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  4.1   CRYSTALLINE SUBSTANCES 

 Crystallography emphasizes the long - range 
order or crystal structure of crystalline sub-
stances. It focuses on the symmetry of crystal-
line materials and on the ways in which their 
long - range order is related to the three - dimen-
sional repetition of fundamental units of 
pattern during crystal growth. In minerals, 
the fundamental units of pattern are molecu-
lar clusters of coordination polyhedra or 
stacking sequences (Chapter  2 ). The ways in 
which these basic units can be repeated to 
produce crystal structures with long - range 
order are called symmetry operations. In 
addition, crystallography focuses on the 
description and signifi cance of planar features 
in crystals including planes of atoms, cleavage 
planes, crystal faces and the forms of crystals. 
Crystallography is also concerned with crystal 
defects, local imperfections in the long - range 
order of crystals. Given the broad scope of 

this text, a more detailed treatment of crystal-
lography cannot be provided  . 

  4.1.1   Crystals and  c rystal  f aces 

 Mineral crystals are one of nature ’ s most 
beautiful creations. Many crystals are enclosed 
by fl at surfaces called crystal faces.  Crystal 
faces  are formed when mineral crystals grow, 
and enclose crystalline solids when they stop 
growing. Perfectly formed crystals are notable 
for their remarkable symmetry (Figure  4.1 ). 
The external symmetry expressed by crystal 
faces permits us to infer the geometric pat-
terns of the atoms in mineral crystal struc-
tures as well. These patterns inferred from 
external symmetry have been confi rmed by 
advanced analytical techniques such as X - ray 
diffraction (XRD) and atomic force micro-
scopy (AFM).   

 Mineralogists have developed language to 
describe the symmetry of crystals and the 
crystal faces that enclose them. Familiarizing 
students with the concepts and terminology 
of crystal symmetry and crystal faces is one 
of the primary goals of this chapter. A second 
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(a) (b)

        Figure 4.1     Representative mineral crystals: (a) pyrite; (b) tourmaline.  (Photos courtesy of the 
Smithsonian Institute.)  (For color version, see Plate 4.1, between    pp. 248 and 249. )  

goal of this chapter is to build connections 
between crystal chemistry (Chapters  2  and  3 ) 
and crystallography by explaining the rela-
tionships between chemical composition and 
coordination polyhedra and the form, sym-
metry and crystal faces that develop as crys-
tals grow.  

  4.1.2   Motifs and  n odes 

 When minerals begin to form, atoms or ions 
bond together, so that partial or complete 
coordination polyhedra develop (Chapter  2 ). 
Because the ions on the edges and corners of 
coordination polyhedra have unsatisfi ed elec-
trostatic charges, they tend to bond to addi-
tional ions available in the environment as the 
mineral grows. Eventually, a small cluster of 
coordination polyhedra is formed that con-
tains all the coordination polyhedra charac-
teristic of the mineral and its chemical 
composition. In any mineral, we can recog-
nize a small cluster of coordination polyhedra 
that contains the mineral ’ s fundamental com-
position and unit of pattern or motif. As the 
mineral continues to grow, additional clusters 
of the same pattern of coordination polyhedra 
are added to form a mineral crystal with a 
three - dimensional geometric pattern  –  a long -
 range, three - dimensional crystal structure. 
Clusters of coordination polyhedra are added, 
one atom or ion at a time, as (1) the crystal 
nucleates, (2) it becomes a microscopic crystal, 
and, if growth continues, (3) it becomes a 

macroscopic crystal. Growth continues in this 
manner until the environmental conditions 
that promote growth change and growth 
ceases. 

 Long - range, geometric arrangements of 
atoms and/or ions in crystals are produced 
when a fundamental array of atoms, a unit of 
pattern or motif, is repeated in three dimen-
sions to produce the crystal structure. A  motif  
is the smallest unit of pattern that, when 
repeated by a set of symmetry operations, will 
generate the long - range pattern characteristic 
of the crystal. In minerals, the motif is com-
posed of one or more coordination polyhedra. 
In wallpaper, it is a basic set of design ele-
ments that are repeated to produce a two -
 dimensional pattern, whereas in a brick wall 
the fundamental motif is that of a single brick 
that is repeated in space to form the three -
 dimensional structure. The repetition of these 
fundamental units of pattern by a set of rules 
called  symmetry operations  can produce a 
two -  or three - dimensional pattern with long -
 range order. When several different motifs 
could be repeated by a similar set of symmetry 
operations, we may wish to emphasize the 
general rules by which different motifs may 
be repeated to produce a particular type of 
long - range order. In such cases it is useful to 
represent motifs by using a point. A point 
used to represent any motif is called a  node . 
The pattern or array of atoms about every 
node must be the same throughout the pattern 
the nodes represent.   
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  4.2   SYMMETRY OPERATIONS 

  4.2.1   Simple  s ymmetry  o perations 

 Symmetry operations may be simple or com-
pound.  Simple symmetry operations  produce 
repetition of a unit of pattern or motif using 
a single type of operation. Compound sym-
metry operations produce repetition of a unit 
of pattern or motif using a combination of 
two types of symmetry operation. Simple 
symmetry operations include (1) translation, 
by specifi c distances in specifi ed directions, 
(2) rotation, about a specifi ed set of axes, 
(3) refl ection, across a mirror plane, and 
(4) inversion, through a point called a center. 
These operations are discussed below and 
provide useful insights into the geometry of 
crystal structures and the three - dimensional 
properties of such crystals. 

  Translation 

 The symmetry operation called  translation  
involves the periodic repetition of nodes or 
motifs by systematic linear displacement. 
One - dimensional translation of basic design 
elements generates a row of similar elements 
(Figure  4.2 a). The translation is defi ned by the 
 unit translation vector (t) , a specifi c length 
and direction of systematic displacement by 
which the pattern is repeated. Motifs other 
than commas could be translated by the same 
unit translation vector to produce a one -
 dimensional pattern. In minerals, the motifs 
are clusters of atoms or coordination polyhe-
dra that are repeated by translation.   

  Two - dimensional translations  are defi ned 
by  two unit translation vectors  ( t a  and t b   or  t 1  
and t 2  , respectively). The translation in one 
direction is represented by the length and 
direction of t a  or t 1 ; translation in the 
second direction is represented by the length 
and direction of t b  or t 2 . The pattern generated 
depends on the length of the two unit transla-
tion vectors and the angles between their 
directions. The result of any two - dimensional 
translation is a  plane lattice  or  plane mesh . A 
plane lattice is a two - dimensional array of 
motifs or nodes in which every node has an 
environment similar to every other node in 
the array (Figure  4.2 a,b). 

  Three - dimensional translations  are defi ned 
by  three unit translation vectors  ( t a , t b  and t c   
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     Figure 4.2     (a) Two - dimensional translation at 
right angles (t 1  and t 2 ) to generate a two -
 dimensional mesh of motifs or nodes. 
(b) Two - dimensional translation (t 1  and t 2 ) 
not at right angles to generate a two -
 dimensional mesh or lattice. (c) Three -
 dimensional translation (t 1 , t 2  and t 3 ) to 
generate a three - dimensional space lattice. 
 (From Klein and Hurlbut,  1985 ; with 
permission of John Wiley & Sons.)   

or  t 1 , t 2  and t 3  , respectively). The translation 
in one direction is represented by the length 
and direction of t a  or t 1 , the translation in the 
second direction is represented by t b  or t 2  and 
the translation in the third direction is repre-
sented by t c  or t 3 . The result of any three -
 dimensional translation is a  space lattice . A 
space lattice is a three - dimensional array of 
motifs or nodes in which every node has an 
environment similar to every other node in 
the array. Since crystalline substances such as 
minerals have long - range, three - dimensional 
order and since they may be thought of as 
motifs repeated in three dimensions, the 
resulting array of motifs is a  crystal lattice . 
Figure  4.2 c illustrates a space lattice produced 
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by a three - dimensional translation of nodes 
or motifs.  

  Rotation 

 Motifs can also be repeated by non - 
translational symmetry operations. Many 
patterns can be repeated by rotation (n). 
 Rotation (n)  is a symmetry operation that 
involves the rotation of a pattern about an 
imaginary line or axis, called an  axis of rota-
tion , in such a way that every component of 
the pattern is perfectly repeated one or more 
times during a complete 360 °  rotation. The 
symbol  “ n ”  denotes the number of repetitions 
that occur during a complete rotation. Figure 
 4.3  uses comma motifs to depict the major 
types of rotational symmetry (n) that occur in 
minerals and other inorganic crystals. The 
axis of rotation for each motif is perpendicu-
lar to the page. Table  4.1  summarizes the 
major types of rotational symmetry.      

  Refl ection 

 Refl ection is as familiar to us as our own 
refl ections in a mirror or that of a tree in a 

1 turn of 360° rotation
1

2 turns of 180° rotation
2

4 turns of 90° rotation
4

6 turns of 60° rotation
6

3 turns of 120° rotation
3

     Figure 4.3     Examples of the major types of rotational symmetry (n   =   1, 2, 3, 4 or 6) that occur in 
minerals.  (From Klein and Hurlbut,  1985 ; with permission of John Wiley & Sons.)   

  Table 4.1    Five common axes of rotational 
symmetry in minerals. 

   Type  
   Symbolic 
notation     Description  

  One - fold 
axis of 
rotation  

  (1 or A 1 )    Any axis of rotation 
about which the motif 
is repeated only once 
during a 360 °  rotation 
(Figure  4.3 , (1))  

  Two - fold 
axis of 
rotation  

  (2 or A 2 )    Motifs repeated every 
180 °  or twice during a 
360 °  rotation (Figure 
 4.3  (2))  

  Three - fold 
axis of 
rotation  

  (3 or A 3 )    Motifs repeated every 
120 °  or three times 
during a complete 
rotation (Figure  4.3  (3))  

  Four - fold 
axis of 
rotation  

  (4 or A 4 )    Motifs repeated every 
90 °  or four times 
during a complete 
rotation (Figure  4.3  (4))  

  Six - fold 
axis of 
rotation  

  (6 or A 6 )    Motifs repeated every 
60 °  or six times during 
a complete rotation 
(Figure  4.3  (5))  
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inversion through a point called a  center of 
inversion (i) . Inversion occurs when every 
component of a pattern is repeated by equi-
distant projection through a common point 
or center of inversion. The two hands in 
Figure  4.5  illustrate the enantiomorphic sym-
metry operation called inversion and show 
the center through which inversion occurs. In 
some symbolic notations centers are symbol-
ized by (c) rather than (i).   

 One test for the existence of a center of 
symmetry is that all the components of a 

still body of water. It is also the basis for the 
concept of bilateral symmetry that character-
izes many organisms (Figure  4.4 ). Yet it is a 
symmetry operation that is somewhat more 
diffi cult for most people to visualize than 
rotation.  Refl ection (m)  is a symmetry opera-
tion in which every component of a pattern is 
repeated by refl ection across a plane called a 
 mirror plane  (m). Refl ection occurs when 
each component is repeated by equidistant 
projection perpendicular to the mirror plane. 
Refl ection retains all the components of the 
original motif but changes its  “ handedness ” ; 
the new motifs produced by refl ection across 
a mirror plane are mirror images of each 
other (Figure  4.4 ). Symmetry operations that 
change the handedness of motifs are called 
 enantiomorphic operations .   

 One test for the existence of a mirror plane 
of symmetry is that all components of the 
motifs on one side of the plane are repeated 
at equal distances on the other side of the 
plane along projection lines perpendicular to 
the plane. If this is not true, the plane is not 
a plane of mirror symmetry.  

