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Chapter 2
Theoretical Background and Methodology

In this chapter the different approaches followed in order to model metal
nanoparticles are described. The theoretical framework adopted in this work,
varying from the use of an empirical potential (i.e. the Gupta potential) to ab initio
methods such as density functional theory (DFT) is explained. An introduction to
different global optimization techniques, for the exploration of the nanoparticle
potential energy surface, as well as a combined Gupta-DFT approach is also given.
Finally, energetic quantities for analysing the stability of nanoparticles are
described in detail.

2.1 Modelling Metal Clusters and Nanoalloys

Different approaches can be used to model atom–atom interactions in metal
clusters and nanoalloys, and to search for putative stable configurations, i.e. to
locate the global minimum (GM) on the nanoparticle potential energy surface
(PES). This is a very difficult task because the properties of each system will
depend on its constituent elements and size. The complexity will also depend on
how accurate the model we are using is, ranging from: pair-wise potentials (such
as the Lennard–Jones potential; an approximation which is quite accurate for
noble gases, in which the interatomic interactions depend mainly on the dis-
tances between atoms); and many-body potentials (e.g. the Gupta potential,
Embedded Atom and Sutton–Chen potentials); to computationally intensive first-
principle methodologies (e.g. Hartree–Fock calculations, DFT, or more expen-
sive post-Hartree–Fock methods such as configuration interaction (CI) or
Møller–Plesset perturbation theory). Pair-wise potentials are simple approxima-
tions for describing atomic interactions, in which the nature of the interactions
depends on attractive and repulsive terms (having parameters, fitted either to
experimental observations or calculated theoretically); and where the total
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energy of the system can be calculated in terms of the atomic positions
(r1; r2; . . .; rN). Many-body potentials, such as Gupta, tend to overcome the high
computational cost/effort of first principles calculations while keeping the many-
body nature of metallic bonding. When coupled with global optimization tools
(e.g. Genetic algorithms and Basin Hopping Monte Carlo algorithms) this allows
us to explore large areas of the nanoparticle PES in a feasible amount of time,
while at the same time, accurately simulating the interatomic interactions.

2.1.1 Potential Energy Surfaces

One of the main goals in this study is to determine the global minimum (GM)
structure (i.e. the structural configuration with the lowest total potential energy) for a
metal cluster of a certain size and elemental composition. It is known that experi-
mental information is not always sufficient for determining the nanocluster structure
precisely and theoretical predictions are of great importance in this field. Under-
standing the structural configuration of nanoclusters (as well as their energetics) will
aid the tailored design of nanoparticles, in which the nanoparticle’s physical and
chemical properties can be fine tuned. The potential energy of a nanoparticle (Vclus),
can be represented on a potential energy surface (PES) diagram. The PES of a system
is represented in terms of the atomic coordinates. The number of interacting atoms in
the system (N) leads to 3N degrees of freedom, yielding a PES dimensionality of
3N þ 1; where the extra dimension is the potential energy.

A local minimum in the PES is defined as a point, in which any displacement
will lead to higher potential energy (Vclus) configurations. The gradients at this
point are all zero, rVclus ¼ 0; and all the curvatures (second derivatives) are
positive. The PES of a small system can have large numbers of local-minima,
which correspond to high-energy arrangements. The lowest energy configuration
is called the global-minumum (GM) [1]. Figure 2.1 shows a schematic repre-
sentation of two systems of fixed size and composition, but having differ seg-
regation patterns between A (blue) and B (grey) metals. One can see that a
particular chemical ordering in the nanoparticle will lead to a lower energy
configuration (a more stable structure).

2.2 Theoretical Methods

2.2.1 The Gupta Potential

The Gupta potential [2, 3] is based on the second moment approximation to Tight
Binding theory. It is written in terms of repulsive (Vr) pair and attractive many-
body (Vm) terms, which are obtained by summing over all (N) atoms:
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Vclus ¼
XN

i

V rðiÞ � VmðiÞf g ð2:1Þ

where:

V rðiÞ ¼ Aða; bÞ
XN

j 6¼i

exp �pða; bÞ rij

r0ða; bÞ
� 1

� �� �
ð2:2Þ

and

VmðiÞ ¼ fða; bÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XN

j6¼i

exp �2qða; bÞ rij

r0ða; bÞ
� 1

� �� �vuut ð2:3Þ

In Eqs. 2.2 and 2.3, rij represents the interatomic distance between atoms i and j.
A; r0; f; p and q are fitted to experimental values of the cohesive energy, lattice
parameters and independent elastic constants for crystal structures of pure metals
and bulk alloys and a and b define the element types of atoms i and j; respectively.
Gupta potential parameters used in this research are listed in Table 2.1. For the
discussion of varying Pd–Pt parameters and two different fitted Pd–Au parameter
sets, see Chaps. 6 and 7, respectively.

