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Chapter 2

Critical Mass and Efficiency

Abstract This chapter forms the heart of this book. After deriving the properties of

neutron travel through materials, a detailed analysis is presented of how the critical

mass of a fissile material, in both “bare” and “tampered” configurations, can be

calculated. The calculations are applied to both uranium-235 and plutonium-239.

Analytic expressions are developed for estimating bomb energy yield and effi-

ciency. A numerical simulation is developed to analyze conditions of pressure,

fission rate, expansion, and energy yield within a fissioning bomb core, and is

applied to the Hiroshima Little Boy bomb. Spreadsheets for performing the calcula-

tions are made available to interested users through a supporting website.

Every atom of separated uranium or plutonium in the Manhattan Project was

precious, so estimating the amount of fissile material needed to make a workable

nuclear weapon – the so-called critical mass – was a crucial issue for the developers

of Little Boy and Fat Man. Equally important was being able to estimate what

efficiency one might expect for a fission bomb. For various reasons, not all of the

fissile material in a bomb core actually undergoes fission during a nuclear explo-

sion; if the expected efficiency were to prove so low that one might just as well use a

few conventional bombs to achieve the same energy release, there would be no

point in taking on the massive engineering challenges involved in making nuclear

weapons. In this chapter we investigate these issues.

The concept of critical mass involves two competing effects. As nuclei fission

they emit secondary neutrons. A fundamental empirical law of nuclear physics,

derived in Sect. 2.1, demands that a certain fraction of these neutrons reach the

surface of the mass and escape while the remainder are consumed in fissioning

other nuclei. However, if on average more than one neutron is emitted per fission

we can afford to let some escape since only one is required to initiate a subsequent

fission. For a small sample of material the escape probability is high; as the size of

the sample increases, the escape probability declines and at some point will reach a

value such that the number of neutrons that fail to escape will number enough to

fission every nucleus in the sample. Thus, there is a minimum size (hence mass) of
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material at which every nucleus will in principle be fissioned even while some

neutrons escape.

The above description of critical mass should be regarded as a purely qualitative

one. Technically, the important issue is known as criticality. Criticality is said to

obtain when the number of free neutrons in a bomb core is increasing with time.

A full understanding of criticality demands familiarity with time-dependent diffu-

sion theory. Application of diffusion theory to this problem requires understanding

a concept known as the mean free path (MFP) for neutron travel, so this is

developed in Sect. 2.1. Section 2.2 takes up a time-dependent diffusion theory

treatment of criticality. Section 2.3 addresses the effect of surrounding the fissile

core with a tamper, a metallic casing which has the effects of decreasing the critical

mass and improving the efficiency of the explosion. Sections 2.4 and 2.5 take up the

issue of bomb efficiency through analytic approximations and a numerical simula-

tion, respectively. Section 2.6 presents an alternate treatment of untamped critical-

ity that has an interesting historical connection.

For readers interested in further sources, an excellent account of the concept of

critical mass appears in Logan (1996); see also Bernstein (2002).

2.1 Neutron Mean Free Path

See Fig. 2.1. A thin slab of material of thickness s (ideally, one atomic layer) and

cross-sectional area S is bombarded by incoming neutrons at a rate Ro neutrons/

(m2 s).

Let the bulk density of the material be r g/cm3. In nuclear reaction calculations,

however, density is usually expressed as a number density of nuclei in the material,

that is, the number of nuclei per cubic meter. In terms of r this is given by

nuclear number
density n

s

surface
area Σ

bombardment rate
Ro neutrons 
per m2 per second

Fig. 2.1 Neutrons penetrating a thin target foil
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n ¼ 106
rNA

A

� �
; (2.1)

where NA is Avogadro’s number and A is the atomic weight (g/mol) of the material;

the factor of 106 arises from converting cm3 to m3.

Assume that each nucleus presents a total reaction cross-section of s square

meters to the incoming neutrons. Cross-sections are usually measured in barns (bn),

where 1 bn ¼ 10�28 m2. The first question we address is: “Howmany reactions will

occur per second as a consequence of the bombardment rate Ro?” The volume of the

slab is Ss, hence the number of nuclei contained in it will be Ssn. If each nucleus

presents an effective cross-sectional area s to the incoming neutrons, then the total

area presented by all nuclei would be Ssns. The fraction of the surface area of the

slab that is available for reactions to occur is then (Ssns/S) ¼ sns. The rate of

reactions R (reactions/s) can then sensibly be assumed to be the rate of bombarding

particles over the entire surface area of the slab times the fraction of the surface area

available for reactions:

Reactions

per second

 !
¼ incident neutron

flux=second

� �
fraction of surface area

occupied by cross � section

� �

or

R ¼ RoSð Þ s n sð Þ: (2.2)

The probability P that an individual incident neutron precipitates a reaction is

then

Preact ¼

reactions

per second

 !

incident neutron flux

per second

 ! ¼ s n s: (2.3)

For our purposes, more directly useful is not the probability that a neutron will be

consumed in a reaction, but rather that it will pass through the slab to escape out the

back side:

Pescape ¼ 1� Preact ¼ 1� s n s: (2.4)

Now consider a block of material of macroscopic thickness x. As shown in

Fig. 2.2, we can imagine this to be comprised of a large number of thin slabs each of

thickness s placed back-to-back.
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The number of slabs is � ¼ x/s. If No neutrons are incident on the left side of the

block, the number that would survive to emerge from the first thin slab would

be NoP, where P is the probability in (2.4). These neutrons are then incident on the

second slab, and the number that would emerge unscathed from that passage would

be (NoP)P ¼ NoP
2. These neutrons would then strike the third slab and so on. The

number that survive passage through the entire block to escape from the right side

would be NoP
�, or

Nesc ¼ No 1� s n sð Þx=s: (2.5)

Define z ¼ –sns. The number that escape can then be written as

Nesc ¼ No 1þ zð Þ�s n x=z ¼ No 1þ zð Þ1=z
h i�s n x

: (2.6)

Now, ideally, s is very small, which means that z! 0. The definition of the base

of the natural logarithms, e, is e ¼ lim
z!0

1þ zð Þ1=z, so we have

Nesc ¼ Noe
�s n x;

or

Pdirect escape ¼ Nesc

No
¼ e�snx: (2.7)

Equation (2.7) is the fundamental escape probability law. In words, it says that

the probability that a bombarding neutron will pass through a slab of material of

thickness x depends exponentially on x, on the number density of nuclei in the slab,

and on the reaction cross-section of those nuclei to incoming neutrons. If s ¼ 0, all

of the incident particles will pass through unscathed. If s n xð Þ ! 1, none of the

incident particles will make it through.

x

No
incident
neutrons

Ne
escaping
neutrons

s

Fig. 2.2 Neutrons

penetrating a thick target
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In practice, (2.7) is used to experimentally establish values for cross-sections by

bombarding a slab of material with a known number of incident particles and then

seeing how many emerge from the other side; think of (2.7) as effectively defining s.
Due to quantum-mechanical effects, the cross-section is not the geometric area of

the nucleus.

The total cross section had in mind here can be broken down into a sum of cross-

sections for individual processes such as fission, elastic scattering, inelastic scatter-

ing, non-fission capture and the like:

stotal ¼ sfission þ selastic scatter þ sinelastic scatter þ scapture þ ::: : (2.8)

In practice, cross-sections can depend very sensitively on the energy of the

incoming neutrons; such energy-dependence plays a crucial role in the contrast

between how nuclear reactors and nuclear weapons function. As an example,

Fig. 2.3 (see also Fig. 1.9) shows the variation of the fission cross-section for
235U under neutron bombardment for neutrons in the energy range 1–10 eV; note

the dramatic resonance effects at certain energies. This graph shows only a small

fraction of the energy range over which the cross-section for the 235U(n, f ) reaction
has been measured; measurements from 10�5 eV to 20 MeV are available from the

source listed in the figure caption.

A very important result that derives from this escape-probability law is an

expression for the average distance that an incident neutron will penetrate into

the slab before being involved in a reaction. Look at Fig. 2.4, where we now have a

slab of thickness L and where x is a coordinate for any position within the slab.

Imagine also a small slice of thickness dx whose front edge is located at position x.

Fig. 2.3 Cross-section for the 235U(n, f ) reaction over the energy range 1–10 eV. At 0.01 eV, the

cross-section for this reaction is about 930 bn. Data from National Nuclear Data Center
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From (2.7), the probability that a neutron will penetrate through the entire slab to

emerge from the face at x ¼ L is Pemerge ¼ e�snL. This means that the probability

that a neutron will be involved in a reaction and not travel through to the face at

x ¼ L will be Preact ¼ 1� e�snL. If No neutrons are incident at the x ¼ 0 face then

the number that will be consumed in reactions within the slab will be

Nreact ¼ No 1� e�snLð Þ. We will use this result in a moment.

