839–1846.

50 You, D., Jones, R.R., Bucksbaum, P.H.,
and Dykaar, D.R. (1993) Generation of
high-power sub-single-cycle 500-fs
electromagnetic pulses. Opt. Lett., 18,
290–292.

51 Cook, D.J. and Hochstrasser, R.M. (2000)
Intense terahertz pulses by four-wave
rectification in air. Opt. Lett., 25,
1210–1212.

30j 1 Nonlinear Terahertz Studies of Ultrafast Quasiparticle Dynamics in Semiconductors



52 Hamster, H., Sullivan, A., Gordon, S.,
White, W., and Falcone, R.W. (1993)
Subpicosecond, electromagnetic pulses
from intense laser–plasma interaction.
Phys. Rev. Lett., 71, 2725–2728.

53 Tournois, P. (1997) Acousto-optic
programmable dispersive filter for
adaptive compensation of group delay
time dispersion in laser systems. Opt.
Commun., 140, 245–249.

54 Verluise, F., Laude, V., Cheng, Z.,
Spielmann, Ch., and Tournois, P. (2000)
Amplitude and phase control of ultrashort
pulses by use of an acousto-optic
programmable dispersive filter: pulse
compression and shaping. Opt. Lett., 25,
575–577.

55 Allenspacher, P., Baehnisch, R., and
Riede, W. (2004) Multiple ultrashort pulse
damage of AR-coated beta-barium borate.
Proc. SPIE, 5273, 17–22.

56 Leitenstorfer, A., Hunsche, S., Shah, J.,
Nuss, M.C., and Knox, W.H. (1999)
Detectors and sources for ultrabroadband
electro-optic sampling: experiment and
theory. Appl. Phys. Lett., 74, 1516–1518.

57 Wu, Q. and Zhang, X.-C. (1997) 7
terahertz broadband GaP electro-optic
sensor. Appl. Phys. Lett., 70, 1784–1786.

58 Gaal, P., Reimann, K., Woerner, M.,
Elsaesser, T., Hey, R., and Ploog, K.H.
(2006) Nonlinear terahertz response of
n-type GaAs. Phys. Rev. Lett., 96, 187402-
1–187402-4.

59 Abe, M., Madhavi, S., Shimada, Y.,
Otsuka, Y., Hirakawa, K., and Tomizawa,
K. (2002) Transient carrier velocities in
bulk GaAs: quantitative comparison
between terahertz data and ensemble
Monte Carlo calculations. Appl. Phys.
Lett., 81, 679–681.

60 Leitenstorfer, A., Hunsche, S., Shah, J.,
Nuss, M.C., and Knox, W.H. (2000)
Femtosecond high-field transport in
compound semiconductors. Phys. Rev. B,
61, 16642–16652.

61 Schwanh€außer, A., Betz, M., Eckardt, M.,
Trumm, S., Robledo, L., Malzer, S.,
Leitenstorfer, A., and D€ohler, G.H. (2004)
Ultrafast transport of electrons in GaAs:
direct observation of quasiballistic motion
and side valley transfer. Phys. Rev. B, 70,
085211.

62 Gaal, P., Kuehn, W., Reimann, K.,
Woerner, M., Elsaesser, T., Hey, R., Lee,
J.S., and Schade, U. (2008) Carrier-wave
Rabi flopping on radiatively coupled
shallow donor transitions in n-type GaAs.
Phys. Rev. B, 77, 235204-1–235204-6.

63 Wu, Q., Litz, M., and Zhang, X.-C. (1996)
Broadband detection capability of ZnTe
electro-optic field detectors. Appl. Phys.
Lett., 68, 2924–2926.

64 Wu,Q. andZhang,X.-C. (1995) Free-space
electro-optic sampling of terahertz beams.
Appl. Phys. Lett., 67, 3523–3525.

65 Gaal, P., Reimann, K., Woerner, M.,
Elsaesser, T., Hey, R., and Ploog, K.H.
(2007) Nonlinear THz spectroscopy of n-
typeGaAs, inUltrafast Phenomena XV (eds
P. Corkum, D. Jonas, D. Miller, and A.M.
Weiner), Springer, Berlin, pp. 799–801.

66 Bloch, F. (1928) Über die
Quantenmechanik der Elektronen in
Kristallgittern. Z. Phys., 52, 555–600.

67 Ridley, B.K. (1993) Quantum Processes in
Semiconductors, 3rd edn, Oxford
University Press, Oxford.

68 Feldmann, J., Leo, K., Shah, J., Miller,
D.A.B., Cunningham, J.E., Meier, T., von
Plessen, G., Schulze, A., Thomas, P., and
Schmitt-Rink, S. (1992) Optical
investigation of Bloch oscillations in a
semiconductor superlattice. Phys. Rev. B,
46, 7252–7255.

69 Unterrainer, K., Keay, B.J., Wanke, M.C.,
Allen, S.J., Leonard, D., Medeiros-Ribeiro,
G., Bhattacharya, U., and Rodwell, M.J.W.
(1996) Inverse Bloch oscillator: strong
terahertz-photocurrent resonances at the
Bloch frequency. Phys. Rev. Lett., 76,
2973–2976.

70 Waschke, C., Roskos, H.G., Schwedler, R.,
Leo, K., Kurz, H., and K€ohler, K. (1993)
Coherent submillimeter-wave emission
from Bloch oscillations in a
semiconductor superlattice. Phys. Rev.
Lett., 70, 3319–3322.

71 Bloch, I. (2008) Quantum coherence and
entanglement with ultracold atoms in
optical lattices. Nature, 453, 1016–1022.

72 Delahaye, J., Hassel, J., Lindell, R.,
Sillanp€a€a, M., Paalanen, M., Sepp€a, H.,
andHakonen, P. (2003) Low-noise current
amplifier based onmesoscopic Josephson
junction. Science, 299, 1045–1048.

References j31



73 Christodoulides, D.N., Lederer, F., and
Silberberg, Y. (2003) Discretizing light
behaviour in linear and nonlinear
waveguide lattices. Nature, 424, 817–823.

74 Littlejohn, M.A., Hauser, J.R., and
Glisson, T.H. (1977) Velocity–field
characteristics of GaAs with Cc

6�Lc6�Xc
6

conduction-band ordering. J. Appl. Phys.,
48, 4587–4590.

75 Tsuruoka, T., Hashimoto, H., and
Ushioda, S. (2004) Real-space observation

of electron transport in AlGaAs/GaAs
quantum wells using a scanning
tunneling microscope. Thin Solid Films,
464–465, 469–472.

76 Messiah, A. (1964) M�ecanique Quantique,
vol. 2, Dunod, Paris.

77 Holtz, M., Seon, M., Brafman, O., Manor,
R., and Fekete, D. (1996) Pressure
dependence of the optic phonon energies
in AlxGa1�xAs. Phys. Rev. B, 54,
8714–8720.

32j 1 Nonlinear Terahertz Studies of Ultrafast Quasiparticle Dynamics in Semiconductors