2.2.2 Early Density Functional Theory: Thomas Fermi Model

A first approximation to studies at the atomic level was made using Newtonian
mechanics and classical electromagnetism. Due to the failure to explain the structure
and complexity of atomic systems, new theories had to be proposed. Thomas and
Fermi gave the first formal derivation of a density functional approach for a system

Fig. 2.1 Pictorical
representation of a potential
energy surface of two
bimetallic cluster homotops,
having the same number of
atoms A (grey) and B (blue)
and geometries. They occupy
different regions in the PES
(different basins), due to
differences in chemical
ordering
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of electrons in an external potential, due to nuclei [4, 5]. In their model the total
energy of an inhomogeneous electron gas is written as a functional of the electronic
density, qðr~Þ. This was an initial (rough) approximation to the exact solution of
the many-electron Schrödinger equation and the associated wave function
Wðr1; r2; . . .; rNÞ; and is the most primitive version of DFT.

ETF½qðr~Þ� ¼ TTF½qðr~Þ� þ Een½qðr~Þ� þ Eee½qðr~Þ� ð2:4Þ

In the Thomas–Fermi (TF) model, the electronic density qðr~Þ completely
characterizes the ground state of the system. As the TF model neglects exchange
(included in the Hartree–Fock method, as a consequence of the anti-symmetry of
the wave function, i.e. the Pauli exclusion principle) and correlation effects; the
energy functional ETF½qðr~Þ� is expressed as the contribution of kinetic energy
ðTTF½qðr~Þ�Þ; the electron–nucleus attraction ðEen½qðr~Þ�Þ and electron–electron
repulsion ðEee½qðr~Þ�Þ. In the TF model, the kinetic energy is expressed as a
functional of the electronic density qðr~Þ.

TTF½qðr~Þ� ¼ CF

Z
q5=3ðr~Þdr~ ð2:5Þ

hence, the energy functional can be written as follows:

ETF½qðr~Þ� ¼ CF

Z
q5=3ðr~Þdr~� Z

Z
qðr~Þ

r
dr~þ 1

2

Z Z
qðr~Þqðr0~Þ
jr~� r0~j

dr~dr0~ ð2:6Þ

with CF ¼ 3
10 ð3p2Þ2=3 ¼ 2:871; calculated from the jellium model. The TF model

assumes that the electronic density qðr~Þ minimizes the energy functional
ETF½qðr~Þ�; with the constraint:

N ¼ N½qðr~Þ� ¼
Z

qðr~Þdr~ ð2:7Þ

where integrating over qðr~Þ; gives the total number of electrons, N. Using the
Lagrange multipliers method in order to find a stationary point for E½qðr~Þ�; using
the constraint 2.7:

d
dqðr~Þ ETF½qðr~Þ� � lTF

Z
qðr~Þdr~� N

� �� �
¼ 0 ð2:8Þ

Table 2.1 Gupta potential parameters used in this research [3]

Parameters Pd–Pd Pt–Pt Ag–Ag Au–Au Au–Au
(for Ag–Au)

Ag–Au Ag–Pt Pd–Au Pd–Pt

A (eV) 0.1746 0.2975 0.1031 0.2061 0.2096 0.1488 0.175 0.19 0.23
f (eV) 1.718 2.695 1.1895 1.790 1.8153 1.4874 1.79 1.75 2.2
p 10.867 10.612 10.85 10.229 10.139 10.494 10.73 10.54 10.74
q 3.742 4.004 3.18 4.036 4.033 3.607 3.57 3.89 3.87

r0(Å) 2.7485 2.7747 2.8921 2.884 2.885 2.8885 2.833 2.816 2.76
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the variations in electronic density of the energy functional ETF½qðr~Þ�; can be
expressed as an Euler–Lagrange equation, where:

dETF½qðr~Þ�
dqðr~Þ ¼ lTF ð2:9Þ

lTF ¼
dETF½qðr~Þ�

dqðr~Þ ¼ 5
3

CFq
2=3ðr~Þ � /ðr~Þ ð2:10Þ

where /ðr~Þ:

/ðr~Þ ¼ Z

r
�
Z

qðr0~Þ
jr~� r0~j

dr~ ð2:11Þ

Equation 2.11 can be solved using the density constraint (Eq. 2.7), and the
resulting density is then inserted in Eq. 2.6, in order to give the total energy of the
system. The TF model is a very simple theory for describing total energies of
atoms, which set up the foundations for a more complex DFT [6, 7].