Also from (2.7), the number of neutrons that penetrate to x and x þ dx, respec-
tively, is give by

Nx ¼ Noe
�s n x (2.9)

and

Nxþdx ¼ Noe
�s n xþdxð Þ: (2.10)

Some of the neutrons that reach x will be involved in reactions before reaching

x þ dx, that is, Nx > Nxþdx. The number of neutrons consumed between x and

x þ dx, designated as dNx, is given by

dNx ¼ Nx � Nxþdx ¼ Noe
�s n x 1� e�s n dx� �

: (2.11)

If dx is infinitesimal, then s n dxð Þ will be very small. This means that we can

write e�sn dxð Þ � 1� s n dxð Þ, and hence write dNx as

dNx ¼ Noe
�s n x s n dxð Þ; (2.12)

a result equivalent to differentiating (2.7) above.

Now, these dNx neutrons penetrated distance x into the slab before being

consumed in a reaction, so the total travel distance accumulated by all of them in

doing so would be (xdNx). The average distance that a neutron destined to be

consumed in a reaction will travel before being consumed is given by integrating

accumulated travel distances over the length of the slab and dividing by the number

x

No
incident
neutrons

Ne
escaping
neutrons

dx

x = 0 x = L

Fig. 2.4 Neutrons penetrating a target of thickness L
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of neutrons consumed in reactions within the slab, that is, Nreact ¼ No 1� e�snLð Þ
from above:

xh i ¼ 1

Nreact

ZL
0

x dNx ¼ 1

No 1� e�snLð Þ
ZL
0

Nosnð Þ x e�snxdx

¼ 1

s n
1� e�snL 1þ snLð Þ

1� e�snL

� �
: (2.13)

If we have a slab of infinite thickness, or, more generally, one such that the

product snL is large, then e�snL will be small and we will have

xh i sn Lð Þlarge !
1

s n
: (2.14)

This quantity is known as the characteristic length or mean free path for the

particular reaction quantified by s. This quantity will figure prominently in Sects. 2.2

through 2.6. If it is computed for an individual cross section such as sfission or

scapture, one speaks of the mean free path for fission or capture. Such lengths are

often designated by the symbol l. As an example, consider fission in 235U. The

nuclear number density n is 4.794 � 1028 m�3, and the fission cross section is

sf ¼ 1.235 bn ¼ 1.235 � 10�28 m2. These numbers give lf ¼ 16.9 cm, or about

6.65 in.

Finally, it should be emphasized that the derivations in this section do not apply

to bombarding particles that are charged, in which case one has very complex

ionization issues to deal with.

2.2 Critical Mass: Diffusion Theory

We now consider critical mass per se. Qualitatively, the concept of critical mass

derives from the observation that some species of nuclei fission upon being struck

by a bombarding neutron and consequently release secondary neutrons. In a sample

of fissile material these secondary neutrons can potentially go on to induce other

fissions, resulting in a chain reaction. However, the development in the preceding

section indicates that we can expect a certain number of neutrons to reach the

surface of the sample and escape, particularly if the sample is small. If the density of

neutrons within the sample is increasing with time, criticality is said to obtain.

Whether or not this condition is fulfilled depends on quantities such as the density

of the material, its cross-section for fission, and the number of neutrons emitted per

fission, which is designated by the symbol n.
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To explore the time-dependence of the number of neutrons in the core requires

the use of time-dependent diffusion theory. In this section we use this theory to

calculate the critical masses of so-called “bare” spherical assemblies of 233U, 235U,
237Np, 239Pu, and 241Am, the five isotopes that one can feasibly consider for use in

nuclear weapons. Of these, 235U and 239Pu are used in practice. The term “bare”

refers to an untamped core. More correctly, we compute critical radii which can be
transformed into equivalent critical masses upon knowing the density of the mate-

rial involved.

The development presented here is based on the development in Appendix G of a

differential equation which describes the spatiotemporal behavior of the neutron

number density N, that is, the number of neutrons per cubic meter within the core.

The derivation in Appendix G depends upon on some material developed in

Sect. 3.5; it is consequently recommended that both those sections be read in

advance of this one. Also, be sure not to confuse n and N; the former is the number

density of fissile nuclei while the latter is the number density of neutrons; both play
roles in what follows. Note also that the definition of N here differs from that in the

previous section, where it represented a number of neutrons.

Before proceeding, an important limitation of this approach needs to be made

clear. Following Serber et al. (1992), I model neutron flow within the bomb core by

use of a diffusion equation. A diffusion approach is appropriate if neutron scattering

is isotropic. Even if this is not so, a diffusion approach will still be reasonable if

neutrons suffer a large enough number of scatterings so as to effectively erase non-

isotropic angular effects. Unfortunately, neither of these conditions are fulfilled in

the case of a uranium core: fast neutrons elastically scattering against uranium show

a strong forward-peaked effect, and the mean free path of a fast neutron in 235U,

about 3.6 cm, is only about half of the 8.4-cm bare critical radius (see Table 2.1

below). I adopt a diffusion-theory approach for a number of reasons, however. As

much of the physics of this area remains classified or at least not easily accessible,

we are forced to settle for an approximate model; diffusion theory has the advantage

of being analytically tractable at an upper-undergraduate level. Also, despite these

various limitations, a comparison of critical radii as predicted by diffusion theory

Table 2.1 Threshold critical radii and masses (untamped)

Quantity Unit 235U 239Pu 233U 237Np 241Am

A g/mol 235.04 239.05 233.04 237.05 241.06

r g/cm3 18.71 15.6 18.55 20.25 13.67

sf bn 1.235 1.800 1.946 1.335 1.378

sel bn 4.566 4.394 4.447 4.965 4.833

n – 2.637 3.172 2.755 2.81 2.5

n 1022 cm�3 4.794 3.930 4.794 5.144 3.415

lfission cm 16.89 14.14 10.72 14.56 21.25

lelastic cm 4.57 5.79 4.69 3.92 6.06

ltotal cm 3.60 4.11 3.26 3.09 4.71

RO cm 8.37 6.346 5.676 6.736 11.307

MO kg 45.9 16.7 14.2 25.92 82.8
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with those of an openly-published more exact treatment shows that the two agree

within about 5% for the range of fissility parameters of interest here (Reed 2008).

Central to any discussion of critical radius are the fission and transport mean

free paths for neutrons, respectively symbolized as lf and lt. These are given by

(2.14) as

lf ¼ 1

sf n
(2.15)

and

lt ¼ 1

stn
; (2.16)

where st is the so-called transport cross-section. If neutron scattering is isotropic

(which we assume), the transport cross-section is given by the sum of the fission and

elastic-scattering cross-sections:

st ¼ sf þ sel: (2.17)

We do not consider here the role of inelastic scattering, which affects the

situation only indirectly in that it lowers the mean neutron velocity. To keep the

treatment simple we will also not deal at this point with the effect of any external

tamper/neutron reflector.

In a spherical fissioning bomb core, the diffusion theory of Appendix G provides

the following differential equation for the neutron number density:

@N

@t
¼ vneut

lf
n� 1ð ÞN þ ltvneut

3
r2N
� �

; (2.18)

where vneut is the average neutron velocity and the other symbols are as defined earlier.

Now, let r represent the usual spherical radial coordinate. Upon assuming a

solution for N(t, r) of the form N(t, r) ¼ Nt(t)Nr(r), (2.18) can be separated as

1

Nt

@Nt

@t

� �
¼ n� 1

t

� �
þ D

Nr

1

r2
@

@r
r2
@Nr

@r

� �� �
; (2.19)

where D is the so-called diffusion coefficient,

D ¼ ltvneut
3

; (2.20)

and where t is the mean time that a neutron will travel before causing a fission:

t ¼ lf
vneut

: (2.21)

2.2 Critical Mass: Diffusion Theory 47



If the separation constant for (2.19) is defined as a/t (that is, the constant to

which both sides of the equation must be equal), then the solution for the time-

dependent part of the neutron density emerges directly as

NtðtÞ ¼ Noe
a=tð Þt (2.22)

where No represents the neutron density at t ¼ 0. No would be set by whatever

device is used to initiate the chain-reaction. Note that we could have called the

separation constant just a, but this form will prove a little more convenient for

subsequent algebra. With this definition of the separation constant, the radial part of

(2.19) appears as

n� 1

t

� �
þ D

Nr

1

r2
@

@r
r2
@Nr

@r

� �� �
¼ a

t
: (2.23)

The first and last terms in (2.23) can be combined (this is why the separation

constant was defined as a/t); on dividing (2.23) by D, we find

1

d2
þ 1

Nr

1

r2
@

@r
r2
@Nr

@r

� �� �
¼ 0; (2.24)

where

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lf lt
3 ð � aþ n� 1Þ

s
: (2.25)

Now define a new dimensionless coordinate x according as

x ¼ r

d
: (2.26)

This brings (2.24) to the form

1

Nr

1

x2
@

@x
x2

@Nr

@x

� �� �
¼ �1: (2.27)

Aside from a normalization constant, the solution of this differential equation

can easily be verified to be

NrðrÞ ¼ sin x

x

� �
: (2.28)

To determine a critical radius RC, we need a boundary condition to apply to

(2.28). As explained in Appendix G, this takes the form
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N RCð Þ ¼ � 2 lt
3

@N

@r

� �
RC

¼ � 2 lt
3 d

@N

@x

� �
RC

: (2.29)

On applying this to (2.28), one finds that the critical radius is given by solving

the transcendental equation

x cotðxÞ þ x=� � 1 ¼ 0; (2.30)

where

� ¼ 2lt
3d

¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lt �aþ n� 1ð Þ

3lf

s
: (2.31)

With fixed values for the density and nuclear constants for some fissile material,

(2.30) and (2.31) contain two variables: the core radius r and the exponential factor a,
and they can be solved in two different ways. For both approaches, assume that we are

working with material of “normal” density, which we designate as ro. For the first

approach, start by looking back at (2.22). If a ¼ 0, the neutron number density is neither

increasing nor decreasing with time; in this case one has what is called threshold
criticality. To determine the so-called threshold bare critical radius Ro, set a ¼ 0 in

(2.25) and (2.31), set the density to ro, solve (2.30) for x, and then get r (¼Ro) from
(2.26). The corresponding threshold bare critical mass Mo then follows from Mo ¼
(4p/3)Ro

3ro. It is this mass that one usually sees referred to as the critical mass; this

quantity will figure prominently in the discussion of efficiency in Sects. 2.4 and 2.5.