  Inversion 

 Inversion is perhaps the most diffi cult of the 
simple symmetry operations to visualize. 
 Inversion  involves the repetition of motifs by 

Reflected
motif

(a)

Original
motif

Mirror
x

y

z (b)

        Figure 4.4     Two -  and three - dimensional motifs that illustrate the concept of refl ection across a plane 
of mirror symmetry (m). (a) Mirror image of a hand.  (From Klein and Hurlbut,  1985 ; with 
permission of John Wiley & Sons.)  (b) Bilateral symmetry of a butterfl y; the two halves are nearly, 
but not quite, perfect mirror images of each other.  (Image from butterfl ywebsite.com.)   

Original
motif

Inverted
motif x

y

z

     Figure 4.5     Inversion through a center of 
symmetry (i) illustrated by a hand repeated by 
inversion through a center (inversion point). 
 (From Klein and Hurlbut,  1985 ; with 
permission of John Wiley & Sons.)   



80 EARTH MATERIALS

2
c

c

b

a
m g

c

c

b

a

     Figure 4.6     Mirror plane (m) with the 
translation vector (c) on the left, contrasted 
with a glide plane (g) with the translation 
vector (c/2) combined with mirror refl ection 
on the right.  (From Wenk and Bulakh,  2004 ; 
with permission of Oxford University Press.)   
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     Figure 4.7     (a) An axis of four - fold rotation (4). This contrasts with (b) an axis of four - fold 
rotoinversion (  4) that combines rotation with inversion every 90 ° , and (c) a four - fold screw axis (4 1 ) 
that combines translation with 90 °  rotations every one - fourth translation.  (From Wenk and Bulakh, 
 2004 ; with permission of Oxford University Press.)   

pattern are repeated along lines that pass 
through a common center and are repeated at 
equal distances from that center. If this is not 
the case, the motif does not possess a center 
of symmetry.   

  4.2.2   Compound  s ymmetry  o perations 

 Three other symmetry operations exist but, 
unlike those discussed so far, they are  com-
pound symmetry operations  that combine 
two simple symmetry operations.  Glide refl ec-
tion  (g) is a symmetry operation that com-
bines translation (t) or (c) parallel to a mirror 
plane (m) with refl ection across the mirror 
plane to produce a glide plane (Figure  4.6 ).   

  Rotoinversion  ( n– ) is an operation that com-
bines rotation about an axis with inversion 
through a center to produce an axis of rotoin-
version. Figure  4.7 b illustrates an axis of four -
 fold rotoinversion (  4 ) in which the motif is 
repeated after 90 °  rotation followed by inver-
sion through a center so that it is repeated 
four times by rotoinversion during a 360 °  
rotation. Axes of two - fold rotoinversion (  2 ) 
are unique symmetry operations, whereas 
axes of three - fold rotoinversion (  3 ) are 
equivalent to a three - fold axis of rotation and 

a center of inversion (3i), and axes of six - fold 
rotoinversion (  6 ) are equivalent to a three -
 fold axis of rotation perpendicular to a mirror 
plane (3/m).  Screw rotation  (n a ) is a symmetry 
operation that combines translation parallel 
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based on their unique plane point group sym-
metry (Figure  4.8 ). Using the symbolic lan-
guage discussed in the previous section on 
symmetry, the ten plane point groups are  1, 
2, 3, 4, 6, m, 2mm, 3m, 4mm and 6mm . The 
numbers refer to axes of rotation that are 
perpendicular to the plane (or page); the m 
refers to mirror planes perpendicular to the 
page. The fi rst m refers to a set of mirror 
planes that is repeated by the rotational sym-
metry and the second m to a set of mirror 
planes that bisects the fi rst set. Note that the 
total number of mirror planes is the same as 
the number associated with its rotational axis 
(e.g., 3m has three mirror planes and 6mm 
has six mirror planes).    

  4.3.2   Plane  l attices and  u nit  m eshes 

 Any motif can be represented by a point called 
a node. Points or nodes can be translated in 
one direction by a unit translation vector t a  or 
t 1  to produce a line of nodes or motifs. Nodes 
can also be translated in two directions t a  and 
t b  or t 1  and t 2  to produce a two - dimensional 
array of points called a plane mesh or  plane 
net . Simple translation of nodes in two 
directions produces fi ve basic types of two -
 dimensional patterns (Figure  4.9 ). The small-
est units of such meshes, which contain at 
least one node and the unit translation vectors, 
are called  unit meshes (unit nets)  and contain 
all the information necessary to produce the 

to an axis with rotation about the axis 
(Figure  4.7 c).   

 Readers interested in more detailed treat-
ments of the various types of compound sym-
metry operations should refer to Klein and 
Dutrow  (2007) , Wenk and Bulakh  (2004)  or 
Nesse  (2000) .   

  4.3   TWO - DIMENSIONAL MOTIFS AND 
LATTICES (MESHES) 

 The symmetry of three - dimensional crystals 
can be quite complex. Understanding sym-
metry in two dimensions provides an excel-
lent basis for understanding the higher 
levels of complexity that characterize three - 
dimensional symmetries. It also provides a 
basis for learning to visualize planes of con-
stituents within three - dimensional crystals. 
Being able to visualize and reference lattice 
planes is of the utmost importance in describing 
cleavage and crystal faces and in the identifi ca-
tion of minerals by X - ray diffraction methods. 

  4.3.1   Plane  p oint  g roups 

 Any fundamental unit of two - dimensional 
pattern, or motif, can be repeated by various 
symmetry operations to produce a larger two -
 dimensional pattern. All two - dimensional 
motifs that are consistent with the generation 
of long - range two - dimensional arrays can be 
assigned to one of  ten plane point groups  

m
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     Figure 4.8     The ten plane point groups defi ned by rotational and refl ection symmetry.  (From Klein 
and Hurlbut,  1985 ; with permission of John Wiley & Sons.)   
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only at the corners (primitive   =   p) or have an 
additional node in the center (c) of the mesh.   

  Square unit meshes  (Figure  4.9 a) are primi-
tive and have equal unit translation vectors at 
90 °  angles to each other (p, t a    =   t b ,  γ    =   90 ° ). 
 Primitive rectangular unit meshes  (Figure 
 4.9 b) differ in that, although the unit transla-
tion vectors intersect at right angles, they are 
of unequal lengths (p, t a     ≠    t b ,  γ    =   90 ° ). Diamond 
unit meshes have equal unit translation vectors 
that intersect at angles other than 60 ° , 90 °  or 
120 ° . Diamond lattices can be produced and 
represented by  primitive diamond unit meshes  
(p, t a    =   t b ,  γ     ≠    60 ° , 90 °  or 120 ° ). They can also 
be produced by the translation of  centered 
rectangular unit meshes  (Figure  4.9 c) in which 
the two unit mesh sides are unequal, the angle 
between them is 90 °  and there is a second 
node in the center of the mesh (c, t a     ≠    t b , 
 γ    =   90 ° ). In a centered rectangular mesh there 
is a total content of two nodes   =   two motifs. 
If one looks closely, one may see evidence for 
glide refl ection in the centered rectangular 
mesh and/or the larger diamond lattice. The 
 hexagonal unit mesh  (Figure  4.9 d) is a special 
form of the primitive diamond mesh because, 
although the unit translation vectors are 
equal, the angles between them are 60 °  and 
120 °  (p, t a    =   t b ,  γ    =   120 ° ). Three such unit 
meshes combine to produce a larger pattern 
with hexagonal symmetry.  Oblique unit 
meshes  (Figure  4.9 e) are primitive and are 
characterized by unequal unit translation 
vectors that intersect at angles that are not 
90 ° , 60 °  or 120 °  (p, t a     ≠    t b ,  γ     ≠    90 ° , 60 °  or 
120 ° ) and produce the least regular, least 
symmetrical two - dimensional lattices. The 
arrays of nodes on planes within minerals 
always correspond to one of these basic 
patterns.  

  4.3.3   Plane  l attice  g roups 

 When the ten plane point groups are com-
bined with the fi ve unit meshes in all ways 
that are compatible, a total of  17 plane lattice 
groups  are recognized on the basis of the total 
symmetry of their plane lattices. Note that 
these symmetries involve translation - free sym-
metry operations including rotation and 
refl ection, translation and compound symme-
try operations such as glide refl ection. Table 
 4.2  summarizes the 17 plane lattice groups 
and their symmetries. Primitive lattices are 
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     Figure 4.9     The fi ve principal types of meshes 
or nets and their unit meshes (shaded gray): 
(a) square, (b) primitive rectangle, (c) 
diamond or centered rectangle, (d) hexagonal, 
(e) oblique.  (From Nesse,  2000   , with 
permission of Oxford University Press.)   

larger two - dimensional pattern. The unit 
meshes contain only translation symmetry 
information. The fi ve basic types of unit mesh 
are classifi ed on the basics of the unit transla-
tion vector lengths (equal or unequal), the 
angles between them (90 ° , 60 °  and 120 °  or 
none of these) and whether they have nodes 
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nets, we can recognize the smallest three - 
dimensional units, called unit cells, which 
contain all the information necessary to 
produce the three - dimensional space lattices. 
In this section, we will briefl y describe the 
space point groups, after which we will detail 
Bravais lattices, unit cells and their relation-
ship to the six major crystal systems to which 
minerals belong. 

  4.4.1   Space  p oint  g roups 

 In minerals, the fundamental motifs are parts 
of clusters of three - dimensional coordination 
polyhedra suffi cient to establish the composi-
tion of the mineral. When these are repeated 
in three dimensions during mineral growth, 
they produce the long - range order character-
istic of crystalline substances (Figure  4.10 ). 
Like   all fundamental units of pattern, these 
three - dimensional motifs can be classifi ed 
on the basis of their translation - free 
symmetries.   

 Only 32 different three - dimensional motif 
symmetries exist. These defi ne 32 space point 
groups, each with unique space point group 
symmetry. In minerals, the 32  crystal classes  
 –  to one of which all minerals belong  –  cor-
respond to the 32 space point group sym-
metries of the mineral ’ s motif. That the crystal 
classes were originally defi ned on the basis of 
the external symmetry of mineral crystals is 
another example of the fact that the external 
symmetry of minerals refl ects the internal 
symmetry of their constituents. The 32 crystal 
classes belong to six (or seven) crystal systems, 
each with its own characteristic symmetry. 

denoted by  “ P ”  and centered lattices by  “ C ” . 
Axes of rotation for the entire pattern perpen-
dicular to the plane are noted by 1, 2, 3, 4 
and 6. Mirror planes perpendicular to the 
plane are denoted by  “ m ” ; glide planes per-
pendicular to the plane are denoted by  “ g ” .   

 The details of plane lattice groups are well 
documented, but beyond the scope of this 
text.   

  4.4   THREE - DIMENSIONAL MOTIFS 
AND LATTICES 

 Minerals are three - dimensional Earth materi-
als with three - dimensional crystal lattices. 
The fundamental units of pattern in any three -
 dimensional lattice are  three - dimensional 
motifs  that can be classifi ed according to their 
translation - free symmetries. These three -
 dimensional equivalents of the two - 
dimensional plane point groups are called 
 space point groups . 

 Space point groups can be represented by 
nodes. These nodes can be translated to 
produce three - dimensional patterns of points 
called  space lattices . Space lattices are the 
three - dimensional equivalents of plane nets 
or meshes. By analogy with unit meshes or 

  Table 4.2    The 17 plane lattice groups and the 
unique combination of point group and unit 
mesh that characterizes each. 