2.2.3 Modern Density Functional Theory

For the case of N interacting electrons (in the ground-state), their interactions can
be described as the sum of the kinetic energy (T̂), external potential (V̂) and
Coulombic (V̂ee) operators. The corresponding Hamiltonian operator (Ĥ):

Ĥ ¼ T̂ þ V̂ þ V̂ee ð2:12Þ

which can be expressed, in a similar way, in the following analytic form:

Ĥ ¼ �
XN

i¼1

1
2
r2

i þ
XN

i¼1

vðri~Þ þ
1
2

XN

i¼1

XN

i 6¼j

1
jri~� rj~j

where vðri~Þ represents the external potential. The Hamiltonian Ĥ; described in the
equation above, takes into account the adiabatic Born–Oppenheimer approxima-
tion. The Born–Oppenheimer approximation treats the atomic nucleus as being
fixed in position, with respect to the electronic motion, due to large mass differ-
ences between the atomic nucleus and the electron. This represents a decoupling of
the motion of the electrons and the motion of the nucleus; hence one needs to solve
the Schrödinger equation only for the electronic part [8].

The foundations of modern DFT were published in the classic papers of
Hohenberg and Kohn in 1964, and Kohn and Sham one year later [9, 10]. They
developed an exact variational principle formalism in which ground state prop-
erties, such as: total electronic energy, equilibrium positions and magnetic
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moments are expressed in terms of the total electronic density qðr~Þ: The theorems
are explained below:

Hohenberg and Kohn Theorem: the ground state density qðr~Þ of a bound
system of interacting electrons in some external potential vðr~Þ determines this
potential uniquely, as well as the ground state wave-function Wðr1; . . .; rNÞ:

This theorem also states that: since electronic density qðr~Þ determines both the
total number of electrons, N and the external potential vðr~Þ; qðr~Þ also provides a
full description of all the ground-state observables, which are functionals of qðr~Þ
[11]. Another statement of the Hohenberg–Kohn theorem states: the ground state
energy E0 and the ground-state density q0ðr~Þ of a system characterized by an
external potential vðr~Þ can be obtained by using the variational principle (involving
only the density).

In other words, the ground state energy E0 can be expressed as a functional of
the ground state density Ev½qðr~Þ�; otherwise the inequality prevails [6]:

E0 ¼ Ev½q0ðr~Þ�\Ev½qðr~Þ� ð2:14Þ

The theory also established the existence of a universal functional, F½qðr~Þ�
which is independent of the external potential vðr~Þ; i.e. which has the same
functional form for any system considered. The universal functional F½qðr~Þ�; can
be expressed as the sum of the kinetic energy of the gas of non-interacting Kohn–
Sham electrons (Ts qðr~Þ½ �), the Coulombic electron–electron interaction, and the
exchange-correlation term (Exc qðr~Þ½ �) as follows:

F½qðr~Þ� ¼ Ts½qðr~Þ� þ
1
2

Z Z
qðr~Þqðr0~Þ
jr~� r0~j

þ Exc½qðr~Þ� ð2:15Þ

The Exc½qðr~Þ� term is expressed as the sum of the correlation ðEc½qðr~Þ�Þ and the
exchange energy ðEx½qðr~Þ�Þ. In the Exc½qðr~Þ� term, the correlation energy Ec½qðr~Þ�
is expressed as the difference between the true kinetic energy T ½qðr~Þ� and Ts½qðr~Þ�:

Ec½qðr~Þ� ¼ T ½qðr~Þ� � Ts½qðr~Þ� ð2:16Þ

The exchange Ex½qðr~Þ� term is derived from Hartree–Fock Theory (Slater
determinant). The Slater determinant, which takes into account the antisymmetry
of the wavefunction from the Pauli exclusion principle (i.e. an electron having
either spin a or spin b) assures a change of sign under electron exchange:

wðr1~; r2~; . . .; rN~ Þ

¼
ffiffiffiffi
1

N!