The second type of solution begins with assuming that one has a core of some

radius r > Ro. In this case one will find that (2.30) will be satisfied by some value of

a > 0, with a increasing as r increases. That is, since x �= ¼ 3r 2lt= in (2.30) is

independent of a, we can set r to some desired value; (2.30) can then be solved for

x, which gives d from (2.26), and hence a from (2.25). With a > 0 the reaction will

grow exponentially in time until all of the fissile material is used up, a situation known

as “supercriticality.” To see why increasing the radius demands that a must increase,

implicitly differentiate (2.30) to show that d� dx= ¼ � x=ð Þ2 1� x2 sin2x
	� �

, which

demands d� dx= < 0 for all values of x. From the definition of x, an increase in r (and/or
in the density, for that matter) will cause x to increase. To keep (2.30) satisfied means

that � must decrease, which, from (2.31), can happen only if a increases.

We come now to a very important point. This is that the condition for threshold

criticality can in general be expressed as a constraint on the product rr where r is

the mass density of the fissile material and r is the core radius. The factor � in (2.30)
is independent of the density, depending only on the cross-sections and secondary

neutron number n. Hence, for a ¼ 0, (2.30) will be satisfied by some unique value

of xwhich will be characteristic of the material being considered. Since x ¼ r/d and
d itself is proportional to 1/r [see (2.25)], we can equivalently say that the solution

of (2.30) demands a unique value of rr for a given combination of s and n values.
If as above Ro is the bare threshold critical radius for material of normal density ro,
then any combination of r and r such that rr ¼ roRo will also be threshold critical,
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and any combination with rr > roRo will be supercritical. For a sphere of material

of mass M, the mass, density, and radius relate as M / rr3, which means that the

“criticality product” rr can be written as rr /M/r2. This relationship underlies the

concept of implosion weapons. If a sufficiently strong implosion can be achieved,

then one can get away with having less than a “normal” critical mass by starting

with a sphere of material of normal density and crushing it to high density by

implosion; such weapons are thus inherently more efficient than those that depend

on a non-implosive “gun” mechanism to assemble subcritical components.

As described in Sect. 4.2, the implosion technique also helps to overcome pre-

detonation issues with spontaneous fission. The key point here is that there is no

unique critical mass for a given fissile material.

Table 2.1 shows calculated critical radii and masses for five nuclides usually

considered for use in nuclear weapons; due to short alpha or beta half-lives and/or

high spontaneous fission rates, no nuclides beyond those listed in the Table are

likely to be suitable candidates for weapons materials.

Sources for the fission and elastic-scattering cross-sections appearing in the Table

are given in Appendix B; the values quoted therein are used as they are averaged over

the fission-energy spectra of the nuclides. The n values were adopted from the

Evaluated Nuclear Data Files (ENDF) maintained by the National Nuclear Data

Center at Brookhaven National Laboratory (http://www.nndc.bnl.gov). For 235U and
239Pu, the n values are for prompt neutrons of energy 2MeV, about the average energy

of fission neutrons. The n value for 233U refers to neutrons of energy 2.5MeV; that for
237Np was adopted from Hyde (1964) for neutrons of energy 1.4 MeV, and that for
241Am is assumed. The densities for 235U and 233U are respectively (235/238) and

(233/238) times the density of natural uranium, 18.95 g/cm3.

Spreadsheet CriticalityAnalytic.xls1 allows users to carry out these calculations

for themselves. This spreadsheet is actually used for the calculations developed in

this section and in Sects. 2.3 and 2.4. In its simplest use – corresponding to this

section – the user enters the relevant parameters: the core density, atomic weight,

fission and scattering cross-sections, and the number of secondary neutrons per

fission. The “Goal Seek” function then allows one to solve (2.30) and (2.31) for

x (assuming a ¼ 0), from which the bare critical radius and mass are computed.

In practice, having available only a single critical mass of fissile material will not

produce much of an explosion. The reason for this is that fissioning nuclei give rise

to fission products with tremendous kinetic energies. The core consequently very

rapidly – within microseconds – heats up and expands, causing its density to drop

below that necessary to maintain criticality. In a core comprised of but a single

critical mass this will happen at the moment fissions begin, so the chain reaction

will quickly fizzle as a falls below zero. To get an explosion of appreciable

efficiency one must start with more than a single critical mass of fissile material

or implode an initially subcritical mass to high density before initiating the explo-

sion. If the core is surrounded by a massive tamper that is imploded to crush the

1All Excel sheets are available at http://www.manhattanphysics.com
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core, the tamper will resist the expansion to some extent and can also serve to reflect

some of the escaped neutrons back into the core to cause more fissions. The issue of

using more than one critical mass to enhance weapon efficiency is examined in

more detail in Sects. 2.4 and 2.5.

To close this section, it is interesting to look briefly at a famousmiscalculation of
critical mass on the part ofWerner Heisenberg. At the end ofWorldWar II a number

of prominent German physicists including Heisenberg were interned for 6 months

in England and their conversations secretly recorded. This story is detailed in

Bernstein (2001); see also Logan (1996) and Bernstein (2002). On the evening of

August 6, 1945, the internees were informed that an atomic bomb had been dropped

onHiroshima and that the energy releasedwas equivalent to about 20,000 tons of TNT

(in actuality, the yield was about 13,000 tons). Heisenberg then estimated the critical

mass based on this information and a subtly erroneous model of the fission process.

We saw in Sect. 1.6 that complete fission of 1 kg of 235U liberates energy

equivalent to about 17 kt TNT. Heisenberg predicated his estimate of the critical

mass on the basis of assuming that about 1 kg of material did in fact fission. One

kilogram of 235U corresponds to about O ~ 2.56 � 1024 nuclei. Assuming that on

average n ¼ 2 neutrons are liberated per fission, then the number of fission gen-

erations G necessary to fission the entire kilogram would be nG ¼ O. Solving for

G gives G ¼ ln(O)/ln(n) ~ 81, which Heisenberg rounded to 80. So far, this

calculation is fine. Heisenberg then argued that as neutrons fly around in the

bomb core they will randomly bounce between nuclei, traveling a mean distance

l between each collision; l here is the mean free path between fissions as in (2.15)

above. From Table 2.1 we have l ~ 17 cm for U-235, but, at the time, Heisenberg

took l ~ 6 cm. Since a random walk of G steps where each is of length l will take

one a distance r � l
ffiffiffiffi
G

p
from the starting point, he estimated a critical radius of

r � 6cmð Þ ffiffiffiffiffi
80

p
~ 54 cm. This would correspond to a mass of some 12,500 kg,

roughly 13 U.S. tons! Given that only one kilogram actually underwent fission, this

would be a fantastically inefficient weapon. Such a bomb and its associated tamper,

casing, and instrumentation would represent an unbearably heavy load for a World

War II-era bomber.

The problem with Heisenberg’s calculation was that he imagined the fission

process to be created by a single neutron that randomly bounces throughout the

bomb core, begetting secondary neutrons along the way. Further, his model is too

stringent; there is no need for every neutron to cause a fission; many neutrons

escape. In the days following August 6 Heisenberg revised his model, arriving at the

diffusion theory approach described in this section.

2.3 Effect of Tamper

In the preceding section we saw how to calculate the critical mass of a sphere of

fissile material. In that development we neglected the effect of any surrounding

tamper. In this section we develop a simple model to account for the presence of a
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tamper. The discussion here draws from the preceding section and from Bernstein

(2002), Serber (1992), and especially Reed (2009).

The idea behind a tamper is to surround the fissile core with a shell of dense

material, as suggested in Fig. 2.5. This serves two purposes: (i) it reduces the critical

mass, and (ii) it slows the inevitable expansion of the core, allowing more time for

fissions to occur until the core density drops to the point where criticality no longer

holds. The reduction in critical mass occurs because the tamper will reflect some

escaped neutrons back into the core; indeed, the modern name for a tamper is

“reflector”, but I retain the historical terminology here. This effect is explored in

this section; estimating the distance over which the core expands before criticality

no longer holds in taken up in the next section. This slowing effect is difficult to

model analytically, but can be treated with an approximate numerical model, which

is done in Sect. 2.5.