   Lattice     Point group     Plane group  

  Oblique (P)    1    P1  
  2    P2  

  Rectangular 
(P and C)  

  m    Pm  
  Pg  
  Cm  

  2mm    P2mm  
  P2mg  
  P2gg  
  C2mm  

  Square (P)    4    P4  
  4mm    P4mm  

  P4gm  

  Hexagonal (P) 
(rhombohedral)  

  3    P3  
  3m    P3m1  

  P3lm  

  Hexagonal (P) 
(hexagonal)  

  6    P6  
  6mm    P6mm  

     Figure 4.10     A primitive unit cell and a 
long - range space point lattice that results 
from its repetition by symmetry operations in 
three dimensions.  
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  Table 4.3    The six crystal systems and 32 crystal classes, with their characteristic symmetry and crystal 
forms. 

   System     Crystal class     Class symmetry     Total symmetry  

  Isometric    Hexoctahedral       4 32m m     3A 4 ,   4 3A , 6A 2 , 9m  

  Hextetrahedral       43 m        3 4A , 4A 3 , 6m  
  Gyroidal    432    3A 4 , 4A 3 , 6A 2   
  Diploidal       2 3m      3A 2 , 3m,   4 3A   
  Tetaroidal    23    3A 2 , 4A 3   

  Tetragonal    Ditetragonal – dipyramidal    4/m2/m2/m    i, 1A 4 , 4A 2 , 5m  
  Tetragonal – scalenohedral       42 m        1 4A , 2A 2 , 2m  
  Ditetragonal – pyramidal    4mm    1A 4 , 4m  
  Tetragonal – trapezohedral    422    1A 4 , 4A 2   
  Tetragonal – dipyramidal    4/m    i, 1A 4 , 1m  
  Tetragonal – disphenoidal       4        A4    
  Tetragonal – pyramidal    4    1A 4   

  Hexagonal 
(hexagonal)  

  Dihexagonal – dipyramidal    6/m2/m2/m    i, 1A 6 , 6A 2 , 7m  
  Ditrigonal – dipyramidal    6m2    1A 6 , 3A 2 , 3m  
  Dihexagonal – pyramidal    6mm    1A 6 , 6m  
  Hexagonal – trapezohedral    622    1A 6 , 6A 2   
  Hexagonal – dipyramidal    6/m    i, 1A 6 , 1m  
  Trigonal – dipyramidal       6         1 6A    
  Hexagonal – pyramidal    6    1A 6   

  Hexagonal 
(rhombohedral 
or trigonal)  

  Hexagonal – scalenohedral       32 m       1 3A , 3A 2 , 3m  
  Ditrigonal – pyramidal    3m    1A 3 , 3m  
  Trigonal – trapezohedral    32    1A 3 , 3A 2   
  Rhombohedral       3        1 3A    
  Trigonal – pyramidal    3    1A 3   

  Orthorhombic    Rhombic – dipyramidal    2/m2/m2/m    i, 3A 2 , 3m  
  Rhombic – pyramidal    mm2    1A 2 , 2m  
  Rhombic – disphenoidal    222    3A 2   

  Monoclinic    Prismatic    2/m    i, 1A 2 , 1m  
  Sphenoidal    2    1A 2   
  Domatic    m    1m  

  Triclinic    Pinacoidal       1     i  

  Pedial    1    None  

Table  4.3  summarizes the six (or seven) crystal 
systems, the symmetries of the 32 space point 
groups or classes and their names, which are 
based on general crystal forms. It is important 
to remember that a crystal cannot possess 
more symmetry than that of the motifs of 
which it is composed, but it can possess less, 
depending on how the motifs are arranged 
and how the crystal grew.    

  4.4.2   Bravais  l attices,  u nit  c ells and 
 c rystal  s ystems 

 As noted earlier, any motif can be represented 
by a point called a node. Nodes, and the 
motifs they represent, can also be translated 
in three directions (t a , t b  and t c ) to produce 
three - dimensional space point lattices and 
unit cells (see Figure  4.10 ).   
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 The translational symmetry of every 
mineral can be represented by one of the 14 
basic types of unit cells. Each unit cell con-
tains one or more nodes that represent motifs 
and contains all the information necessary to 
characterize chemical composition. Each unit 
cell also contains the rules according to which 
motifs are repeated by translation; the repeat 
distances, given by t a    =   a, t b    =   b, t c    =   c, and 
directions, given by angles  α ,  β  and  γ  (where 
b  ∧  c   =    α ; c  ∧  a   =    β ; a  ∧  b   =    γ ). The 14 Bravais 
lattices can be grouped into  six crystal systems  
on the basis of the relative dimensions of the 
unit cell edges (a, b and c) and the angles 
between them ( α ,  β  and  γ ). These six (or 
seven) systems in which all minerals crystal-
lize include the  isometric  (cubic),  tetragonal , 
 orthorhombic ,  monoclinic ,  triclinic ,  hexago-
nal  (hexagonal division or system) and hex-
agonal ( trigonal  division or system). Table  4.4  
summarizes the characteristics of the Bravais 
lattices in major crystal systems.     

  4.5   CRYSTAL SYSTEMS 

 Imagine yourself in the minerals section of a 
museum. Large crystals are partially or com-
pletely bounded by planar crystal faces that 
are produced when minerals grow. Many 
other mineral specimens are partially or com-
pletely bounded by fl at, planar cleavage faces 
produced when minerals break along planes 
of relatively low total bond strength. The 

 Unit cells are the three - dimensional analogs 
of unit meshes. A  unit cell  is a parallelepiped 
whose edge lengths and volume are defi ned 
by the three unit translation vectors (t a , t b  
and t c ). The unit cell is the smallest unit that 
contains all the information necessary to 
reproduce the mineral by three - dimensional 
symmetry operations. Unit cells may be primi-
tive (P), in which case they have nodes only 
at their corners and a total content of one 
node (= one motif). Non - primitive cells are 
multiple because they contain extra nodes in 
one or more faces (A, B, C or F) or in their 
centers (I) and possess a total unit cell content 
of more than one node or motif. 

 Unit cells bear a systematic relationship to 
the coordination polyhedra and packing of 
atoms that characterize mineral structures, as 
illustrated by Figure  4.11 . 

 Bravais  (1850)  recognized that only 14 
basic types of three - dimensional translational 
point lattices exist; these are known as the  14 
Bravais space point lattices  and defi ne 14 
basic types of unit cells. The 14 Bravais lat-
tices are distinguished on the basis of (1) the 
magnitudes of the three unit translation 
vectors t a , t b  and t c  or more simply a, b and 
c; (2) the angles (alpha, beta and gamma) 
between them, where ( α    =   b  ∧  c  ;  β    =   c  ∧  a; 
 γ    =   a  ∧  b); and (3) whether they are primitive 
lattices or some type of multiple lattice. Figure 
 4.12  illustrates the 14 Bravais space point 
lattices.   

(a) (b) (c)

Cl–

Cl–

Na+

Na+

x

y

z

     Figure 4.11     Relationship between (a) atomic packing, (b) a unit cell, and (c) octahedral coordination 
polyhedra in halite (NaCl).  (From Wenk and Bulakh,  2004 ; with permission of Cambridge 
University Press.)   
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     Figure 4.12     The 14 Bravais lattices and the six (or seven) crystal systems they represent.  (Courtesy 
of Steve Dutch.)   
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multiple sets of rules. The details are beyond 
the scope of this text.   

 When referencing crystallographic planes 
to the crystallographic axes, a  standard set of 
orientation rules  is used (Table  4.5 ). To indi-
cate their similarity, crystallographic axes 
with the same length are labeled a 1 , a 2  and/or 
a 3  instead of a, b and c. In the isometric, 
tetragonal and orthorhombic systems 
(Figure  4.14 ), the b - axis (or a 2  - axis) is 

shapes of the crystals, the number and orien-
tation of the crystal faces and the nature of 
the cleavage depend on the crystal structure 
of the mineral. That is, they depend on the 
basic motif and the symmetry operations 
that produce the three - dimensional crystal 
lattice. The nature of the crystal forms and 
cleavage surfaces depends on the crystal 
system and crystal class in which the 
mineral crystallized. 

  4.5.1   Crystallographic  a xes 

 To identify, describe and distinguish between 
planes in minerals, including cleavage planes, 
crystal faces and X - ray diffraction planes, a 
comprehensive terminology has been devel-
oped that relates each set of planes to the 
three  crystallographic axes  (Figure  4.13 ). For 
all but the rhombohedral division of the hex-
agonal system, the three crystallographic 
axes, designated a, b and c, are generally 
chosen to correspond to the three unit cell 
translation vectors (t a , t b , and t c ). With the 
exception noted, the three crystallographic 
axes have lengths and angular relationships 
that correspond to those of the three sets 
of unit cell edges (Table  4.4 ). The rules for 
labeling the three crystallographic axes are 
specifi c to each system; some systems have 

  Table 4.4    Major characteristics of Bravais lattice cells in the major crystal systems. 

   Crystal system     Unit cell edge lengths     Unit cell edge intersection angles     Bravais lattice types  

  Isometric (cubic)    (a   =   b   =   c) 
 Preferred format for 
edges of equal length is 
 (a 1    =   a 2    =   a 3 )  

   α    =    β    =    γ    =   90 °     Primitive (P) 
 Body centered (I) 
 Face centered (F)  

  Tetragonal    (a 1    =   a 2     ≠    a 3 ) or 
 a   =   b    ≠    c  

   α    =    β    =    γ    =   90 °     Primitive (P) 
 Body centered (I)  

  Hexagonal 
(hexagonal)  

  (a 1   =    a 2    ≠     c) 
 (a   =   b    ≠    c)  

  ( α    =    β    =   90 o    ≠      γ    =   120 ° )    Primitive (P)  

  Hexagonal (trigonal 
or rhombohedral)  

  (a 1   =    a 2   =    a 3 )     α    =    β    =    γ     ≠    90 °     Primitive (P)  

  Orthorhombic    a    ≠    b    ≠    c    ( α    =    β    =    γ    =   90 ° )    Primitive (P) 
 Body centered (I) 
 End centered (A,B,C) 
 Face centered (F)  

  Monoclinic    a    ≠    b    ≠    c    ( α    =    γ    =   90 °      ≠      β )    Primitive (P) 
 End centered (C)  

  Triclinic    a    ≠    b    ≠    c    ( α ,  β  and  γ     ≠     90 ° )    Primitive (P)  

b

a

c

–b

–a

–c

γ
β

α

     Figure 4.13     Conventional labeling of 
crystallographic axes, illustrating the positive 
and negative ends of the three crystallographic 
axes and the angles between the axes for 
crystals in the orthorhombic system.  
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     Figure 4.14     Crystallographic axes (positive ends labeled) and intersection angles for the major 
crystal systems: isometric, tetragonal, orthorhombic, monoclinic, triclinic and hexagonal systems.  

  Table 4.5    The relationships of crystallographic axes and the rules for orienting crystals in each of the 
crystal systems. Note that the trigonal system (division) is listed independently of the hexagonal system 
(division) in this table. 