q /0ðr1~Þaðs1Þ /0ðr2~Þbðs1Þ :: /N=2�1ðr1~Þaðs1Þ /N=2�1ðr1~Þbðs1Þ
:: :: :: :: ::

/0ðrN~ ÞaðsNÞ /0ðrN~ ÞbðsNÞ :: /N=2�1ðrN~ ÞaðsNÞ /N=2�1ðrN~ ÞbðsNÞ

������

������

ð2:17Þ

Therefore, the total energy of a system (Ev½qðr~Þ�), under a external potential,
vðr~Þ; can be expressed as:

20 2 Theoretical Background and Methodology



Ev½qðr~Þ� ¼ F½qðr~Þ� þ
Z

qðr~Þvðr~Þd3r~ ð2:18Þ

Using the variational principle with the constraint 2.7 the ground state density
satisfies the stationary principle:

d Ev½qðr~Þ� � l
Z

qðr~Þd3r~� N

� �� �
¼ 0 ð2:19Þ

which gives the Euler–Lagrange equation:

dEv½qðr~Þ�
dqðr~Þ ¼ vðr~Þ þ dF½qðr~Þ�

dqðr~Þ ð2:20Þ

From the Hohenberg–Kohn theorems, we have derived the Kohn–Sham (KS)
equations [6, 7, 10]. The KS equations solve the problem of the complex many-
electron Schrödinger equations, by transforming them into a set of N single-
electron equations, which need to be solved self-consistently.

� 1
2
r2 þ vðr~Þ þ

Z
qðr~Þ
jr~� r~0j

d3r0~þ vxc½nðr~Þ�
� �

wiðr~Þ ¼ �iwiðr~Þ ð2:21Þ

with an electronic density:

qðr~Þ ¼
XN

i¼1

jwiðr~Þj
2 ð2:22Þ

In Eq. 2.21, the exchange-correlation potential, vxc½nðr~Þ� is expressed as the
partial derivative of the Exc½qðr~Þ� term, with respect to the electronic density, qðr~Þ:

dExc½qðr~Þ�
dqðr~Þ ¼ vxc½qðr~Þ� ð2:23Þ

This means we have to start from some initial electronic density ðq0ðr~ÞÞ and
proceed to solve Eq. 2.21. We obtain a new density which is used to solved
Eq. 2.21 until self-consistency is reached [6, 7, 11]. DFT does not provide a
description of how to construct the exchange-correlation functional, Exc½qðr~Þ�; it
only stipulates the existence of Exc½qðr~Þ� as a universal functional of the density
qðr~Þ; which is valid for all systems. Several approximations have been constructed
(for the accurate description of the exchange-correlation energy, einif

xc ½qðr~Þ�Þ; such
as the local-density approximation (LDA) [11]. This formulation is established in
the original Kohn–Sham theory, and the idea is that a system with inhomogeneous
charge distribution is treated as having a locally-homogeneous spatial uniform
distribution of qðr~Þ:

ELDA
xc ½qðr~Þ� ¼

Z
qðr~Þeunif

xc ½qðr~Þ�d3r~ ð2:24Þ
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where an approximate analytical expression for eunif
xc ½qðr~Þ� comes from the ex

Hartree–Fock exchange term (Slater determinant), and ec is fitted from quantum
Monte Carlo parametrizations of homogeneous electron gases of varying densities
[12]. LDA offers a good level of accuracy for highly-homogeneous systems, and
even for realistic non-homogeneous systems; while one of the drawbacks is its
overestimation of binding energies for molecules and solids [11, 13]. Some other
high-level approximations to the eunif

xc ½qðr~Þ� have been made, such as the gen-
eralized gradient approximation (GGA) [11, 14, 15], for which the exchange-
correlation energy (for a spin-unpolarized system) is expressed as:

EGGA
xc ½qðr~Þ� ¼

Z
f ½qðr~Þ;rqðr~Þ�d3r~ ð2:25Þ

in which the density qðr~Þ is expanded in terms of the gradient (r) operator. This
approximation is valid for systems with slowly-varying densities.