The discussion here parallels that in Sect. 2.2. Neutrons that escape form the core

will diffuse into the tamper. To describe the behavior of neutrons in the tamper

we can use (2.18) without the term corresponding to production of neutrons, that is,

the first term on the right side of (2.18); we are assuming that the tamper is not made

of fissile material:

@Ntamp

@t
¼ ltamptransvneut

3
r2Ntamp

� �
; (2.32)

where Ntamp is the number density of and ltamptrans the transport mean free path for

neutrons in the tamper. vneut is the average neutron speed within the tamper, which

we will later assume for sake of simplicity to be the same as that within the core.

We are assuming that the tamper does not absorb neutrons; otherwise, we would

have to add a term to (2.32) represent that effect.

Superscripts and subscripts tamp will be used liberally here as it will be

necessary to join tamper physics to core physics via suitable boundary conditions.

core 

tamper 

initiator 

Fig. 2.5 Tamped bomb core
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As was done in Sect. 2.2, take a trial solution for Ntamp of the form

Ntamp t; rð Þ ¼ Ntamp
t ðtÞNtamp

r ðrÞ where Ntamp
t ðtÞ and Ntamp

r ðrÞ are respectively the

time-and space dependences of Ntamp; r is the usual spherical radial coordinate.

Upon substituting this into (2.32) we find, in analogy to (2.19),

1

Ntamp
t

@Ntamp
t

@t

� �
¼ ltamptransvneut

3

� �
1

Ntamp
r

1

r2
@

@r
r2
@Ntamp

r

@r

� �� �
: (2.33)

Define the separation constant here to be d/t where t is the mean time that a

neutron will travel in the core before causing a fission, that is, as defined in (2.21):

t ¼ lcorefiss

vneut
: (2.34)

This choice renders (2.33) as

1

Ntamp
t

@Ntamp
t

@t

� �
¼ ltamptransvneut

3

� �
1

Ntamp
r

1

r2
@

@r
r2
@Ntamp

r

@r

� �� �
¼ d

t
: (2.35)

It may seem strange to invoke a core quantity when dealing with diffusion in the
tamper, but we can define the separation constant however we please. In principle,

d may be different from the exponential factor a of Sect. 2.2, but we will find that

boundary conditions demand that they be equal. This choice of separation constant

is advantageous in that the neutron velocity vneut, which we assume to be the same

in both materials, cancels out.

The solution of (2.35) depends on whether d is positive, negative, or zero; the

latter choice corresponds to threshold criticality in analogy to a ¼ 0 in Sect. 2.2.

The situations of practical interest will be d � 0, in which case the solutions have

the form

Ntamp ¼

A

r
þ B d ¼ 0ð Þ

e d=tð Þt A
er=dtamp

r
þ B

e�r=dtamp

r


 �
d > 0ð Þ;

8>>><
>>>:

(2.36)

where A and B are constants of integration (different for the two cases), and where

dtamp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ltamptrans l

core
fiss

3 d

s
: (2.37)

The situation we now have is that the neutron density in the core is described by

(2.22) and (2.28) as
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Ncore ¼ Acoree
a=tð Þt sin r=dcoreð Þ

r
; (2.38)

with dcore given by (2.25):

dcore ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lcorefiss l
core
trans

3 �aþ n� 1ð Þ

s
; (2.39)

while that in the tamper is given by (2.36) and (2.37).

The physical question is: “What boundary conditions apply in order that we have

a physically reasonable solution?” Let the core have radius Rcore and let the outer

radius of the tamper be Rtamp; we assume that the inner edge of the tamper is snug

against the core. First consider the core/tamper interface. If no neutrons are created

or lost at this interface then it follows that both the density and flux of neutrons

across the interface must be continuous. That is, we must have

Ncore Rcoreð Þ ¼ Ntamp Rcoreð Þ (2.40)

and, from (6.72) of Appendix G,

lcoretrans

@Ncore

@r

� �
Rcore

¼ ltamptrans

@Ntamp

@r

� �
Rcore

: (2.41)

Equation (2.41) accounts for the effect of any neutron reflectivity of the tamper

via ltamptrans.

In addition, we must consider what is happening at the outer edge of the tamper.

If there is no “backflow” of neutrons from the outside, then the situation is

analogous to the boundary condition of (2.29) that was applied to the outer edge

of the untampered core:

Ntamp Rtamp

� � ¼ � 2

3
ltamptrans

@Ntamp

@r

� �
Rtamp

: (2.42)

Applying (2.40)–(2.42) to (2.36)–(2.39) results, after some tedious algebra, in

the following constraints:

1þ 2Rthreshl
tamp
trans

3R2
tamp

� Rthresh

Rtamp

" #
Rthresh

dcore

� �
cot

Rthresh

dcore

� �
� 1

� �

þ ltamptrans

lcoretrans

¼ 0; d ¼ 0ð Þ
(2.43)

and, for d > 0,
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e2 xct�xtð Þ xc cot xc � 1� l xct � 1ð Þ
Rtamp þ 2ltamptrans xt � 1ð Þ 3=

� �
¼ xc cot xc � 1þ l xct þ 1ð Þ

Rtamp � 2ltamptrans xt þ 1ð Þ 3=

� �
; (2.44)

where

xct ¼ Rcore dtamp
	

xc ¼ Rcore dcore=

xt ¼ Rtamp dtamp
	

l ¼ ltamptrans lcoretrans

	

9>>>=
>>>;
: (2.45)

It is also necessary to demand that a ¼ d, else the fact that (2.40)–(2.42) must

also hold as a function of time would be violated. Some comments on these results

follow.

(i) Equation (2.43) corresponds to tamped threshold criticality, where a ¼ d ¼ 0.

Once values for the d’s and l’s are given, the only unknown is Rthresh, the

threshold critical radius for a tamped core.

(ii) To use (2.44) and (2.45), proceed as follows: (i) Decide on the number of

tamped threshold critical masses C (>1) of material for your bomb core. This

will have radius Rcore ¼ C1=3Rthresh, where Rthresh comes from solving (2.43).

(ii) Pick a value for Rtamp, the outer radius of the tamper. (iii) Solve (2.44)

numerically for a (¼d), which enters the d’s and x’s of (2.44) and (2.45) through
(2.37) and (2.39).

The value of knowing a will become clear when the efficiency and yield

calculations of Sects. 2.4 and 2.5 are developed; for the present, our main concern

is with Rthresh.

A special-case application of (2.43) can be used to get an approximate sense of

how dramatically the presence of a tamper decreases the threshold critical mass.

Suppose that the tamper is very thick, Rtamp >>Rthresh. In this case (2.43) reduces to

Rthresh dcore=ð Þ cot Rthresh dcore=ð Þ ¼ 1� ltamptrans lcoretrans

	� �
: (2.46)

Now consider two sub-cases. The first is that the tamper is in fact a vacuum.

Since empty space would have essentially zero cross-section for neutron scattering,

this is equivalent to specifying ltamptrans ¼ 1, in which case (2.46) becomes

Rthresh dcore=ð Þ cot Rthresh dcore=ð Þ ¼ �1: (2.47)

This can only be satisfied if

Rthresh

dcore

� �
vacuum tamper

¼ p: (2.48)
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The second sub-case is more realistic in that we imagine a thick tamper with a

non-zero transport mean free path. For simplicity, assume that lcoretrans � ltamptrans, that is,

that the neutron-scattering properties of the tamper are much like those of the core.

In this case (2.46) becomes

Rthresh dcore=ð Þ cot Rthresh dcore=ð Þ ¼ 0: (2.49)

The solution in this case is

RThresh

dcore

� �
thick tamper finite cross�section

¼ p
2
; (2.50)

one-half the value of the vacuum-tamper case. To summarize:With an infinitely-thick

tamper of finite transport mean free path, the threshold critical radius is one-half of

what it would be if no tamper were present at all. A factor of two in radius means a

factor of eight inmass, so the advantage of using a tamper is dramatic, even aside from

the issue of any retardation of core expansion. This factor of two is predicated on an

unrealistic assumption for the tamper thickness and so we cannot expect such a

dramatic effect in reality, but we will see that the effect is dramatic enough.

What sort of critical-mass reduction can one expect in practice? In a website

devoted to design details of nuclear weapons, Sublette (2007) records that the

Hiroshima Little Boy bomb used tungsten-carbide (WC) as its tamper material.

Tungsten has five naturally-occurring isotopes, 180W, 182W, 183W, 184W, and 186W,

with abundances 0.0012, 0.265, 0.1431, 0.3064, and 0.2843, respectively. The

KAERI table-of-nuclides site referenced in Appendix B gives elastic-scattering

cross sections for the four most abundant of these as (in order of increasing weight)

4.369, 3.914, 4.253, and 4.253 bn. Neglecting the small abundance of 180W, the

abundance-weighted average of these is 4.235 bn. Adding the 2.352 bn elastic-

scattering cross-section for 12C gives a total of 6.587 bn; the cross-sections must be

added, not averaged, since we are considering the tungsten-carbide molecules to be

“single” scattering centers of atomic weight equal to the sum of the individual atomic

weights for W and C, 183.84 þ 12.00 ¼ 195.84. The bulk density of tungsten-

carbide is 14.8 g/cm3. Assuming an outer radius for the tamper of 17.5 cm (the

choice of this value is explained below), (2.43) indicates that the tamped threshold

critical radius of 235U in this configuration is 6.20 cm, equivalent to a mass of 18.7 kg,

about 60% less than the untamped value of 45.9 kg (Table 2.1). Figure 2.6 shows how

the tamped threshold critical mass for a U-235 core depends on the outer radius of a

surrounding tungsten-carbide tamper. The mass of the tamper would be about 38 kg

for an outer radius of 10 cm and just over 950 kg for an outer radius of 25 cm.