   Crystal system     Verbal description     Symbolic description  

  Isometric 
(cubic)  

  Three mutually perpendicular axes (a 1 , a 2 , a 3 ) of equal length that 
intersect at right angles  

  (a 1    =   a 2    =   a 3 ) 
 ( α    =    β    =    γ    =   90 ° )  

  Tetragonal    Three mutually perpendicular axes; axes (a 1 , a 2 ) are of equal length; 
the c axis may be longer or shorter  

  (a 1    =   a 2     ≠    c) 
 ( α    =    β    =    γ    =   90 ° )  

  Orthorhombic    Three mutually perpendicular axes of different lengths (a, b, c); two 
axial length ratios have been used to identify the axes: c    >    b    >    a 
(older) or b    >    a    >    c (newer)  

  (a    ≠    b    ≠    c) 
 ( α    =    β    =    γ    =   90 ° )  

  Monoclinic    Three unequal axes lengths (a, b, c) only two of which are 
perpendicular. The angle ( β ) between a and c is not 90 ° . The a - axis 
is inclined towards the observer. The b - axis is horizontal and the 
c - axis is vertical  

  (a    ≠    b    ≠    c) 
 ( α    =    γ    =   90 o ;  β     ≠    90 ° )  

  Triclinic    Three unequal axes, none of which are generally perpendicular. The 
c axis is vertical and parallel to the prominent zone of crystal faces  

  (a    ≠    b    ≠    c) 
 ( α     ≠     β     ≠     γ     ≠    90 ° )  

  Hexagonal    Four crystallographic axes; three equal horizontal axes (a 1 , a 2 , a 3 ) 
intersecting at 120 ° . One longer or shorter axis (c) perpendicular to 
the other three. a 1  oriented to front left of observer; a 2  to right; a 3  
to back left; c vertical. Six - fold axis of rotation or rotoinversion  

  (a 1    =   a 2    =   a 3     ≠    c) 
 ( α    =   120 ° ;  β    =    γ    =   90 ° )  

  Trigonal (or 
rhombohedral)  

  Axes and angles are similar to the hexagonal system; crystal 
symmetry is different with the c - axis a three - fold axis of rotation or 
rotoinversion  

  (a 1    =   a 2    =   a 3     ≠    c) 
 ( α    =   120 ° ;  β    =    γ    =   90 ° )  
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oriented from left to right, with the right end 
designated as the positive end of the axis (b 
or a 2 ) and the left end designated as the nega-
tive end of the axis ( b

–
  or   a2). The a - axis (or 

a 1  - axis) is oriented so that it trends from back 
to front toward the observer. The end of the 
a - axis toward the observer is designated as 
the positive end of the axis (a) and the end of 
the a - axis away from the observer is desig-
nated as the negative end ( a– ). The c - axis is 
oriented vertically with the top end desig-
nated as the positive end of the axis (c) and 
the bottom end designated as the negative end 
( c– ). There are small exceptions to these rules 
in the hexagonal, monoclinic and triclinic 
systems that result from the fact that unit cell 
edges are not perpendicular to one another 
and not all crystallographic axes intersect at 
right angles. Even in the hexagonal and mon-
oclinic systems, the b - axis is oriented horizon-
tally with the positive end to the right, and in 
all systems the c - axis is vertical with the posi-
tive end toward the top and the negative end 
toward the bottom. The orientations, lengths 
and intersection angles between crystallo-
graphic axes in each of the major crystal 
systems are illustrated in Figure  4.14 . The 
characteristics of the crystallographic axes in 
each system and the standard rules for orient-
ing them are summarized in Table  4.5 .      

  4.5.2   Crystal  f orms 

 Each of the crystal systems has an associated 
set of common crystal forms.  Crystal forms  
consist of a three - dimensional set of one or 
more crystal faces that possess similar rela-
tionships to the crystallographic axes. Some 
natural crystals possess only one crystal form; 
others possess multiple or combined crystal 
forms. Crystal forms can be subdivided into 
two major groups: closed forms and open 
forms. 

  Closed crystal forms  have the potential to 
completely enclose a mineral specimen and 
therefore to exist alone in perfectly formed 
(euhedral) crystals. Common closed forms 
include all the forms in the isometric system 
and many forms in the tetragonal, hexagonal, 
trigonal and orthorhombic systems. The pyri-
tohedron (Figure  4.15 ) is a typical closed 
form, common in the mineral pyrite. Each 
closed form possesses a different shape that is 
related to the number and shape of faces in 

     Figure 4.15     A pyritohedron, a closed form in 
which all faces have the same general 
relationship to the crystallographic axes.  

the form and their angular relationships to the 
crystallographic axes. Figure  4.16  illustrates 
common dipyramid closed forms in the trigo-
nal, tetragonal and hexagonal systems.   

  Open crystal forms  (Figure  4.17 ) do not 
have the potential to completely enclose a 
mineral specimen and so must occur in com-
bination with other open or closed crystal 
forms. Common open forms include: (1) 
 pedions , which consist of a single face, (2) 
 pinacoids , a pair of parallel faces, (3)  prisms , 
three or more faces parallel to an axis, (4) 
 pyramids , three or more faces that intersect 
an axis, (5)  domes , a pair of faces symmetrical 
about mirror plane, and (6)  sphenoids , a pair 
of faces symmetrical about an axis of rota-
tion. Figure  4.17 b illustrates the kinds of 
prisms that occur in the trigonal, tetragonal 
and hexagonal crystal systems.   

 The most common crystal forms in each 
system are discussed later in this chapter, after 
we have presented the language used to 
describe them. More detailed discussions are 
available in Klein and Dutrow  (2007)  and 
Nesse  (2000) .   

  4.6   INDEXING CRYSTALLOGRAPHIC 
PLANES 

  4.6.1   Axial  r atios 

 Whatever their respective lengths, the propor-
tional lengths or  axial ratios  of the three crys-
tallographic axes (a   :   b   :   c) can be calculated. 
The standard method for expressing axial 
ratios is to express their lengths relative to the 
length of the b - axis (or a 2  - axis) which is taken 
to be unity so that the ratio is expressed as 
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     Figure 4.16     Different types of dipyramid forms in the trigonal, tetragonal and hexagonal systems. 
 (From Klein and Hurlbut,  1985 ; with permission of John Wiley & Sons.)   

a   :   b   :   c; b   =   1. This is accomplished by dividing 
the lengths of all three axes by the length of 
the b - axis (a/b   :   b/b   :   c/b). An example from the 
monoclinic system, the pseudo - orthorhombic 
mineral staurolite, will illustrate how axial 
ratios are calculated. In staurolite, the unit 
cell edges have average dimensions expressed 
in angstrom ( Å ) units of: a   =   7.87    Å , 
b   =   16.58    Å  and c   =   5.64    Å . The axial ratios 
are calculated from a/b   :   b/b   :   c/b   =   
7.87/16.58    Å    : 16.58/16.58    Å    : 5.64/16.58    Å . 
The average axial ratios of staurolite are 
0.47   :   1.00   :   0.34. 

 Axial ratios are essential to understanding 
how crystallographic planes and crystal forms 
are described by reference to the crystallo-
graphic axes as discussed in the section that 
follows.  

  4.6.2   Crystal  p lanes and  c rystallographic  a xes 

 Crystalline substances such as minerals have 
characteristic planar features that include: (1) 

crystal faces that develop during growth, (2) 
cleavage surfaces that develop during break-
age, and (3) crystal lattice planes that refl ect 
X - rays and other types of electromagnetic 
radiation. All these types of planes possess a 
number of shared properties. 

 Each type of plane is a representative of 
large sets of parallel lattice planes. As a 
mineral with a particular crystal form grows 
freely it may be bounded by a sequence of 
planar faces. When it stops growing, it is 
bounded by crystal faces that are parallel to 
many other lattice planes that bounded the 
mineral as it grew over time. When a mineral 
cleaves, it breaks along a specifi c set of paral-
lel planes of relative weakness, but these 
cleavage planes are parallel to large numbers 
of planes of weakness or potential cleavage 
surfaces in the mineral structure along which 
the mineral did not happen to rupture. When 
X - rays are refl ected from a refl ecting plane, 
they are refl ected simultaneously from all the 
planes in the crystal that are parallel to one 
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        Figure 4.17     (a) Common open forms: pedions, pinacoids, domes, sphenoids and pyramids. (b) 
Different types of prisms that characterize the trigonal, tetragonal and hexagonal systems. The 
illustrated prisms are bounded by pinacoids at the top and bottom.  (From Hurlbut and Klein,  1985 ; 
with permission of John Wiley & Sons.)   
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(a) (b) (c)

(f)(e)(d) 

     Figure 4.18     Representative crystal faces that 
cut one, two or three crystallographic axes. 
See text for further discussion of parts (a) 
to (f).  

another to produce a  “ refl ection peak ”  that is 
characteristic of the mineral and can be used 
to identify it. In addition, any set of parallel 
planes in a crystal is characterized by a par-
ticular molecular content; all the parallel 
planes in the set possess the same molecular 
units, spacing and arrangement. A molecular 
image of one of these planes is suffi cient to 
depict the molecular content of all the planes 
that are parallel to it. Third, all the planes in 
a set of parallel planes have the same general 
spatial relationship to the three crystallo-
graphic axes. This means that they can be 
collectively identifi ed in terms of their spatial 
relationship to the three crystallographic axes. 
This is true for crystal faces, for cleavage sur-
faces, for X - ray refl ecting planes or for any 
set of crystallographic planes that we wish to 
identify. A universally utilized language has 
evolved that uses the relationship between the 
planar features in minerals and the crystallo-
graphic axes to identify different sets of 
planes. A discussion of this language and its 
use follows. 

 Figure  4.18  depicts several representative 
crystal planes with different relationships to 
the three crystallographic axes. Some crystal 
planes, or sets of parallel planes, intersect one 
crystallographic axis and are parallel to the 
other two (Figure  4.18 a, b). Alternatively, a 
set of crystal planes may intersect two crystal-
lographic axes and be parallel to the third 
(Figure  4.18 c, d). Still other sets of planes 

intersect all three crystallographic axes (Figure 
 4.18 e, f). No other possibilities exist in Eucli-
dean space; sets of planes in crystalline sub-
stances must intersect one, two or three axes 
and be parallel to those they do not 
intersect.   

 Of course, some sets of planes or their pro-
jections intersect the positive ends of crystal-
lographic axes (Figure  4.18 b, c, e). Others, 
with different orientations with respect to the 
axes, intersect the negative ends of crystallo-
graphic axes (Figure  4.18 a). Still others, with 
yet different orientations, intersect the posi-
tive ends of one or more axes and the negative 
ends of the other crystallographic axes (Figure 
 4.18 d, f). Given the myriad possibilities, a 
simple language is needed that allows one to 
visualize and communicate to others the rela-
tionship and orientation of any set of crystal 
planes to the crystallographic axes. The lan-
guage for identifying and describing crystal-
lographic planes involves the use of symbols 
called Miller indices, which has been employed 
since the 1830s and is explained in the fol-
lowing sections.  

  4.6.3   Unit  f aces and  p lanes 

 In any crystal, the three crystallographic axes 
have a characteristic axial ratio, typically 
grounded in the cell edge lengths of the unit 
cell. No matter how large the mineral becomes 
during growth, even if it experiences preferred 
growth in a particular direction or inhibited 
growth in another, the axial ratio remains 
constant and corresponds to the axial ratio 
implied by the properties of the unit cell. 

 In the growth of any mineral one can 
imagine the development of a crystal face, one 
of many potential crystal faces, that intersects 
the positive ends of all three axes at lengths 
that correspond to the axial ratio of the 
mineral (Figure  4.19 ). For crystals with a 
center (i), such faces would intersect each axis 
at a distance from the center of the crystal 
that corresponds to the axial ratio. For the 
monoclinic (pseudo - orthorhombic) mineral 
staurolite discussed in the previous section, 
such a face could cut the a - axis at 0.47   mm, 
the b - axis at 1.00   mm and the c - axis at 
0.34   mm from the center, or, for a larger 
crystal, it could cut the three axes at 0.47, 
1.00 and 0.34   cm from the center. Any face 
or plane that intersects all three axes at 
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example, if we divide the actual intercept dis-
tances by the axial lengths, the resulting ratios 
are 0.47/0.47   : 1.00/1.00   : 0.34/0.34   =   1   :   1   :   1. 
Even if we utilize the magnitudes of the dimen-
sions, the three resulting numbers have the 
same dimensional magnitude, and so their 
ratio reduces to 1   :   1   :   1. 