In order to solve the Kohn–Sham equations, we need to select a suitable
(sufficiently large) finite basis set (in theory one will need an infinite basis set for a
precise description of the molecular orbital). We can express the wave-fuction w in
terms of Gaussian-type-orbitals (GTOs), in either cartesian or polar coordinates:

wðr~Þ ¼ Axlx yly zlz expð�fr2Þ ð2:26Þ

where A is a normalization constant, l determines the orbital, f is related to the
width of the curve, and the r2 gives the curve a Gaussian shape [16].

2.2.4 Functionals and Basis Sets

DFT calculations were performed using the NWChem (versions 4.7, 5.0 and 5.1)
quantum chemistry package [17] and the Perdew–Wang exchange-correlation
functional (PW91) [14, 15]. Test calculations using the Perdew–Burke–Ernzerhof
(PBE) gradient-corrected exchange-correlation functional [18] produced qualita-
tively similar results while hybrid functionals (such as B3LYP) tend to underes-
timate atomization energies of d-metals, due to the inclusion of the Hartree–Fock
exchange term, and its lack of a proper description of the nearly ‘‘free-electron’’
character of large metallic systems [19, 20].

Spherical Gaussian-type-orbital basis sets of double-f quality [21, 22] were
used for Pd ð7s6p5dÞ=½5s3p2d�; Ag ð7s6p5dÞ=½5s3p2d�; Pt ð7s6p5dÞ=½6s3p2d� and
Au ð7s5p5dÞ=½6s3p2d�; combined with effective core potentials (ECP) in order to
consider valence–electron only wavefunctions: 18 valence electrons were con-
sidered for Pd and Pt while 19 valence electrons were used for Ag and Au [23].
The ECP incorporates spin–orbit averaged relativistic for these four atoms.

Charge density fitting basis sets were used to speed up the evaluation of the
Coulombic contributions [24]: Pd ð8s7p6d5f 4gÞ=½8s6p6d3f 2g�; Ag ð9s4p5d3f 4gÞ=
½7s4p4d3f 2g�; Pt ð9s4p3d3f 4gÞ=½9s4p3d3f 2g�; and Au ð9s4p4d3f 4gÞ=½8s4p3d3f 2g�.
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All calculations were performed spin unrestricted (geometry optimization for singlet
spin states; after SCF optimization convergence a single point triplet spin state cal-
culation is performed). Geometry optimizations were stopped when maximum force on
atoms was less than 4 9 10�4 a.u. During the iterative process, a Gaussian smearing
technique was adopted, with a smearing parameter of 0.136 eV for the fractional
occupation of the one-electron energy levels [25]. Selected calculations were per-
formed with basis sets of triple-f-plus-polarization quality to evaluate DFT mixing
energies for comparison with Gupta values [21, 22].

For the fitting of the DFT-fit parameters for Pd–Au (see Chap. 7), DFT cal-
culations on the solid phases were performed using the PWscf (Plane-Wave self-
consistent-field) computational code [26], employing ultra-softpseudo-potentials
(Dr. Giovanni Barcaro, CNR-Pisa). A total of 10 and 11 electrons were explicitly
considered for Pd and Au, respectively. The PBE gradient-corrected exchange-
correlation functional was used. Values of 40 Ry for the energy cutoff of the wave
function and 160 Ry for the energy cutoff (1 Ry = 13.606 eV) of the electronic
density have been shown to provide accurate results [as shown in previous work
for the description of a monolayer phase of TiOx on Pt(111)], and were thus
employed [27]. All the calculations were performed by applying a smearing
procedure of the energy levels with a Gaussian broadening of 0.002 Ry. The
Brillouin zone was described by a (10 9 10 9 10) grid.

2.3 Global Optimization Techniques

2.3.1 The Birmingham Cluster Genetic Algorithm

Genetic algorithms (GA) were developed by John Holland in the early 1970s,
and since then, they have become successful tools in optimization problems in
fields such as: chemistry, engineering and molecular modelling [28–30]. GAs
belong to the class of stochastic optimization methods, which also includes
techniques such as: evolutionary strategies, simulated annealing, and Monte
Carlo optimization.

Structural global optimisation of a model potential function, consists of finding
the configuration for which the PES is an absolute minimum: i.e. the GM. In recent
years, GA techniques have been shown to be robust for finding the GM for a
variety of types of nanoclusters [30, 31]. In a general way, genetic algorithms
begin with an initial population of candidate solutions (in our studies, an initial
population of starting cluster structures), which, through several iterative steps in
the algorithm (crossover, mutation and natural selection), evolve towards the best
solution of the problem (i.e the GM in the PES).