A shell of tungsten carbide of outer radius 17.5 cm and thickness 11.3 cm has a

mass of 317 kg. The 17.5 cm outer radius was chosen as Sublette records that the

Little Boy tamper had a mass of about 311 kg and that its core comprised about

64 kg of 235U in a cylindrical shape surrounded by a cylindrical WC tamper of

diameter and length 13 in. (see also Coster-Mullen (2010)). Assuming for
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simplicity spherical geometry, a 64-kg core at a density of 18.71 g/cm3 would have

an outer radius of 9.35 cm; a 311-kg tamper would then require an outer radius of

about 18 cm. For the mass of its tamper, therefore, Little Boy utilized about 3.5

threshold critical masses of fissile material.

Spreadsheet CriticalityAnalytic.xls allows users to carry out these calculations

for themselves. In addition to the core parameters entered for the calculations of

Sect. 2.2, the user enters the density, atomic weight, scattering cross-section and

outer radius of the tamper. The “Goal Seek” function is then to determine the

tamped threshold critical radius and mass from (2.43).

Why was tungsten-carbide used as the Little Boy tamper material? As one of the

purposes of the tamper is to briefly retard core expansion, denser tamper materials

are preferable; tungsten-carbide is fairly dense and has a low neutron absorption

cross-section. In this sense it would seem that depleted uranium, which the Manhat-

tan Project possessed in abundance, would be an ideal tamper material. (Depleted is
the term given to the uranium that remains after one has extracted its fissile U-235.

The term may sound strange in that the remains are actually enriched in U-238, but

the term is used in the sense of the material having been depleted of U-235.) The

reason that it was not used may be that it has a fairly high spontaneous fission rate,

about 675 per kg/s (see Sect. 4.2). Over the approximately 100 ms required to

assemble the core of a Hiroshima gun-type bomb, a 300 kg depleted-U tamper

would have a fairly high probability of suffering a spontaneous fission and hence of

initiating a predetonation. Further, as discussed in Sect. 1.9, U-238 has a significant

inelastic-scattering cross-section: fast neutrons striking it tend to be slowed to the

point that they become likely to be captured and hence lost to the possibility of being

reflected back into the core. Former weapons designer Theodore Taylor has pointed

out that beryllium is one of the best neutron reflectors known: its fission-spectrum

Fig. 2.6 Threshold tamped critical mass of a pure 235U core as a function of the outer radius of a

tamper of tungsten-carbide (A ¼ 195.84 g/mol, r ¼ 14.8 g/cm3, selastic ¼ 6.587 bn)
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averaged elastic scattering cross section is about 2.7 bn, while its inelastic-scattering

cross-section is only about 40 mbn (McPhee 1974).

2.4 Estimating Bomb Efficiency: Analytic

Material in this section is adopted from a publication elsewhere by the author

(Reed 2007).

In the preceding sections we examined how to estimate the critical mass for bare

and tamped cores of fissile material. The analysis in Sect. 2.2 revealed that the

threshold bare critical mass of 235U is about 46 kg. In Sect. 1.6, however, we saw

that complete fission of 1 kg of 235U liberates energy equivalent to that of about

17 kt of TNT. Given that the Little Boy uranium bomb that was dropped on

Hiroshima used about 64 kg of 235U and is estimated to have had an explosive

yield of only about 13 kt, we can infer that it must have been rather inefficient. The

purpose of this section is to explore what factors dictate the efficiency of a fission

weapon and to show how one can estimate that efficiency.

This section is the first of two devoted to the question of weapon efficiency and

yield. In this section these issues are examined purely analytically. The advantage

of an analytic approach is that it is helpful for establishing a sense of how the

efficiency depends on the various parameters involved: the mass and density of the

core and the various nuclear constants. However, conditions inside an exploding

bomb core evolve very rapidly as a function of time, and this evolution cannot be

fully captured with analytic approximations, elegant as they may be. To do so, one

really needs to numerically integrate the core conditions as a function of time,

tracking core size, expansion rate, pressure, neutron density and energy release

along the way. Such a numerical integration is the subject of the next section; these

two sections therefore closely complement each other and should be read as a unit.

In the present section, we consider only untamped cores for sake of simplicity;

tamped cores are considered in the following section.

To begin, it is helpful to appreciate that the efficiency of a nuclear weapon

involves three distinct time scales. The first is mechanical in nature: the time

required to assemble the subcritical fissile components into a critical assembly

before fission is initiated. In principle, this time can be as long as desired, but in

practice it is constrained by the occurrence of spontaneous fission. We do not want

spontaneous fissions to be likely during the time required to assemble the core lest

stray neutrons trigger a predetonation.

What is the order of magnitude of the assembly time? In a simple “gun-type”

bomb, the idea is that a “projectile” piece of fissile material is fired like a shell

inside an artillery barrel toward a mating “target” piece of fissile material, as

sketched in Fig. 2.7. In World War II, the highest velocity that could be achieved

for an artillery shell was about 1,000 m/s. If a projectile piece of length ~ 10 cm is

shot toward a mating target piece at this speed, the time required for it to become

fully engaged with the target piece from the time that the leading edge of the

projectile meets the target piece will be ~ (10 cm)/(105 cm/s) ~ 10�4 s ~ 100 ms.
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This type of assembly mechanism was used in the Hiroshima Little Boy bomb,

which explains its cylindrical shape as illustrated in the photograph in Fig. 2.8.

As shown in the cross-sectional schematic in Fig. 2.9, the projectile piece was fired

from the tail end of the bomb and traveled most of the approximately 10-foot length

of the weapon toward the nose.

As we will see in a more detailed analysis presented in Sect. 4.2, spontaneous

fission was not an issue for assembling a uranium bomb over a time of 100 ms, but
was such a serious issue with plutonium that it necessitated development of the

implosion mechanism for triggering those weapons. So far as the present section is

concerned, however, the essential idea is that if the spontaneous fission probability

can be kept negligible during the assembly time (which we assume), the efficiency

of the weapon is dictated by the other two time scales.

The first of these other two time scales is nuclear in nature. Once fission has been

initiated, how much time is required for all of the fissile material to be consumed?

This time we call tfission. The other is again mechanical. As soon as fissions have

been initiated, the core will begin to expand due to the extreme gas pressure of the

fission fragments. As we will see, this expansion leads after a time tcriticality to loss

of criticality, after which the reaction rate will diminish. Weapon efficiency will

depend on how these times compare: if tcriticality > tfission then in principle all of the
core material will undergo fission and the efficiency would be 100%.

~ 10 cm

Target piece
Projectile
piece

~ 1000 m/s

~ 10 cm
Fig. 2.7 Assembly timescale

for a gun-type fission weapon

Fig. 2.8 Little Boy test units. Little Boy was 126 in. long, 28 in. in diameter, and weighed 8,900

pounds when fully assembled (Sublette 2007). Photo courtesy Alan Carr, Los Alamos National

Laboratory
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A. Front nose elastic locknut attached to 1-in. diameter Cd-plated draw bolt

B. 15.125-in. diameter forged steel nose nut

C. 28-in. diameter forged steel target case

D. Impact-absorbing anvil with shim

E. 13-in. diameter 3-piece WC tamper liner assembly with 6.5-in. bore

F. 6.5-in. diameter WC tamper insert base

G. 14-in. diameter K-46 steel WC tamper liner sleeve

H. 4-in. diameter U-235 target insert discs (6)

I. Yagi antenna assemblies (4)

J. Target-case to gun-tube adapter with four vent slots and 6.5-in. hole

K. Lift lug

L. Safing/arming plugs (3)

M. 6.5-in. bore gun

N. 0.75-in. diameter armored tubes containing priming wiring (3)

O. 27.25-in. diameter bulkhead plate

P. Electrical plugs (3)

Q. Barometric ports (8)

R. 1-in. diameter rear alignment rods (3)

S. 6.25-in. diameter U-235 projectile rings (9)

T. Polonium–beryllium initiators (4)

U. Tail tube forward plate

V. Projectile WC filler plug

W.Projectile steel back

X. 2-pound Cordite powder bags (4)

Y. Gun breech with removable inner breech plug and stationary outer bushing

Z. Tail tube aft plate

(AA) 2.25-in. long 5/8–18 socket-head tail tube bolts (4)

(BB) Mark-15 Mod 1 electric gun primers with AN-3102-20AN receptacles (3)

(CC) 15-in. diameter armored inner tail tube

(DD) Inner armor plate bolted to 15-in. diameter armored tube

(EE) Rear plate with smoke puff tubes bolted to 17-in. diameter tail tube

Fig. 2.9 Cross-section drawing of Y-1852 Little Boy showing major components. Not shown are

radar units, clock box with pullout wires, barometric switches and tubing, batteries, and electrical

wiring. Numbers in parentheses indicate quantity of identical components. Drawing is to scale.