 As discussed in the section on unit faces 
and planes, many planes intersect all three 
crystallographic axes. Unit faces or planes 
(1   :   1   :   1), such as those in Figure  4.19 , inter-
sect all three axes at lengths that correspond 
to their axial ratios. Other sets of planes, 
however, intersect one or more axes at lengths 
that do not correspond to their axial ratios. 
A face or plane that intersects all three crystal-
lographic axes at different lengths relative to 
their axial ratios is called a  general face . The 
Weiss parameters of such a face or plane will 
be three rational numbers that describe the 
fact that each axis is intersected at a different 
proportion of its axial ratio. There are many 
sets of general planes. For example, a general 
plane with the Weiss parameters (1   :   1/2   :   1/3), 
shown in Figure  4.20 , would be a plane that 
intersects the c - axis at one - third the corre-
sponding length of the c - axis and the b - axis 
at one - half the corresponding length of the 
b - axis. Since many general faces are possible, 
for example (1   :   1/2   :   1/3) or (1/2   :   1   :   1/4), it is 
possible to write a general notation for all the 
faces that intersect the three crystallographic 

distances from the center that correspond to 
the axial ratio of the mineral is a  unit face  or 
 unit plane . It is part of a set of parallel planes 
all of which are unit planes because they inter-
sect the three crystallographic axes at lengths 
that correspond to the axial ratios.    

  4.6.4   Weiss  p arameters 

  Weiss parameters  provide a method for 
describing the relationships between sets of 
crystal faces or planes and the crystallographic 
axes. They are always expressed in the 
sequence a   :   b   :   c, where a represents the rela-
tionship of the planes to the a - axis (or a 1  -
 axis), b represents the relationship between 
the planes and the b - axis (or a 2  - axis) and c 
depicts the relationship between the planes 
and the c - axis (or a 3  - axis). A unit face or 
plane that cuts all three crystallographic axes 
at ratios corresponding to their axial ratios 
has the Weiss parameters (1   :   1   :   1). Mathe-
matically, if we divide the actual lengths at 
which the face or plane intercepts the three 
axes by the corresponding axial lengths, the 
three intercepts have the resulting ratio l   :   l   :   l, 
or unity, which is why such planes are called 
unit planes. Again, using the pseudo -
 orthorhombic mineral staurolite as an 

b

a

c

     Figure 4.19     Unit face (outlined in solid blue) 
in an orthorhombic crystal with three unequal 
unit cell edges and crystallographic axes that 
intersect at right angles. All parallel faces 
(e.g., outlined in dotted blue  ) will have the 
same general relationship to the 
crystallographic axes and the same atomic 
content and properties.  
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     Figure 4.20     Faces with different Weiss 
parameters on an orthorhombic crystal.  
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ratios. Therefore, the Weiss parameters 
(1   :    ∞    :   1) represent planes that parallel the 
b - axis and intersect the a -  and c - axes at unit 
lengths. Similarly the Weiss parameters 
(1   :   1   :    ∞ ) are those of planes that cut the a -  and 
b - axes at unit lengths and are parallel to the 
c - axis (Figure  4.21 b).   

 Having begun to master the concepts of 
how Weiss parameters can be used to repre-
sent different sets of crystal planes with 
different sets of relationships to the crystal-
lographic axes, students are generally thrilled 
to fi nd that crystal planes are commonly ref-
erenced, not by Weiss parameters, but instead 
by Miller indices.  

  4.6.5   Miller  i ndices 

 The  Miller indices  of any face or set of planes 
are the  reciprocals of its Weiss parameters . 
They are calculated by inverting the Weiss 
parameters and multiplying by the lowest 
common denominator. Because of this recip-
rocal relationship, large Weiss parameters 
become small Miller indices. For planes paral-
lel to a crystallographic axis, the Miller index 
is zero. This is because when the large Weiss 
parameter infi nity ( ∞ ) is inverted it becomes 
the Miller index 1/ ∞     →  0. 

 The Miller index of any face or set of planes 
is, with a few rather esoteric exceptions, 
expressed as three integers  hkl  in a set of 
parentheses  (hkl)  that represent the reciprocal 
intercepts of the face or planes with the 
three crystallographic axes (a, b and c) 
respectively. 

axes as (h   :   k   :   l) where h, k and l are intercepts 
with a, b and c.   

 Many crystal planes intersect the negative 
ends of one or more crystallographic axes. 
The location and/or orientation of these 
planes are not the same as those of planes that 
intersect the positive ends of the same axes. 
Planes that intersect the negative ends of one 
or more crystallographic axes are indicated by 
placing a bar over their Weiss parameters. For 
example, the dashed plane in Figure  4.20  has 
the Weiss parameters (  1 1 4 1 2: : ). 

 Mineral planes may be parallel to one or 
two crystallographic axes. How do we deter-
mine the Weiss parameters for such faces and 
planes? The Weiss parameters of any face or 
plane that is parallel to a crystallographic axis 
are infi nity ( ∞ ) because the plane never inter-
sects the axis in question. If a set of planes is 
parallel to two crystallographic axes and 
intersects the third, it is assumed to intersect 
that axis at unity. Planes that are parallel to 
the a -  and b - axes and intersect the c - axis have 
the Weiss parameters ( ∞    :    ∞    :   1). Planes paral-
lel to the b -  and c - axes that intersect the a - axis 
have the Weiss parameters ( ∞    :   1   :    ∞ ). Planes 
that cut the b - axis and are parallel to the a -  
and c - axes (Figure  4.21 a) have the Weiss 
parameters (1   :    ∞    :    ∞ ). Each set of planes, with 
its unique relationship to the crystallographic 
axes possesses its own unique Weiss param-
eters. If a set of planes intersects two axes and 
is parallel to the third, only one of the Weiss 
parameters will be infi nity. The other two will 
be one if, and only if, the two axes are inter-
sected at lengths corresponding to their axial 
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(1: 1: ∞)

(1: ∞: ∞)

     Figure 4.21     (a) The darkened front crystal face possesses the Weiss parameters: (1   :    ∞    :    ∞ ). (b) The 
face outlined in blue   possesses the Weiss parameters (1   :   1   :    ∞ ).  
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  4.6.6   Form  i ndices 

 Every face in a form has the same general 
relationship to the crystallographic axes and 
therefore the same general Miller index, yet 
every face in a form has a different specifi c 
relationship to the crystallographic axes and 
therefore has a different Miller index. These 
statements can be clarifi ed by using an 
example. Figure  4.23  shows the common 
eight - faced isometric form called the 
octahedron.   

 Each face in the octahedron has the same 
general relationship to the three crystallo-
graphic axes in that each intersects the three 
crystallographic axes at unity. The Miller 

 We can use the example of the general face 
cited in the previous section (see Figure  4.20 ), 
where a set of parallel planes cuts the a - axis 
at unity, cuts the b - axis at half unity and cuts 
the c - axis at one - third unity. The Weiss 
parameters of such a set of parallel planes are 
1   :   1/2   :   1/3. If we invert these parameters they 
become 1/1, 2/l and 3/1. The lowest common 
denominator is one. Multiplying by the lowest 
common denominator yields 1, 2 and 3. The 
Miller indices of such a face are (123). These 
reciprocal indices should be read as represent-
ing all planes that intersect the a - axis at unity 
(1) and the b - axis at one - half unity (reciprocal 
is 2), and then intercept the c - axis at one - third 
unity (reciprocal is 3) relative to their respec-
tive axial ratios. Every parallel plane in this 
set of planes has the same Miller indices. 

 As is the case with Weiss parameters, the 
Miller indices of planes that intersect the neg-
ative ends of one or more crystallographic 
axes are denoted by the use of a bar placed 
over the indices in question. We can use the 
example from the previous section in which a 
set of planes intersect the positive end of the 
a - axis at unity, the negative end of the b - axis 
at twice unity and the negative end of the 
c - axis at three times unity. If the Weiss param-
eters of each plane in the set are 1,   2 3 and 
  1 2, inversion yields 1/1,   3 2 and   2 1. Multi-
plication by two, the lowest common denomi-
nator, yields 2/1,   6 2 and   4 1 so that the 
Miller indices are (  234). These indices can be 
read as indicating that the planes intersect the 
positive end of the a - axis and the negative 
ends of the b -  and c -  crystallographic axes 
with the a - intercept at unity and the b - 
intercept at two - thirds unity and the c - 
intercept at one - half unity relative to their 
respective axial ratios. 

 A simpler example is the cubic crystal 
shown in Figure  4.22 . Each face of the cube 
intersects one crystallographic axis and is par-
allel to the other two. The axis intersected is 
indicated by the Miller index  “ 1 ”  and the 
axes to which it is parallel are indicated by 
the Miller index  “ 0 ” . Therefore the six faces 
of the cube have the Miller indices (100), 
(  100), (010), (  010), (001) and (  001).   

 Miller indices are a symbolic language that 
allows us to represent the relationship of any 
crystal or cleavage face or crystallographic 
plane with respect to the crystallographic 
axes.  
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     Figure 4.22     Miller indices of various crystal 
faces on a cube depend on their relationship 
to the crystallographic axes.  
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     Figure 4.23     An isometric octahedron outlined 
in red   possesses eight faces; the form face 
{111} is outlined in bold blue.  
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(a) (b) (c) (d) (e)

     Figure 4.24     Five common forms in the isometric system: (a) cube, (b) octahedron, (c) dodecahedron, 
(d) tetrahedron, (e) pyritohedron.  

indices of each face are some form of (111). 
However, only the top, right front face inter-
sects the positive ends of all three axes. The 
bottom, left back face intersects the negative 
ends of all three axes, and the other six faces 
intersect some combination of positive and 
negative ends of the three crystallographic 
axes. None of the faces are parallel to one 
another; each belongs to a different set of 
parallel planes within the crystal. The Miller 
indices of these eight faces and the set of 
planes to which each belongs are (111), (  111), 
(  111), (  111), (  111), (  111), (  111) and (  111). 
Their unique Miller indices allow us to distin-
guish between the eight faces and the sets of 
planes to which they belong. But they are all 
parts of the same form because they all have 
the same general relationship to the crystal-
lographic axes. It is cumbersome to have to 
recite the indices of every face within it. To 
represent the general relationship of the form 
to the crystallographic axes, the indices of a 
single face, called the form face, are chosen 
and placed in brackets to indicate that they 
refer to the form indices. The rule for choos-
ing the  form face  is generally to select the top 
face if there is one, or the top right face if 
there is one, or the top right front face if there 
is one. In the case of the octahedron, the top 
right front face is the face that intersects the 
positive ends of the a 1  - axis (front), the a 2  - axis 
(right) and the a 3  - axis (top) and has the Miller 
indices (111). The form indices for all octahe-
dral crystals are the Miller indices of the form 
face placed between curly brackets, {111}. 
Similarly the form indices for the cube (see 
Figure  4.22 ), in which the faces intersect one 
axis and are parallel to the other two are 
{001}, the Miller indices of the top face, 
whereas the form indices for the dodecahe-
dron, in which each face intersects two axes 

at unity and is parallel to the third is {011}, 
the indices for the top, right face. 