Our in-house Birmingham cluster genetic algorithm (BCGA) was written in
order to find GM structures for several metallic and bimetallic systems, using the
Gupta potential to model their interatomic interactions [30]. Its specific features
and operators are defined as follows:
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Initial population the group of individuals which are going to be evolved by the
genetic algorithm. In the BCGA, the initial population corresponds to a set of
randomly generated clusters; where real valued Cartesian coordinates are gener-
ated within a cubic volume which is proportional to the number of atoms within
the cluster. This initial population is then relaxed using a quasi-Newton (L-BFGS)
minimization routine [33]. When we talk about individuals, we refer to a set of
variables, known as genes. Genes form strings called chromosomes; which rep-
resent a trial solution of the problem. Individual gene values are know as alleles.
Figure 2.2 shows a Field emission scanning electron microscopy image which
illustrates a barley chromosome metaphase along with the simplified chromosome
version implemented in the BCGA [32].

Fitness is defined (for a member of a certain population) as the quality of the
trial solution represented by a chromosome, with respect to the function being
optimized. In our GA optimizations, high values correspond to a better solution to
the problem. In the BCGA, the total potential energy (Vi) of a cluster is first
rescaled (Eq. 2.27), relative to the highest (Vmax) and lowest (Vmin) energy cluster
in the current population:

qi ¼
Vi � Vmin

Vmax � Vmin

ð2:27Þ

A fitness function (Fi), Eq. 2.28, is used by the BGCA in order to determine,
according to a probabilistic value (in which 0 is the worst option and 1 the best
one) which individuals will survive from one generation to the next.

Fi ¼
1
2
½1� tanhð2qi � 1Þ� ð2:28Þ

Selection of parents for crossover in the BCGA, individuals are selected to take
part in the crossover based on their fitness. There are different methodologies, such
as: (a) roulette wheel selection, in which a string is choosen at random, and
selected for crossover if its fitness value is greater than a random number gener-
ated between 0 and 1; and (b) tournament selection, in which a number of strings
are randomly selected from the population. The two highest fitness strings are then
selected as parents from this tournament pool.

Fig. 2.2 Left field emission scanning electron microscopy image of a barley chromosome
metaphase. Right schematic representation of the cluster information encoding in a string
(chromosome) in the GA code [32]
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Crossover also know as ‘‘mating’’, is the exchange of genetic information
between chromosomes (string parents). In the BCGA, parent structures are com-
bined in order to generate offspring; by the cut-and-splice procedure of Deavon
and Ho [30]. In our work, we have used the 1-point-weighted crossover (see
Fig. 2.3), in which the cut position is based on the energies of the parents (the
relative fitness of the parents). The BCGA slices the two clusters parent and
combines complementary slices, with more atoms being chosen from the parent of
highest fitness. In our implementation, only one offspring is generated.

Mutation as in nature, mutations help to avoid stagnation of the population (i.e.
they increase population diversity). Mutations results in slight changes in the
genetic information encoded in the chromosome: in other words, new genetic
material is introduced into the population. In global optimization routines, intro-
ducing a mutation operator can help to avoid convergence to a non-optimal
solution (a high-energy nanocluster structure). In the BCGA, a number of different
mutation schemes have been encoded:

(a) Replacement one cluster is removed from the population and replaced by
another generated at random.

(b) Rotation a rotation of the atomic coordinates is performed of the top half of the
cluster relative to the bottom half, by a random angle.

(c) Exchange applied to bimetallic clusters, in which approximately one-third of
the A type atoms in the cluster are exchanged for B atoms, without altering the
original coordinates in the cluster

(d) Displacement approximately one-third of the atoms in the clusters are dis-
placed to random positions. The selected atoms are also choosen at random.

Selection evolutionary principles are best applied at this stage during GA sear-
ches (i.e. the Darwinian principle of survival of the ‘‘fittest’’). There are modifica-
tions which can be taken into account, such as accepting all mutant structures (or the
contrary case), not accepting parents for the next generation, or always keeping
among the population the individuals with higher fitness (i.e. the elitist strategy).