Copyright by and used with kind permission of John Coster-Mullen
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First consider tcriticality. This involves two key ideas: (i) that a fissioning bomb core

will rapidly (within about a microsecond) heat up, melt, vaporize, and thereafter

behave as an expanding gas with the expansion driven by the gas pressure in a PDV
manner, and (ii) that the vast majority of energy liberated in fission reactions can

be assumed to go into the kinetic energy of the fission products. Our approach here

will be to establish the range of radius (and hence time) over which the core can

expand before the expansion lowers the density of the fissile material to subcriticality.

Fission reactions will continue to happen after this time, of course, but it is this

“criticality shutdown timescale” that fundamentally sets the efficiency scale of

the weapon.

As in the preceding sections, let N(r, t) represent the number density of neutrons

within the core; our concern here is with the time-dependence of this quantity. From

(2.22), the time-evolution of the number-density of neutrons within the core is

given by

NðtÞ ¼ Noe
a=tð Þ t; (2.51)

where No is the neutron density at t ¼ 0. No is set by the number of neutrons

released by some “initiator” at the bomb core, and a is given by solving (2.25),

(2.30), and (2.31) for the core at hand. Recall that for threshold criticality a ¼ 0 and

that for a core of more than one critical mass we will have a > 0, an issue to which

we will return in a moment.

On average, a neutron will cause another fission after traveling for a time given

by t ¼ lf / vneut where lf is the mean free path for fission and vneut is the average
neutron velocity. Inverting this, we can say that a single neutron will lead to a

subsequent fission at a rate of 1/t per second. Hence the rate of fissions as a function
of time is given by

fissions=sec ¼ NoV

t

� �
e a=tð Þ t: (2.52)

Equation (2.52) is actually more complicated than it looks because a is really a

function of time. To see this, consider a core of some general radius r and density r.
Both r and r will vary in time as the core expands. In Sect. 2.2 we saw that the

condition for criticality can be expressed as rr � K where K is a constant charac-

teristic of the material being used, and that, for a core of some mass M, this

condition is expressible as rr / M/r2. As the core expands, the value of rr will
decrease and must eventually fall below the level needed to maintain criticality; we

call this situation “criticality shutdown.” This is also known in the technical

literature as second criticality. For a single critical mass of normal-density material,

this will happen as soon as the expansion begins. One way to (briefly) circumvent

this is to provide a tamper to momentarily retard the expansion and so to give the

reaction time to build up to a significant degree. Another is to start with a core of

more than one critical mass of material of normal density, and this is what is
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assumed here. The effect of a tamper and the detailed time-evolution of a(t) is dealt
with in the following section.

Thus, assume that we have a core of C (> 1) untamped threshold critical masses

of material of normal density; the initial radius of such a core will be ri ¼ C1/3Ro.

We can then solve the diffusion-theory criticality equations, (2.30) and (2.31), for

the value of a that just satisfies those equations upon setting the radius to be C1/3

times the threshold critical radius determined in Table 2.1. But as the core expands

due to the momentum acquired by fission fragments, a will decline from this initial

value down to zero at the moment of criticality shutdown, hence the remark above

that a is a function of time. To avoid having to deal with this complexity, we take

a to be an “effective” a given by the average of these two extreme values, that is,

ainitial/2; this is done automatically in the CriticalityAnalytic.xls spreadsheet. This

assumption is not strictly valid as the core expands exponentially as opposed to

linearly in time, but the intent here is to get a sense of how the efficiency depends on

the various parameters at hand.

Now consider the energy released by these fissions. If each fission liberates

energy Ef, then the rate of energy liberation throughout the entire volume V of the

core will be

dE

dt
¼ NoV Ef

t

� �
e a=tð Þ t: (2.53)

Integrating this from time t ¼ 0 to some general time t gives the energy liberated
to that time:

EðtÞ ¼ NoV Ef

t

� � Z t

0

e a=tð Þ tdt ¼ NoV Ef

a

� �
e a=tð Þ t; (2.54)

where it has been assumed that e a=tð Þt >>1 for the timescale of interest, an assump-

tion to be investigated a posteriori. The energy density corresponding to E(t) is
given by U(t) ¼ E(t)/V, and corresponding to this, we know from thermodynamics

that there will be a growth in pressure given by P(t) ¼ g U(t). The choice of

g depends on whether gas pressure (g ¼ 2/3) or radiation pressure (g ¼ 1/3) is

dominant; in the case of a “gas” of uranium nuclei of standard density of that metal,

radiation pressure dominates for per-particle energies greater than about 2 keV (see

Problem 2.12). Thus

PðtÞ ¼ gNo Ef

a

� �
e a=tð Þ t ¼ Po e

a=tð Þ t; (2.55)

where Po ¼ gNoEf a=
� �

is the pressure at t ¼ 0.

For simplicity, we model the bomb core as an expanding sphere of radius r(t)
with every atom in it moving at speed v. Do not confuse this velocity with the
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average neutron speed, which enters into t. If the sphere is of density r(t) and total

mass M, its total kinetic energy will be

Kcore ¼ 1

2
Mv2 ¼ 2p

3

� �
r v2r3: (2.56)

Now invoke the work-energy theorem in its thermodynamic formulationW ¼ P(t)
dV and equate the work done by the gas (or radiation) pressure in changing the core

volume by dV over time dt to the change in the core’s kinetic energy over that time:

PðtÞ dV
dt

¼ dKcore

dt
: (2.57)

To formulate this explicitly, write dKcore/dt ¼ (2p/3)rr3(2vdv/dt), dV/dt ¼ 4

pr2(dr/dt), and incorporate (2.55) to give

dv

dt
¼ 3Po

r r

� �
e a=tð Þ t: (2.58)

To solve this for the radius of the core as a function of time we face the problem

of what to do about the fact that both r and r are functions of time. We deal with this

by means of an approximation.

Review the discussion about core expansion following (2.52) above. As the core

expands, its density when it has any general radius r will be r(r) ¼ Cro(Ro/r)
3, and

criticality will hold until such time as rr ¼ roRo, or, on eliminating r, r ¼ C1/2Ro.

We can then define Dr, the range of radius over which criticality holds:

Dr ¼ C1=2 � C1=3
� 


Ro; (2.59)

a result we will use in a moment.

Now, since ri ¼ C1/3Ro, (rr)initial ¼ C1/3(roRo). For C ¼ 2 (for example), this

gives (rr)initial ¼ 1.26(roRo). At criticality shutdown we will have (rr)crit ¼ (roRo),

so (rr)crit and (rr)initial do not differ greatly. In view of this, we assume that the

product rr in (2.58) can be replaced with a mean value given by the average of the

initial and final (loss-of-criticality) radii:

rrh i ¼ 1

2
1þ C1=3
� 


roRo: (2.60)

We can now integrate (2.58) from time t ¼ 0 to some general time t to determine

the velocity of the expanding core at that time:
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vðtÞ ¼ 3Po

r rh i
� � Z t

0

e a=tð Þ tdt ¼ 3Po t
r rh i a

� �
e a=tð Þ t; (2.61)

where it has again been assumed that e a=tð Þt >>1.

The stage is now set to compute the amount of time that the core will take to

expand through the distance Dr of (2.59). Writing v ¼ dr/dt and integrating (2.61)

from ri to ri þ Dr for time ¼ 0 to tcriticality gives

tcrit � t
a

� 

ln

Dr a2 r rh i
3Pot2

� �
¼ t

a

� 

ln

Dr a3 r rh i
3 g t2NoEf

� �
; (2.62)

again assuming e a=tð Þt >>1 and using Po ¼ gNoEf a= . Notice that we cannot

determine tcrit without knowing the initial neutron density No.

We now define efficiency. Equation (2.54) gives the total energy liberated up

to time t. If all of the nuclei were to fission, then total energy Ef n V would be

liberated, where n and V are the initial nuclear number density and volume of the

core. We define efficiency as the ratio of the total energy liberated up to time tcrit to
the total possible that can be liberated if all nuclei fission:

Efficiency ¼
Ef No V

a

� 

Ef n V
� � exp a=tð Þ tcrit½ � ¼ Dr a2 r rh i

3 g n t2Ef
; (2.63)

where we again substituted for Po. Note that the efficiency does not depend on the
initial neutron density.

The yield of the weapon is given by the product of this efficiency times the core

mass (in kilograms) times the energy liberated per kilogram of fissioned nuclei,

EfNA 1000 A=ð Þ, where A is the atomic weight in g/mol.

To help determine what value of g to use, we can compute the total energy

liberated to time tcrit as in (2.63), and then compute the energy per particle by

dividing by the number of nuclei in the core, nV. The result is

energy per nucleus

at time tcrit

 !
¼ efficiencyð ÞEf : (2.64)

Even if the efficiency is very low, say 0.1%, then for Ef ¼ 180 MeV the energy

per nucleus would be 180 keV, much higher than the ~2 keV per-particle energy

where radiation pressure dominates over gas pressure; it would thus seem reason-

able to take g ¼ 1/3.

Further, it can be shown by substituting (2.62) into (2.55) and (2.61) that at the

time of criticality shutdown the core velocity is given by

v tcritð Þ ¼ aDr
t

; (2.65)
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and that the pressure within the core is given by

P tcritð Þ ¼ a2 Dr rrh i
3 t2

: (2.66)

Curiously, this pressure does not depend on the value of g.
To determine tcrit explicitly requires adopting a number of “initial” neutrons to

be distributed throughout the volume of the core. But since tcrit depends logarith-
mically on No, it is not particularly sensitive to the choice made for that number;

presumably the minimum sensible value is one initial neutron.