 Many other forms exist. Every crystal form 
has a form index, which is the Miller index 
of the form face placed in brackets. Each form 
consists of one or (generally) more faces and 
each face possesses a Miller index different 
from that of every other face in the form. 
Every crystal system has a characteristic suite 
of forms that refl ect the unique characteristics 
of the crystal lattice of the system, especially 
the relative lengths of the three crystallo-
graphic axes that directly or indirectly refl ect 
the lengths of the unit cell edges. The forms 
characteristic of each class (space point group) 
in each crystal system are beyond the scope 
of this text. A brief review of some common 
forms in each crystal system follows.  

  4.6.7   Common  c rystal  f orms in  c rystal  s ystems 

  Isometric ( c ubic)  s ystem  f orms 

 All forms in the isometric system are closed 
forms. Common crystal forms in the isometric 
system include the cube, octahedron, dodeca-
hedron, tetrahedron and pyritohedron (Figure 
 4.24 ), all closed forms. These forms often 
occur in combination with each other. 
Common isometric minerals, their crystal 
forms and form indices are summarized in 
Table  4.6 .     

 These form indices are also used to describe 
cleavage in isometric minerals such as halite 
and galena, which possess cubic cleavage 
{001} with three orientations of cleavage at 
right angles; fl uorite, which possesses octahe-
dral cleavage {111} with four orientations; 
and sphalerite, which possesses dodecahedral 
cleavage {011} with six orientations of 
cleavage.  
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  Hexagonal  s ystem ( h exagonal 
 d ivision)  f orms 

 Common crystal forms in the hexagonal 
system include 6 – 12 - sided prisms, dipyramids 
and pyramids. Pinacoids and pedions are also 
common. Some selected examples of common 
crystal forms and minerals in the hexagonal 
system are illustrated in Figure  4.26  and 
Table  4.8 .      

  Tetragonal  s ystem  f orms 

 Tetragonal crystals can possess either closed 
or open forms, often in combination. Common 
closed crystal forms in the tetragonal crystal 
system include different eight - sided dipyra-
mids. Common open forms include four - sided 
prisms and pyramids, as well as pinacoids and 
pedions. Typical crystal forms and associated 
minerals in the tetragonal crystal system are 
shown in Figure  4.25  and Table  4.7 .      

  Table 4.6    Common isometric crystal forms, form indices, form descriptions and minerals. 

   Crystal form     Form indices     Form description     Minerals that commonly exhibit crystal form  

  Cube    {001}    Six square faces    Halite, galena, pyrite, fl uorite, cuprite, perovskite, 
analcite  

  Octahedron    {111}    Eight triangular faces    Spinel, magnetite, chromite, cuprite, galena, 
diamond, gold, perovskite  

  Dodecahedron    {011}    12 diamond - shaped faces    Garnet, sphalerite, sodalite, cuprite  
  Tetrahedron       111{ }     Four triangular faces    Tetrahedrite, sphalerite  

  Pyritohedron    {h0l}    12 pentagonal faces    Pyrite  

(a) (b) (c)

     Figure 4.25     Common crystal forms in the tetragonal crystal system: (a) tetragonal prism in 
combination with a pinacoid, (b) tetragonal dipyramid, (c) tetragonal dipyramid in combination with 
a tetragonal prism.  

  Table 4.7    Common tetragonal crystal forms, form indices, form descriptions and minerals. 

   Crystal forms     Form indices     Form description  
   Minerals that commonly 
exhibit crystal form  

  Tetragonal 
dipyramid  

  {111} {hh1} {011} 
{0kl} and 
variations  

  Eight triangular faces; top four 
separated from bottom four by 
mirror plane  

  Zircon, rutile, cassiterite, scheelite, 
wulfenite, vesuvianite, scapolite  

  Tetragonal 
prism  

  {010} {110} and 
variations  

  Four rectangular faces parallel to 
c - axis  

  Zircon, scheelite, vesuvianite, 
rutile, malachite, azurite, 
cassiterite, scapolite  

  Tetragonal 
disphenoid  

  {0kl}    Four triangular faces; alternating 
pairs symmetrical about c - axis  

  Chalcopyrite  

  Basal pinacoid    {001}    Pair of faces perpendicular to c - axis    Vesuvianite, wulfenite  
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(a) (b)

     Figure 4.26     Common crystal forms in the 
hexagonal crystal system (hexagonal division): 
(a) hexagonal prism with pinacoids, (b) 
hexagonal dipyramid.  

  Table 4.8    Common hexagonal crystal forms and associated hexagonal and trigonal minerals. 

   Crystal forms     Common form indices     Form description  
   Minerals that commonly 
exhibit crystal form  

  Hexagonal dipyramid      1121{ } and variations    12 triangular faces inclined 
to c - axis; top six 
separated from bottom 
six by mirror plane  

  Apatite, zincite  

  Hexagonal prism      1120{ } and variations    Six rectangular faces 
parallel to c - axis  

  Apatite, beryl, quartz, 
nepheline, corundum, 
tourmaline  

  Basal pinacoid    {0001}    Pair of faces perpendicular 
to c - axis  

  Apatite, beryl, corundum  

(a) (b) (c)

     Figure 4.27     Common crystal forms in the trigonal system: (a) trigonal dipyramid, 
(b) rhombohedron, (c) scalenohedron.  

  Trigonal  s ystem ( h exagonal  s ystem, 
 t rigonal  d ivision)  f orms 

 Common crystal forms in the trigonal system 
include the six - sided rhombohedron, the 12 -
 sided scalenohedron, six - sided trigonal dipyr-
amids and three - sided trigonal pyramids. 

Pinacoids and pedions are also common. 
Many forms common in the hexagonal divi-
sion also occur in trigonal crystals, but not 
vice versa. Common crystal forms and repre-
sentative minerals in the trigonal crystal 
system are summarized in Figure  4.27  and 
Table  4.9 .      

  Orthorhombic  c rystal  s ystem 

 Common crystal forms in the orthorhombic 
system include four - sided rhombic prisms, 
dipyramids and pyramids. Pinacoids are the 
dominant form and pedions are also common. 
Common crystal forms and associated miner-
als in the orthorhombic crystal system are 
indicated in Figure  4.28  and Table  4.10 .      

  Monoclinic  c rystal  s ystem 

 Because of its lower symmetry, the only crystal 
forms in the monoclinic crystal system are 
four - sided prisms, two - sided domes, sphe-
noids and pinacoids, and pedions. More 
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  Table 4.9    Common trigonal crystal forms and associated minerals. 

   Crystal forms     Form indices     Form description  
   Minerals that commonly 
exhibit crystal form  

  Rhombohedron      1011{ } {h0 h̄ l}    Six parallelogram faces inclined to 
c - axis  

  Dolomite, calcite, siderite, 
rhodochrosite, quartz, 
tourmaline; chabazite  

  Trigonal 
Scalenohedron  

  {hk ī l} and variations    12 scalene triangle faces inclined to 
c - axis  

  Calcite  

  Trigonal prism    {hk ī 0} and variations    Three rectangular faces parallel to c - axis    Tourmaline, calcite, quartz  
  Trigonal 

dipyramid  
  {hk ī l} and variations    Six triangular faces; top three separated 

from bottom three by a mirror plane  
  Tourmaline  

(a) (b) (c)

     Figure 4.28     Common crystal forms in the orthorhombic crystal system: (a) rhombic dipyramid, 
(b) front, side and basal pinacoids, (c) rhombic prism with a pinacoid.  

  Table 4.10    Common crystal forms, form indices and minerals in the orthorhombic system. 

   Crystal forms     Form indices     Form description  
   Minerals that commonly 
exhibit crystal form  

  Rhombic 
dipyramids  

  {111} {hkl} and 
variations  

  Eight triangular faces; top four 
separated from bottom four 
by a mirror plane  

  Topaz, aragonite, witherite, olivine  

  Rhombic prisms; 
fi rst, second 
and third order  

  {011} {0kl} 
{101} {h0l} 
{011} {0kl}  

  Four rectangular faces parallel 
to a single crystallographic 
axis  

  Stibnite, aragonite, barite, celestite, 
topaz, enstatite, andalusite, 
cordierite, epidote, olivine  

  Pinacoids; front, 
side and basal  

  {001} {010} 
{001}  

  Two parallel faces perpendicular 
to a - , b -  or c - axis  

  Barite, celestite, olivine, andalusite, 
topaz, hemimorphite  

complex forms cannot exist in systems with 
low symmetry in which crystallographic axes 
do not all intersect at right angles. Common 
crystal forms and associated minerals in the 
monoclinic crystal system are indicated in 
Figure  4.29  and Table  4.11 .      

  Triclinic  c rystal  s ystem 

 The only crystal forms in the triclinic system, 
with its extremely low symmetry, are pina-
coids and pedions. Common forms and min-
erals in the triclinic system are illustrated in 
Figure  4.30  and listed in Table  4.12 .        

(a) (b)

     Figure 4.29     Monoclinic crystal forms: 
(a) front, side and basal pinacoids, (b) two 
monoclinic prisms and a side pinacoid.  
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  Table 4.11    Common crystal forms, form indices, and minerals in the monoclinic system. 

   Crystal form     Form indices     Form description  
   Minerals that commonly 
exhibit crystal form  

  Monoclinic prisms; 
fi rst, third and 
fourth order  

  {011} {0kl} 
{110} {hk0} 
{hkl}  

  Four rectangular faces    Gypsum, staurolite, clinopyroxenes, 
amphiboles, orthoclase, sanidine, 
sphene (titanite), borax  

  Pinacoids; front, 
side and basal  

  {001} {010} 
{001}  

  Pair of rectangular faces 
perpendicular to a - , b -  or c - axis  

  Gypsum, staurolite, sphene 
(titanite), epidote, micas, 
clinopyroxenes, amphiboles  

(a) (b)

     Figure 4.30     Triclinic crystal forms: (a) front, 
side and basal pinacoids, (b) various pinacoids 
and a pedion to the lower right.  

  Table 4.12    Common crystal forms, form indices and minerals in the triclinic system. 

   Crystal forms     Form indices     Form description  
   Minerals that commonly 
exhibit crystal form  

  Pinacoids    {001}{010}{001} 
 {0k1} {hk1} and variations  

  Two parallel faces    Kyanite, plagioclase, microcline, 
amblygonite, rhodonite, wollastonite  

  Pedions    {hk1}    Single face    Similar  

  4.7   TWINNED CRYSTALS 

 Many crystals are  twinned crystals  that 
contain two or more parts called twins.  Twins  
have the following characteristics: (1) they 
possess different crystallographic orienta-
tions, (2) they share a common surface or 
plane, and (3) they are related by a symmetry 
operation such as refl ection, rotation or inver-
sion (Figure  4.31 ). Because twins are related 
by a symmetry operation, twinned crystals are 
not random intergrowths.   

 The symmetry operation that relates twins 
in twinned crystals is called a twin law. A 
 twin law  describes the symmetry operation 
that produces the twins and the plane (hkl) or 
axis involved in the operation. For example, 
swallowtail twins in gypsum (Figure  4.31 a) 
are related by refl ection across a plane (001), 

which is not a mirror plane in single gypsum 
crystals. Carlsbad twins in potassium feldspar 
(Figure  4.31 f) are related by a two - fold axis 
of rotation that is parallel to the c - axis (001), 
which is not a rotational axis in single potas-
sium feldspar crystals. 