Fig. 2.3 Schematic
representation of GA
crossover
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Optimization all processes, such as crossover, mutation and selection is repe-
ated for a specified number of generations (in this work, number of genera-
tions = 400) until the population is considered to be converged (when the range of
cluster energies in the population has not changed for a prescribed number of
generations).

The BCGA parameters adopted in this work were: population size = 40
clusters; crossover rate = 0.8 (i.e. 32 offspring are produced per generation);
crossover type = 1-point weighted; selection = roulette; mutation rate = 0.1;
mutation type = mutate-move; number of generations = 400, and number of GA
runs for each composition = 100 (for statistical purposes, as well as for large
clusters, a large number of global optimization searches are needed due to the
complexity of the PES of the nanoparticle). Most of the parameters are selected
as default by the BCGA code (such as crossover and mutation rate). A large
initial population and a vast number of generations are needed for a full
exploration of the PES of these medium size clusters. BCGA global optimiza-
tions were stopped when there is no change in the population over 10 different
generations (term = 10).

2.3.2 The Basin-Hopping Monte Carlo Algorithm

A more detailed homotop search was performed using a modified version of the
Basin Hopping Monte–Carlo algorithm (BHMC) [34], which allows only ‘‘atom-
exchange’’ for a fixed composition and structural configuration (see Fig. 2.4).

During our local BHMC optimizations, we carried out approximately 3,000
Monte–Carlo steps, with a thermal energy kBT of 0.02 eV. This low value is
appropriate for performing a localized search of deep regions of the chosen
structural funnel in the PES. We found that in some cases, the GA approach was
not able to identify the most favorable chemical ordering, whereas this was easily
found using the BHMC algorithm. This is in line with recent observations that the
optimal strategy in configurational searches is to take initially only structural
moves, and subsequently to refine the lowest-energy structures via atom-exchange
moves [35, 36 and Ferrando and Rossi (2007, personal communication)].

Fig. 2.4 Schematic representation of the ‘‘atom-exchange’’ local relaxation, implemented in the
BHMC algorithm

26 2 Theoretical Background and Methodology



2.3.3 Shell Optimization Routine

For high-symmetry polyhedral cluster geometries, a substantial reduction in
the search space is obtained if all sets of symmetry-equivalent atoms, which we
have termed atomic shells, in a particular structure are constrained to be of the
same chemical species [37]. It should be noted that these atomic shells are, in a
more rigorous group theoretical sense, known as orbits of the point group [1]. For a
given geometrical structure, this reduces the number of inequivalent compositional
and permutational isomers (homotops) to 2S;where S is the number of atomic shells.

We have used our shell optimization routine for the highly symmetric 98-atom
Leary tetrahedron (LT) structures (see Chaps. 4, 7), with ideal Td symmetry. S = 9
shells and, in order of increasing distance from the centre of the cluster, these
shells have 4:12:12:12:4:6:12:12:24 atoms, resulting in 29 = 512 Td symmetry LT
isomers. The various shells of the LT structure are indicated in Fig. 2.5 by dif-
ferent colours. Using the shell-optimization routine, it is possible to conduct a
systematic investigation of all high-symmetry chemical arrangements for a given
structural motif, with greatly reduced computational effort.

2.3.4 Combined EP-DFT Approach

In this work, we have followed a combined approach (see Fig. 2.6), in which initial
global optimizations are carried out using our GA (coupled with the Gupta
potential) and once we have found a putative global minimum (GM), we perform an
‘‘atom-exchange’’ routine (a modified Basin Hopping Monte Carlo, in collaboration
with Professor Alessandro Fortunelli and Dr. Giovanni Barcaro, CNR-Pisa).

Fig. 2.5 98-atom Leary
Tetrahedron (LT) structure
with Td symmetry. Each
colour represents a different
atomic shell
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This allows us to corroborate, at the Gupta level, the chemical ordering of the
structure (i.e. the way in which atoms segregate to cluster surface sites). Once we
have located a variety of putative GM structures (as well as high-energy isomers)
for different bimetallic systems, we proceed to construct a database of structures
(varying from crystalline fcc-type structures, to decahedral, icosahedral and
amorphous type, structural families); and we place them in competition at the high
level of theory, by carrying out DFT local-relaxations on these structures (see
Fig. 2.7) [36, 38, 39].