We can also estimate the timescale to fission the entire core by demanding that

the integral of (2.52) from time zero to time tfiss equals the total number of nuclei

within the core, nV:

nV ¼ NoV

t

� � Ztfiss
0

e a=tð Þ tdt ) tfiss ¼ t
a

� 

ln

a n
No

� �
: (2.67)

Numbers for uranium and plutonium cores of C ¼ 2 bare threshold critical

masses appear in Table 2.2. Secondary neutrons are assumed to have E ¼ 2 MeV,

and it is assumed that the initial number of neutrons is one.

The timescales and pressures involved in the detonation process are remarkable:

Neutrons travel for a time of only t ~ 1/100 ms between fissions, and criticality

shuts down after only 1–2 ms. A pressure of 1015 Pa is equivalent to about 10 billion
atmospheres. In the case of 235U, changing the initial number of neutrons to 1,000

changes the fission and criticality timescales by only about 10%, down to 1.81 and

1.64 ms, respectively. Since (a/t)tcrit ~ 50, the assumption that e a=tð Þt>>1 is quite

reasonable. Even though tcrit/tfiss ~ 0.9, the efficiencies are low: small changes in an

exponential argument lead to large changes in the results.

Spreadsheet CriticalityAnalytic.xls carries out the efficiency and yield calcula-

tions for an untamped core as developed above. In addition to the parameters already

entered for the calculations of the preceding two sections, the user need only

Table 2.2 Criticality and efficiency parameters for C ¼ 2, Ef ¼ 180 MeV, g ¼ 1/3. Initial

number of neutrons ¼ 1. Secondary neutron energy ¼ 2 MeV

Quantity Unit Physical meaning 235U 239Pu

ainitial/2 – Effective value of a 0.246 0.304

RO cm Threshold critical radius 8.37 6.346

t ns Neutron travel time between fissions 8.64 7.23

Dr cm Expansion distance to crit shutdown 1.29 0.98

Efficiency % Efficiency 1.34 1.71

P(tcrit) 1015 Pa Pressure at crit shutdown 6.20 6.47

Yield kt Explosive yield 21.7 9.9

tfiss ms Time to fission all nuclei 2.08 1.39

tcrit ms Time to crit shutdown 1.93 1.29
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additionally specify an initial number of neutrons, a value for g, and the mass of the

core. The “Goal Seek” function is then run a third time, to solve (2.30) and (2.31) for

the value of a. The spreadsheet then computes and displays quantities such as the

expansion distance to second criticality, the fission and criticality timescales, the

pressure within and velocity of the core at second criticality, and the efficiency and

yield.

When applied to a 64 kg 235U core (C ¼ 1.39),CriticalityAnalytic.xls indicates

that the expansion distance to second criticality is Dr ¼ 0.53 cm and that the yield

will be only 1.6 kt. This is not directly comparable to the ~13 kt yield of Little Boy,
however, as that device was tamped; a more realistic simulation of Little Boy is

given in the next section.

It is important to emphasize that the above calculations cannot be applied to a

tamped core; that is, one cannot simply solve (2.44) and (2.45) for a core of some

specified mass and tamper of some size (outer radius) and use the value of a so

obtained in the time and efficiency expressions established above. The reason for

this has to do with the distance through which the core can expand before second

criticality, (2.59) above:

Dr ¼ C1=2 � C1=3
� 


Ro: (2.68)

This expression derived from the fact that the criticality equation for the

untamped case involves the density and radius of the core in the combination rr;
in the tamped case the criticality condition admits no such combination of para-

meters, so the subsequent calculations of criticality timescale and efficiency do not

simply transform to using a tamped critical radius. Efficiency in the case of a

tamped core can only be established numerically, which is the subject of the next

section, where we will see that, typically, Drtamped > Drbare.

2.5 Estimating Bomb Efficiency: Numerical

In this section, a numerical approach to estimating weapon efficiency and yield is

developed. The essential physics necessary for this development was established in

the preceding three sections; what is new here is how that physics is used.

The analysis presented in this section is adopted from a publication elsewhere by

the author (Reed 2010).

The approach taken here is one of standard numerical integration: The para-

meters of a bomb core and tamper are specified, along with a timestep Dt. At each
timestep, the energy released from the core is computed, from which the accelera-

tion of the core at that moment can be computed. The velocity and radius of the core

can then be tracked until such time as second criticality occurs, after which the rate

of fissions will drop drastically and very little additional energy will be liberated.

The simulation developed here is realized via a spreadsheet where rows corre-

spond to time steps and the columns are used to track various quantities.
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This spreadsheet, CriticalityNumerical.xls, is very similar to that developed in the

preceding sections, CriticalityAnalytic.xls.

Specifically, the integration process involves eight steps:

(i) Fundamental parameters are specified: the mass of the core, its atomic weight,

initial density, and nuclear characteristics sf, sel, and n. For the tamper, its

atomic weight, density, initial outer radius (effectively, its mass) and elastic-

scattering cross-section are specified. The energy release per fission Ef and gas/

radiation pressure constant g are also specified. A timestep Dt also needs to be

set; from the discussion in the preceding section, this will be on the order of

nanoseconds.

(ii) Elapsed time, the speed of the core, and the total energy released are initialized

to zero; the core radius is initialized according as its mass and initial density.

(iii) The exponential neutron-density growth parameter a is determined by numeri-

cal solution of (2.44) and (2.45).

(iv) The rate of fissions at a given time is given by (2.52):

fissions= sec ¼ NoV

t

� �
e a=tð Þ t: (2.69)

(v) The amount of energy released during time Dt is computed from (2.53):

DE ¼ NoV Ef

t

� �
e a=tð Þ t Dtð Þ: (2.70)

(vi) The total energy released to time t is updated, EðtÞ ! EðtÞ þ DE, and the

pressure at time t is given by [see the discussion preceding (2.55)]

PcoreðtÞ ¼ gEðtÞ
VcoreðtÞ : (2.71)

I use the core volume here on the rationale that the fission products which cause

the gas/radiation pressure will likely largely remain within the core.

(vii) A key step is computing the change in the speed of the core over the elapsed

time Dt due to the energy released during that time. In the discussion leading

up to (2.58), this was approached by invoking the work-energy theorem:

PðtÞ dVcore

dt
¼ dKcore

dt
: (2.72)

To improve the veracity of the simulation, it is desirable to account, at least in

some approximate way, for the retarding effect of the tamper on the expansion of
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the core. To do this, I treat the dK/dt term in (2.72) as involving the speed of the core

but with the mass involved being that of the core plus that of the tamper. The dV/dt
term is taken to apply to the core only. I treat the tamper as being of constant density

but with an outer radius that is recomputed at each step to keep its mass as specified

at the outset; the inner edge of the tamper is assumed to remain snug against the

expanding core. With r as the radius and v the speed of the core, we have

gEðtÞ
VcoreðtÞ

dVcore

dt

� �
¼ dKtotal

dt

) gEðtÞ
VcoreðtÞ 4p r2

dr

dt

� �
¼ 1

2
Mcþt 2v

dv

dt

� �
;

from which we can compute the change in expansion speed of the core over time

Dt as

Dv ¼ 4p r2gEðtÞ
Vcore Mcþt

� �
Dtð Þ: (2.73)

With this, the expansion speed of the core and its outer radius can be updated

according as vðtÞ ! vðtÞ þ Dv and rðtÞ ! rðtÞ þ vðtÞDt. The outer radius of the

tamper is then adjusted on the assumption that its density and mass remain constant.

(viii) Return to step (iii) to begin the next timestep; continue until second criticality

is reached when a ¼ 0.

The assumption that the density of the tamper remains constant is probably not

realistic: nuclear engineers speak of the “snowplow” effect, where high-density

tamper material piles up just ahead of the expanding core/tamper interface. But the

point here is an order-of-magnitude pedagogical model.

CriticalityNumerical.xls consists of three interlinked sheets. The first is essen-

tially a copy of CriticalityAnalytic.xls, where the user inputs the fundamental data

of step (i) above. As before, the Excel “Goal Seek” function is then run three times,

to establish values for (1) the bare threshold critical radius, (2) the tamped threshold

critical radius, and (3) the value of a corresponding to the chosen core mass.

The radii (and corresponding masses) in (1) and (2) are computed for reference;

the tamped threshold critical radius is also used in computing a “normalized” radius

as described below.

A significant complexity in carrying out this simulation is that one apparently

needs to solve (2.44) and (2.45) for the value of a at each time-stepped core radius:

the fission rate, energy generation rate, and pressure all depend on a as a function of
time. I have found, however, that a is usually quite linear as a function of core

radius. This behavior can be used to greatly simplify the programming of the

simulation. Sheet 2 of the spreadsheet allows the user to establish parameters for this

linear behavior for the values of the various parameters that were input on Sheet 1.