 The surfaces along which twins are joined 
are called  composition surfaces . If the sur-
faces are planar, they are called  composition 
planes , which may or may not be equivalent 
to twin planes. Other composition surfaces 
are irregular. Twins joined along composition 
planes are called  contact twins  and do not 
appear to penetrate one another. Good exam-
ples of contact twins are shown in Figure 
 4.31 a and b. Twins joined along irregular 
composition surfaces are usually related by 
rotation and are called  penetration twins  
because they appear to penetrate one another. 
Good examples of penetration twins are 
shown in Figure  4.31 c – f. 

 Twinned crystals that contain only two 
twins are called  simple twins , whereas  multi-
ple twins  are twinned crystals that contain 
more than two twins. If multiple twins are 
repeated across multiple parallel composition 
planes, the twins are called  polysynthetic 
twins . Polysynthetic albite twins (Figure 
 4.31 b) are repeated by the albite twin law, 
refl ection across (010), and are very common 
in plagioclase. They produce small ridges 
and troughs on the cleavage surfaces of 
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  4.8   CRYSTAL DEFECTS 

 Ideally, crystals are perfectly formed with no 
defects in their lattice structures (Figure 
 4.32 a). However, nearly all crystals contain 
small - scale impurities or imperfections that 
cause mineral composition and/or structure to 
vary from the ideal. These local - scale inhomo-
geneities are called  crystal defects . Crystal 
defects have some profound effects on the 
properties of crystalline material that belie 
their small scale (Box  4.1 ). A convenient way 
to classify crystal defects is in terms of their 
dimensions.     

plagioclase, which the eye detects as striations  –  
a key to hand - specimen identifi cation of 
plagioclase. 

 Most twins are  growth twins  that form 
during mineral crystallization. Less com-
monly, twins result from displacive mineral 
transformations or from deformation. Defor-
mation twins are called  mechanical twins . 
The common mineral calcite typically devel-
ops mechanical twins (102) during deforma-
tion, and their development can play a 
signifi cant role in the deformation of marbles 
and other metamorphic rocks, especially at 
low temperatures.  
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     Figure 4.31     Examples of twinned crystals: (a) swallowtail twins in gypsum; (b) polysynthetic albite 
twins in plagioclase; (c) penetration twins in Galena; (d) penetration twins in pyrite; (e) penetration 
twins in staurolite; (f) Carlsbad twins in potassium feldspar.  (From Wenk and Bulakh,  2004 ; with 
permission of Cambridge University Press.)   
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  Box 4.1    Frenkel and Schottky defects 

     Frenkel defects  (Figure  B4.1 a) are formed when the ions in question move to an interstitial site, 
leaving unoccupied structural sites or holes behind. Frenkel defects combine omission and interstitial 
defects. Because the ion has simply moved to another location, the overall charge balance of the 
crystal is maintained, but local lattice distortions occur in the vicinities of both the holes and the 
extra ions.  Schottky defects  (Figure  B4.1 b) either are formed when the ions migrate out of the crystal 
structure or were never there. Schottky defects create a charge imbalance in the crystal lattice. Such 
charge imbalances may be balanced by the creation of a second hole in the crystal structure; for 
example, an anion omission may be created to balance a cation omission. They may also be balanced 
by the substitution of ions of appropriate charge difference elsewhere in the structure. The highly 
magnetic mineral  pyrrhotite  (Fe 1 – X S) provides a good example. When a ferrous iron (Fe +2 ) ion is 
omitted from a cation site in the crystal structure, leaving a charge defi cit of 2, two ferric iron (Fe +3 ) 
ions can substitute for ferrous iron (Fe +2 ) ions to increase the charge by 2 and produce an electrically 
neutral lattice (Figure  B4.1 b). The formula for pyrrhotite refl ects the fact that there are fewer iron 
(total Fe +2  and Fe +3 ) ions than sulfur (S  − 2 ) ions in the crystal structure due to the existence of a sub-
stantial number of such Schottky omission defects.   

 Point defects can occur on still smaller scales. In some cases electrons are missing from a quantum 
level, which produces an electron hole in the crystal structure. In others, an electron substitutes for 
an anion in the crystal structure. As with other point defects, the existence of electron holes plays 
an important role in the properties of the crystalline materials in which they occur. In most minerals, 
as temperature increases, the number of omission defects tends to increase. This allows minerals to 
deform more readily in a plastic manner at higher temperatures.  

Fe+2

(a) (b)

Fe+3

     Figure B4.1     (a) Frenkel defect, with a 
vacancy due to an ion displaced to the 
interstitial site. (b) Shottky defect in pyrrhotite 
(Fe 1 – x S) where a vacancy (absent Fe +2 ) is 
balanced by the substitution of Fe +3  for Fe +2  in 
two lattice sites.  

  4.8.1   Point  d efects 

  Point defects  involve individual atoms and 
therefore do not have longer range extent; 
they are considered to be  zero - dimensional 
defects . Many types of point defects exist, and 
they are important in explaining the proper-
ties of minerals as well as other materials such 
as steel, cement and glass products: 

  1      Substitution defects  (Figure  4.32 b) occur 
when anomalous ions of inappropriate 
size and/or charge substitute for ions of 
appropriate size and/or charge in a struc-
tural site. These anomalous ions tend to 
distort the crystal lattice locally and to be 
somewhat randomly distributed within 
the crystal lattice.  

  2      Interstitial defects  (Figure  4.32 c) occur 
when anomalous ions occupy the spaces 
between structural sites. Such  “ extra ”  
ions are trapped in the interstices between 
the  “ normal ”  locations of ions in the 
crystal lattice.  

  3      Omission defects  (Figure  4.32 d) occur 
when structural sites that should contain 
ions are unoccupied. In such cases, ions 
that should occur within the ideal crystal 
structure are omitted from the crystal 
lattice leaving a  “ hole ”  in the ideal 
crystal structure.     

  4.8.2   Line  d efects 

 Line defects are called  dislocations . Like lines, 
they possess extent in one direction and are 
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(a) (b)

(c) (d)

     Figure 4.32     (a) Perfect crystal lattice; (b) 
substitution defect; (c) interstitial defect; (d) 
omission defect.  

(a) (b)

     Figure 4.33     (a) Edge dislocation with an extra half plane of atoms; this is a line defect because the 
base of the half plane can be represented by a dislocation line ( ⊥ ). (b) Screw dislocation, where a 
plane of atoms has been rotated relative to the adjacent plane.  (After Klein and Hurlbut,  1985 ; with 
permission of John Wiley & Sons.)   

therefore  one - dimensional defects . Disloca-
tions commonly result from shearing stresses 
produced in crystals during deformation 
that cause atomic planes to shift position, 

producing distortions in the crystal lattice 
that can be represented by a line called a 
 dislocation line . Two major types of disloca-
tions are recognized:  edge dislocations  
(Figure  4.33 a) and  screw dislocation  (Figure 
 4.33 b).   

 Dislocations are extremely important in 
the plastic deformation of crystalline materi-
als that leads to changes in rock shape and 
volume without macroscopic fracturing. 
Dislocations permit rocks to fl ow plastically 
at very slow rates over long periods of time. 
Detailed discussions are available in many 
books on mineralogy (e.g., Wenk and 
Bulakh,  2004 ) and structural geology (e.g., 
Davis and Reynolds,  1996 ; van der Pluijm 
and Marshak,  2003 ). Figure  4.34  shows how 
an edge dislocation can migrate through a 
crystal by breaking a single bond at a time. 
The result of dislocation migration is a change 
in the shape of the crystal that has been 
accomplished without rupture. Changes in 
shape during deformation that do not involve 
rupture are called plastic deformation, and 
dislocations are critical to its occurrence 
(Chapter  16 ).    
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     Figure 4.34     Two - dimensional depiction of how an edge dislocation created by slip due to shear can 
migrate through a crystal by breaking one bond at a time, so that no fractures develop as the crystal 
changes shape during deformation (steps 1 to 6).  (After Hobbs et al.,  1976 .)   
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     Figure 4.35     Three types of planar defect (shown in two dimensions): (a) intergranular grain 
boundary between two different crystals; (b) intragranular mechanical twin boundary resulting from 
mechanical slip; (c) intragranular subgrain boundary within a crystal, separated by a wall of 
dislocations. Imagine each extending in a second dimension perpendicular to the page and note how 
(b) and (c) accommodate changes in crystal shape.  

  4.8.3   Planar  d efects 

 Planar defects (Figure  4.35 ) extend in two 
dimensions and are therefore called  two -
 dimensional defects . They are places within a 
crystal where the crystal structure changes 
across a distinct planar boundary. Examples 
include: (1) the boundaries between exsolu-
tion lamellae, for example between albite and 

potassium feldspar in perthites; (2) the sub-
grain boundaries between twins in twinned 
crystals; (3) the subgrain boundaries within 
crystals between out - of - phase crystal struc-
tures generated during ordering transforma-
tions; (4) grain boundaries between different 
crystals; and (5) extra atomic planes or missing 
planes called stacking faults.   
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  Box 4.2    Defects and  p lastic  d eformation in  c rystals 

    You may recall from earlier courses in which folds, faults and metamorphic foliations were discussed 
that when stresses are applied to rocks, they experience changes in shape and/or volume. These 
changes in shape and/or volume that occur in response to stress are called strains. They are analogous 
to the strains that occur in bones and muscles when they change shape in response to stress. Non -
 elastic strains are subdivided into those in which rocks break along fractures such as faults or joints 
and those in which shape changes are accomplished without fracturing. Irreversible strains that 
involve fracturing are called rupture; those that do not are called plastic strains and accommodate 
plastic deformation. Rupture is favored by rapid strain rates (think how fast the bone changes shape 
as it fractures), low confi ning pressures and low temperatures. On the other hand, plastic strain is 
favored by very low strain rates, high confi ning pressures and high temperatures (Figure  B4.2 a). 
Under such conditions, deep below the surface, rocks respond very slowly to stress in a manner more 
like Playdough  ®   or modeling clay than like the rigid rocks we see at Earth ’ s surface. How can rocks 
undergo signifi cant strain without rupturing? A major key lies in the large number of defects that 
the minerals in rocks contain.   

 Plastic deformation at high temperatures and low strain rates largely results from two signifi cant 
types of diffusion creep (Figure  B4.2 a) that are dependent on the existence of omission defects in 
minerals: (1) Coble   (grain boundary diffusion) creep, and (2) Herring – Nabarro (volume diffusion) 
creep. Elevated temperatures are associated with elevated molecular vibration in an expanded crystal 
lattice. Such vibrations lower bond strength and increase the number of omission defects (also called 
holes or vacancies) in the crystal structure. As holes are created, adjacent atoms can migrate into 
the vacancy by breaking only one weak bond a time. The movement of the ions in one direction 
causes the holes or vacancies to migrate in the opposite direction (Figure  B4.2 b). 

 Under conditions of differential stress, ions tend to be forced toward the direction of least com-
pressive stress ( σ  3 ), which tends to lengthen the crystal in that direction. Simultaneously, holes tend 
to migrate toward the direction of maximum compressive stress ( σ  1 ) until they reach the surface of 
the crystal where they disappear, causing the crystal to shorten in this direction (Figure  B4.2 b). In 
Coble creep, the vacancies and ions migrate near grain boundaries to achieve the strain, whereas in 
Herring – Nabarro creep, the vacancies and ions migrate through the interior of the crystals. Since 
thousands of omission defects are created over long periods of time even in small crystals, the long -
 term summative effects of plastic strain as each crystal changes shape by diffusion creep can be very 
large indeed. 