In contrast to the search of the empirical potential (EP) potential energy surface
using the GA method, we cannot guarantee that our combined EP/DFT approach
will be equally successful in the search of the GM at the DFT level. For this
reason, the expressions ‘‘putative GM’’ or ‘‘lowest-energy structure’’ are used
when discussing the results of DFT calculations.

2.4 Energetic Analysis

In order to analyse cluster stability, some energetic quantities need to be defined. At

the Gupta potential level of theory, the binding energy per atom of a cluster (EGupta
b ),

can be calculated as:

EGupta
b ¼ �Vclus

N
ð2:29Þ

Fig. 2.6 Schematic representation of our combined approach

Fig. 2.7 Left putative GM structural families found at the Gupta level of theory. The energy
orderings are modified after performing high-level DFT calculations right
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where Vclus is the total potential energy of the cluster (pure metal or bimetallic) and

N is the total number of atoms in the cluster. In our work, positive values of EGupta
b

indicate stable cluster atomic configurations (i.e. lower EGupta
b values would indi-

cate less favourable atomic arrangements). Another criterion for determining
relative stability (both at the Gupta and DFT level) is the second difference in
binding energy, D2EbðNÞ. This quantity is used in pure clusters in order to com-
pare the relative stability of a cluster of size N; with respect to its neighbours:

D2EbðNÞ ¼ 2EbðNÞ � EbðN � 1Þ � EbðN þ 1Þ ð2:30Þ

In the case of mixed clusters, Eq. 2.30 can be defined as follows:

D2EbðAmBnÞ ¼ EbðAmþ1Bn�1Þ þ EbðAm�1Bnþ1Þ � 2EbðAmBnÞ ð2:31Þ

where peaks in both D2EbðNÞ and D2EbðAmBnÞ often coincide with discontinuities
in the mass spectra [40].

Another useful quantity at the Gupta level is the excess energy (i.e. the mixing

energy) DGupta
N defined for clusters of fixed size but different composition [41]:

DGupta
N ¼ EGupta

N ðAmBnÞ � m
EGupta

N ðANÞ
N

� n
EGupta

N ðBNÞ
N

ð2:32Þ

where EGupta
N (AmBn) represents the total energy of a given cluster (e.g. all pos-

sible compositions for N-atom: Pd–Pt, Ag–Pt, Pd–Au and Ag–Au clusters)

calculated at the Gupta level and EGupta
N ðANÞ and EGupta

N ðBNÞ represent the total
energies of the GM of the pure metal clusters (i.e. PtN ; AgN ; PdN and AuN).

DGupta
N quantifies the degree of mixing (the energy associated with alloying)

between the two different metals. The most negative values of DGupta
N represent

those compositions at which mixing is most favourable, and thus, the more
stable clusters.

In order to analyse trends in chemical order as a function of size and
composition (See Chap. 7), it is convenient to define an order parameter with
the following characteristics: positive when phase separation (segregation)
takes place, close to zero when disordered mixing occurs, and negative when
mixing and layer-like structure co-exist. The chemical order parameter r is
defined as:

r ¼ NPd�Pd þ NAu�Au � NPd�Au

NPd�Pd þ NAu�Au þ NPd�Au
ð2:33Þ

where Nij (with i; j = Pd, Au) is the number of nearest neighbour i� j bonds. An
order parameter of this type has proven to be useful in the description of short
range order in binary bulk alloys and surfaces [42].

The DFT binding energies (EDFT
b ) for N-atom pure metal clusters can be

calculated as the difference (per atom) between the total electronic energy of the
cluster (EDFT

total (AN)) and N times the energy of a single atom EDFT
atom(A):
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EDFT
b ¼ � 1

N
EDFT

total ðANÞ � N � EDFT
total ðAÞ

� 	
ð2:34Þ

For bimetallic clusters, EDFT
b is calculated using a similar expression:

EDFT
b ¼ � 1

N
EDFT

total ðAmBnÞ � m � EDFT
atomðAÞ � n � EDFT

atomðBÞ
� 	

ð2:35Þ

The excess energy DDFT
N ; can also be defined at the DFT level as follows:

DDFT
N ¼ EDFT

N ðAmBnÞ � mEDFT
AN
� nEDFT

BN
ð2:36Þ

where EDFT
N ðAmBnÞ is the total electronic energy of the cluster, with size N and

composition (AmBn), and EDFT
AN

and EDFT
BN

are the total electronic energies of the GM
of the pure metal clusters AN and BN ; respectively.
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