Sheet 2 consists of rows representing radii running from the initial core radius to 1.4

times the value of the second-criticality radius for a bare core of the mass chosen by
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the user on Sheet 1; this range appears to be suitable to establish the behavior of a.
For convenience, Sheet 2 utilizes a “normalized” radius defined as

rnorm ¼ r � C1=3Rthresh
tamp

C1=2 � C1=3ð ÞRthresh
tamp

; (2.74)

where C is now defined as the number of tamped threshold critical masses. rnorm
¼ 1 corresponds to the second criticality radius one would compute from (2.59) if it

applied as well to a tamped core. Sheet 2 tracks the changing mass density, nuclear

number density, and fission and total mean free paths within the core as a function

of r. By running the Goal Seek function on each of 28 radii between 1.0 and 1.4

normalized radii, the user adjusts a in each case to render (2.44) equal to zero. The

behavior of a(r) is displayed in an automatically-generated graph. On a separate

line with a fixed to a value very near zero (10�10 is built-in), the user adjusts the

radius to once again render (2.44) equal to zero, thus establishing the radius of

second criticality for the parameters of the system. The slope and intercept of a

linear a(r) fit are then automatically computed in preparation for the next step.

While one could use just the initial and final radii to establish the linear relationship,

it is probably wise to check the extent of linearity with all 28 radial points.

The actual time-dependent simulation occurs on Sheet 3. The simulation is set

up to involve 500 timesteps, one per row. The initial core radius is transferred from

Sheet 1 for t ¼ 0. Because much of the energy release in a nuclear weapon occurs

during the last few generation of fissions before second criticality, Sheet 3 allows

the user to set up two different timescales: an “initial” one (dtinit) intended for use

in the first few rows of the Sheet when a larger timestep can be tolerated without

much loss of accuracy, and a later one (dtlate), to be chosen considerably smaller

and used for the majority of the rows. In this way a user can optimize the 500 rows

to both capture sufficient accuracy in the last few fission generations while arran-

ging for a(r) to just approach zero at the last steps of the process. Typical choices

for dtinit and dtlate might be a few tenths of a microsecond and a few tenths of a

nanosecond, respectively. At each radius, Sheet 3 computes the value of a(r) from
the linear approximation of Sheet 2, the core volume, mass density, nuclear number

densities and mean free paths within the core, t, rates of fission and energy

generation, pressure, and total energy liberated to that time. The core speed and

radius are updated depending upon the timestep in play, and the updated radius is

transferred to the subsequent row to seed the next step. The user is automatically

presented with graphs of a(r), the fission rate, pressure, and total energy liberated

(in kilotons equivalent) as functions of time.

2.5.1 A Simulation of the Hiroshima Little Boy Bomb

Using the parameters for the Little Boy bomb given in Sect. 2.3 (64 kg core of radius

9.35 cm plus a 311 kg tungsten-carbide tamper of outer radius 18 cm), the following

results were obtained with CriticalityNumerical.xls.
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Figure 2.10 shows the run of a(r) for this situation: it is sensibly linear over the

expansion of the core to second criticality at a radius of 12.31 cm, with a(r) ~
�18.53r þ 2.28. This represents an expansion distance of Dr ¼ 2.96 cm from the

initial core radius of 9.35 cm; for an untamped 64 kg core, (2.59) predicts a value

for Dr of only 0.53 cm; the effect of the tamper is significant.

Figures 2.11 and 2.12 show a, the integrated energy release, and the fission rate

and pressure as functions of time. The number of initial neutrons is taken to be one.

Notice that a actually remains close to its initial value until just before second

criticality. The brevity and violence of the detonation are astonishing. The vast

majority of the energy is liberated within an interval of about 0.1 ms. The pressure
peaks at close to 5 � 1015 Pa, or about 50 billion atmospheres, equivalent to about

one-fifth of that at the center of the Sun. The fission rate peaks at about 3.6 � 1031

per second. The core acceleration peaks at about 1.4 � 1012 m/s2 at t ~ 0.9 ms, and
second criticality occurs at t ~ 1.07 ms, at which time the core expansion velocity is

about 270 km/s. These graphs dramatically illustrate what Robert Serber wrote in

The Los Alamos Primer: “Since only the last few generations will release enough

energy to produce much expansion, it is just possible for the reaction to occur to an

interesting extent before it is stopped by the spreading of the active material”.

The predicted yield of Little Boy from this simulation is 11.9 kt. This result is in

surprisingly good agreement with the estimated ~12-kt yield published by Penney

et al. (1970). At a fission yield of 17.59 kt/kg of pure U-235 (at 180 MeV/fission),

this represents an efficiency of only about 1.1% for the 64-kg core. While some of

this agreement must be fortuitous in view of the approximations incorporated in the

present model, it is encouraging to see that it gives results of the correct order of

magnitude. That the yield estimate needs to be taken with some skepticism is

demonstrated by the fact that increasing the initial number of neutrons to 10

increases the yield to 12.5 kt. However, this change does not much affect the

Fig. 2.10 Neutron density exponential growth parameter a vs. core radius for a simulation of the

Little Boy bomb: 64 kg core plus 311 kg tungsten-carbide tamper
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timescale or the peak pressure and fission rates. A 1952 Los Alamos report on the

yield of the Hiroshima bomb, http://www.fas.org/sgp/othergov/doe/lanl/la-1398.

pdf, gives a yield of 18.5 � 5 kt for Little Boy; published yield estimates are clearly

subject to considerable uncertainty.

Figure 2.13 shows how the simulated yield of the 64-kg core varies as a function

of tamper mass; the points are the results of simulations for initial tamper outer radii

Fig. 2.11 Neutron density exponential growth parameter a (descending curve, left scale) and
integrated energy release in kilotons (ascending curve, right scale) vs. time for a simulation of the

Little Boy bomb

Fig. 2.12 Logarithm (base 10) of fission rate (solid curve, left scale) and logarithm of pressure

(dashed curve, right scale) vs. time for a simulation of the Little Boy bomb
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of 12, 13, . . . 17, 17.5, 18, 18.5, and 19 cm. In the latter case the mass of the tamper

would be about 375 kg, or just over 800 pounds. As the tamper mass increases so

does the efficiency of the weapon as measured by the number of kilotons of yield

per kilogram of fissile material.

2.6 Another Look at Untamped Criticality: Just One Number

In Sect. 2.2, we saw that the criticality condition for an untamped core is

x cotðxÞ þ g x� 1 ¼ 0; (2.75)

where, for threshold criticality (a ¼ 0),

g ¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3lf

lt n� 1ð Þ

s
¼ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3st

sf n� 1ð Þ

s
: (2.76)

Once the nuclear parameters sf, sel, and n are set, (2.75) is solved numerically for

x, from which the critical radius R follows from (again with a ¼ 0)

R ¼ d x ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lf lt

3 n� 1ð Þ

s
x ¼ 1

n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3sf st n� 1ð Þ

s
x; (2.77)

where n is again the nuclear number density. The critical radius is fundamentally set

by sf, sel, n, and n; our concern here will be with the first three of these variables.

Since these quantities will be different for different fissile isotopes, it would

appear that there is no “general” statement one can make regarding critical radii.

Fig. 2.13 Yield of a 64-kg U-235 core vs. mass of surrounding tungsten-carbide tamper. The

curve is interpolated. The Little Boy tamper had a mass of about 310 kg
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The purpose here, however, is to show how sf, sel, and n can be combined into one

convenient dimensionless variable that largely dictates the critical radius in any

particular case – the “just one number” of the title of this section.

As formulated, (2.75) and (2.76) are convenient in that both x and g are

dimensionless, but are awkward in that g is not conveniently bounded: if n is very
large g will approach zero, but as n ! 1, it will diverge to infinity. It would be

handy to some combination of sf, sel, and n that is finitely bounded.

Such a combination was developed by Peierls (1939), in a paper which was the

first published in English to explore what he termed “criticality conditions in

neutron multiplication.” He defined a quantity x given by

x2 ¼ sf n� 1ð Þ
sel þ n sf

: (2.78)

For 1 � n � 1, 0 � x � 1. Note that it is the elastic-scattering cross-section sel
that appears in the denominator of the definition of x, not the transport cross-section
st ¼ sel þ sf.

If (2.76) and (2.78) are both solved for (n – 1) and the results equated, the

relationship between g and x emerges as

g ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4

1

x2
� 1

� �s
: (2.79)

Similarly, if the definition of d in (2.77) is solved for (n –1), then one finds

d ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

1

x2
� 1

� �s
lt: (2.80)

A general formulation of critical radii can now be made as follows: For a range

of values of x between zero and one, (2.75) and (2.79) can be solved for x. For
each solution, (2.77) and (2.80) then show that the value of R/lt is purely a

function of x:

R

lt
¼ x xð Þ d ¼ x xð Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

3

1

x2
� 1

� �s
: (2.81)

In other words, a graph of x xð Þ d xð Þ 	 R lt= vs. x can be used to immediately

indicate the ratio of the untamped threshold critical radius to the transport mean free

path for any fissile isotope whose sf, sel, and n values are specified. The advantage
of this approach is that the graph need only be constructed once.
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Figure 2.14 shows R/lt as a function of x. For 235U and 239Pu, x ~ 0.5084 and

0.6221, and R/lt ~ 2.33 and 1.54, respectively. It is intuitively sensible that for

small values of x (that is, for n ! 1), the critical radius will be large, and vice-versa.
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