 At higher strain rates related to higher differential stresses, dislocation creep processes become 
dominant (Figure  B4.1 ). In these environments edge dislocations and screw dislocations migrate 
through the crystal structure, once again breaking only one bond at a time, while producing plastic 
changes in shape. Because such dislocations result from strain, large numbers are produced in 
response to stress, and their migration accommodates large amount of plastic strain. Imagining the 
summative plastic changes in shape that can be accomplished by the migration of thousands of dif-
fusing vacancies and/or migrating dislocations in a small crystal or l0 20  dislocations migrating 
through the many crystals in a large mass of rock offers insight into the power of crystal defects to 
accommodate plastic deformation on scales that range from microcrystals to regionally metamor-
phosed mountain ranges.  

 Point defects, line defects and planar defects 
are critically important in the study of 
deformed rocks, particularly in the elastic and 
plastic deformation processes discussed in 
Chapter  16  (Box  4.2 ).     

  4.9   POLYMORPHS AND 
PSEUDOMORPHS 

  4.9.1   Polymorphs 

 As noted in the opening chapter, different 
minerals can have the same chemical 

Continued
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        Figure B4.2     (a) Deformation map showing the signifi cant role of omission defects and 
dislocations in the high temperature plastic deformation of crystals. (From Davis and Reynolds, 
 1996 ; with permission of John Wiley & Sons.) (b) Diagrams showing how the existence of 
omission defects permits adjacent ions to move into their former locations, effectively causing the 
omission or hole to migrate in one direction as the ions migrate in the other. The fl ux of atoms 
(blue arrows  ) toward regions of least compressive stress ( σ  3 ) and and of vacancies (black arrows) 
toward areas of maximum compressive stress ( σ  1 ) cause crystals to change shape.  

composition, but different crystal structures. 
This ability for a specifi c chemical composi-
tion to occur in multiple crystal structures is 
called  polymorphism . The resulting minerals 
with the same chemical compositions but dif-
ferent crystal structures are called  polymorphs . 
In most cases, the crystal structure or form 
taken by the mineral is strongly infl uenced by 

the environment in which it forms. Polymorphs 
therefore record important information con-
cerning the environments that produced them. 
Many polymorphs belong to very common or 
economically signifi cant mineral groups, such 
as the examples summarized in Table  4.13 .   

 The polymorphs of carbon can be used to 
illustrate how environmental conditions 

Box 4.2 Continued
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during growth determine which crystal 
structure a chemical compound possesses. 
Figure  4.36  is a phase stability diagram for 
systems composed of pure carbon. This phase 
stability diagram clearly indicates that dia-
mond is the high pressure polymorph of carbon, 
whereas graphite is the low pressure poly-
morph. If we add  geotherms , lines showing the 
average temperature of Earth at any depth, to 
this diagram, we can infer that diamonds are 
the stable polymorph of carbon at pressures of 
more than 3.5   GPa, corresponding to depths of 
more than 100   km below the surface of old 
continental shields, whereas graphite is the 
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     Figure 4.36     Phase stability diagram showing the conditions under which graphite, the low pressure 
polymorph of carbon, and diamond, the high pressure polymorph of carbon, are stable beneath 
continental lithosphere.  

stable polymorph of carbon at all shallower 
depths. Inferences must be tempered by the fact 
that Earth ’ s interior is not pure carbon and 
temperature distributions with depth are not 
constant, but it is widely believed that most 
natural diamonds originate at high pressures 
far below Earth ’ s surface. If graphite is the 
stable polymorph of carbon at low pressures, 
why do diamonds occur in deposits at Earth ’ s 
surface where pressures are low? Obviously, as 
diamonds rise toward Earth ’ s surface into 
regions of substantially lower pressure, some-
thing keeps the carbon atoms from rearranging 
into the graphite structure. What keeps the 
transformation from unstable diamond to 
stable graphite from occurring?   

  Reconstructive  t ransformations 

  Reconstructive transformations  involve the 
conversion of one polymorph into another 
through bond breakage so that a signifi cant 
change in structure occurs. Such transforma-
tions require large amounts of energy, and 
this requirement tends to slow or inhibit their 
occurrence. In the transformation of diamond 
to graphite, a large amount of energy is 
required to break the strong bonds that hold 
carbon atoms together in the isometric 
diamond structure, so that they can rearrange 
into the more open, hexagonal structure of 

  Table 4.13    Important rock - forming mineral 
polymorphs. 

   Chemical composition     Common polymorphs  

  Calcium carbonate 
(CaCO 3 )  

  Calcite and aragonite  

  Carbon (C)    Diamond and graphite  
  Silica (SiO 2 )     α  - quartz,  β  - quartz, 

tridymite, cristobalite, 
coesite, stishovite  

  Aluminum silicate 
(AlAlOSiO 4 )  

  Andalusite, kyanite, 
sillimanite  

  Potassium aluminum 
silicate (KAlSi 3 O 8 )  

  Orthoclase, microcline, 
sanidine  

  Iron sulfi de (FeS 2 )    Pyrite, marcasite  
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 Other transformations between silica poly-
morphs are reconstructive. For example, the 
transformations between the high pressure 
minerals stishovite and coesite and between 
coesite and quartz are reconstructive. There-
fore, both stishovite and coesite can be 
expected to exist as metastable phases at 
much lower pressures than those under which 
they are formed. Their preservation in rocks 
at low pressures allows them to be used to 
infer high pressure conditions, such as mete-
orite impacts, long after such conditions have 
ceased to exist.  

  Order –  d isorder  t ransformations 

 Many polymorphs differ from one another in 
terms of the degree of regularity in the distri-
bution of certain ions within their respective 
crystal structures. Their structures can range 
from perfectly ordered to a random distribu-
tion of ions within structural sites (Figure 
 4.38 ). The potassium feldspar minerals 
(KAlSi 3 O 8 ) provide many examples of such 
variation in regularity or order in the distribu-
tion of aluminum ions within the structure. In 
the feldspar structure, one in every four tetra-
hedral sites is occupied by aluminum (Al +3 ), 
whereas the other three are occupied by silicon 
(Si +4 ). In the potassium feldspar  high sanidine , 
the distribution of aluminum cations is com-
pletely random; the probability of fi nding an 
aluminum cation in any one of the four sites 
is equal. Crystal structures with such random 
distributions of cations are highly disordered 

graphite. This inhibits the transformation of 
diamonds into graphite as diamonds fi nd 
themselves in lower pressure and lower tem-
perature environments near Earth ’ s surface. 
Minerals that exist under conditions where 
they are not stable, such as diamond near 
Earth ’ s surface, are said to be  metastable . All 
polymorphs that require reconstructive trans-
formations have the potential to exist outside 
their normal stability ranges as metastable 
minerals. This allows them to preserve impor-
tant information about the conditions under 
which they, and the rocks in which they occur, 
were formed and, in the case of diamonds, to 
grace the necks and fi ngers of people all over 
the world.  

  Displacive  t ransformations 

 Some polymorphs are characterized by struc-
tures that, while different, are similar enough 
that the conversion of one into the other 
requires only a rotation of the constituent 
atoms into slightly different arrangements 
without breaking any bonds. Transforma-
tions between polymorphs that do not require 
bonds to be broken and involve only small 
rotations of atoms into the new structural 
arrangement are called  displacive transforma-
tions  and tend to occur very rapidly under the 
conditions predicted by laboratory experi-
ments and theory. Polymorphs involved in 
displacive transformations rarely occur as 
metastable minerals far outside their normal 
stability ranges and so may preserve less 
information about the conditions under which 
they and the rocks in which they occur origi-
nally formed. 

 Alpha quartz (low quartz) is generally 
stable at lower temperatures than beta quartz 
(high quartz). Although  α  -  and  β  - quartz have 
different structures, the structures are so 
similar (Figure  4.37 ) that the conversion of 
one to the other is a displacive transforma-
tion. It is not at all unusual, especially in 
volcanic rocks, to see quartz crystals with the 
external crystal form of  β  - quartz but the 
internal structure of  α  - quartz. These quartz 
crystals are interpreted to have crystallized at 
the elevated temperatures at which  β  - quartz 
is stable and to have been displacively trans-
formed into the  α  - quartz structure as they 
cooled, while retaining their original external 
crystal forms.   

α β

     Figure 4.37     The closely similar structures of 
 α  -  and  β  - quartz.  (Courtesy of Bill Hames.)   
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  4.9.2   Pseudomorphs 

 Minerals that take the crystal form of another, 
pre - existing mineral are called  pseudomorphs  
and are said to be pseudomorphic after the 
earlier mineral (Figure  4.39 ). Pseudomorphs 
can be produced in many ways. All require 
that the original crystal possessed a signifi cant 
number of crystal faces (was euhedral or sub-
hedral) at the time it formed. Some pseudo-
morphs are produced by  replacement  in which 
the atoms in a pre - existing mineral are 
replaced by the atoms of a new mineral that 
retains the external crystal form of the origi-
nal crystal. A common example is the replace-
ment of pyrite (FeS 2 ) crystals by goethite 
(FeOOH) to produce goethite pseudomorphs 
after pyrite. Another common example is 
quartz (SiO 2 ) pseudomorphs after fl uorite 
(CaF 2 ). Some pseudomorphs are  casts  pro-
duced by dissolution of the old mineral fol-
lowed by precipitation of the pseudomorph to 
fi ll the cavity left behind. Other pseudomorphs 

and are favored by high temperatures and low 
pressures of formation. On the other hand, in 
the potassium feldspar  low microcline , the 
distribution of aluminum cations is highly 
ordered, with the aluminum distributed regu-
larly in every fourth tetrahedral site. The 
probability of fi nding an aluminum cation in 
these sites is 100%, and the probability of 
fi nding one in the other three sites is zero. 
Crystal structures with such regular distribu-
tions of cations possess very low disorder, and 
their formation is favored by low tempera-
tures and high pressures of formation. Inter-
mediate degrees of order exist within the 
potassium feldspar group. Sanidine, with its 
high degree of disorder, crystallizes in the 
monoclinic system and is common in volcanic 
rocks formed at high temperatures and low 
near surface pressures, whereas microcline, 
with its low degree of disorder, crystallizes in 
the triclinic system and is common in rocks 
formed at higher pressures, and in some cases 
lower temperatures, below the surface.     

1 and 2 refer to
specific structural sites
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A B

1 2 1 2 1 2 1 2

2 1 2 1 2 1 2 1

1 2 1 2 1 2 1 2
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     Figure 4.38     Variations in the order of minerals.  (From Klein and Hurlbut,  1985 ; with permission of 
John Wiley & Sons.)   
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(a) (b)

(c)

           Figure 4.39     (a) Hematite replacing pyrite; (b) 
chalcedony encrusting aragonite; (c) quartz 
cast fi lling an aragonite solution cavity. 
 (Photos courtesy of Stan Celestian, Maricopa 
Community College.) (For color version, see 
Plate 4.39, between pp. 248 and 249.)   

are produced by the  loss of a constituent  from 
the original crystals. For example, the dis-
solution of carbonate ion from crystals of 
the copper carbonate mineral azurite 
[Cu 3 (CO 3 ) 2 (OH) 2 ] can produce native copper 
(Cu) pseudomorphs after azurite. Still other 
pseudomorphs are produced when the new 
mineral forms a thin layer or crust over the 
original crystal. Still others form by inversion 
as when  β  quartz crystals are transformed 

into  α  quartz. The  encrustation  of the original 
mineral by the new mineral allows the new 
mineral to mimic the crystal form of the origi-
nal mineral.   

 The properties of minerals and other 
crystalline materials are strongly infl uenced 
by their crystal structures and chemical 
compositions. These properties and the min-
erals that possess them are the subjects of 
Chapter  5 .     
 
 

 
 


