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Chapter 2
Basic Characteristics of Electromagnetic
Radiation

2.1 Radiation Characteristics in the Classical and Quantum
Electrodynamics

In case of charged particle motion in an external field, one of the most fruitful
approaches allowing to calculate the characteristics of radiation, generated by a
particle with charge e, is an approach, where a trajectory r(t) of the particle in the
given field has been found at first, and then the electric and magnetic components
of the electromagnetic field are defined according to the rules of classical elec-
trodynamics [1]:

E tð Þ ¼
e 1� b2� �

n� bð Þ
R2 1� n bð Þ3

þ
e n n� bð Þ b

:h ih i

cR 1� n bð Þ3
; ð2:1:1aÞ

H tð Þ ¼ n t0ð ÞE tð Þ½ �: ð2:1:1bÞ

In these expressions cb ¼ _r tð Þ; n is a unit vector in direction connecting the
observation point with a charge at the retarded moment of time t0,

t � t0 ¼ R� r t0ð Þj j
c

: ð2:1:2Þ

Here R is a radius-vector of the observation point.
It is clear, the similar approach gives the reasonable results in a case when it is

possible to neglect the particle energy losses due to photon emission (radiation
losses), i.e. when the process of radiation has no influence upon a trajectory of the
particle.

The first summand term in the formula (2.1.1a) being proportional to R�2 does
not depend on acceleration of the charge _b and characterizes the quasi-stationary
Coulomb field of the moving charge itself (so called ‘‘velocity field’’) while the
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second summand being inversely proportional to the distance R and depending on
the charge acceleration, characterizes the radiation wave field (‘‘acceleration
field’’) [1]. The range of the distances R, where the contribution of the first
summand is negligible in comparison with the contribution of the second one,
refers to the wave (or far-field) zone. In the wave zone both components of the
field (2.1.1a) and (2.1.1b) are perpendicular to the vector n that allows to introduce
the Poynting’s vector S ¼ EH½ �; directed along a wave vector and describing the
density of the energy flow of the electromagnetic wave.

The angular distribution of an energy flow (intensity) in a solid angle dX (the
value defined in the observation point) is determined through the Poynting’s
vector:

dI

dX
¼ cR2

4p
Sj j ¼ cR2

4p
Ej j2: ð2:1:3Þ

The angular distribution of the power of particle radiation losses (with a value
determined in a particle position) is connected with intensity (2.1.3) as follows:

dP

dX
¼ 1� nbð Þ dI

dX
: ð2:1:4Þ

Going over to Fourier-components of a field, it is possible to get the expressions

E xð Þ ¼ e

cR
eikR

Z
n E� bð Þ _b
� �� �

1� bnð Þ2
eiðxt�krÞdt;

H xð Þ ¼ n E xð Þ½ �:
ð2:1:5Þ

Substituting the received expressions in (2.1.3), it is possible to receive the
spectral–angular distributions:

dI

dx dX
¼ cR2

4p
E xð Þj j2: ð2:1:6Þ

As a rule, the radiation is formed by a source with a finite area S, moreover, this
source can emit the electromagnetic waves (the photons) anisotropically. In this
case the radiation is characterized by brightness

L ¼ dP

dX dS

W

sr�m2

� �
ð2:1:7Þ

and spectral brightness:

dL

dx
¼ dP

dx dX dS

W

s�1 � sr�m2

� �
: ð2:1:8Þ

For the radiation with frequencies from optical and above ones the spectral
brightness is often assigned through the number of photons. Using the Planck’s
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law e ¼ �hx in semi-classical approach, the energy characteristics are expressed
through the number of photons N:

dP ¼ e
dN

dt
: ð2:1:9Þ

Then instead the spectral brightness one may use the brilliance

dL

de
¼ B ¼ dN

dt dX dS de=e
photon

s� sr�m2 � de=e

� �
: ð2:1:10Þ

The spectral–angular density of radiation is got after the integration on the
source area

I h;w; eð Þ ¼
Z

S

B dx dy
photon

s� sr � De=e

� �
: ð2:1:11Þ

The spectral flux (spectral density) is calculated after the integration over a
solid angle

US eð Þ ¼
Z

B dx dy dX
photon

s� De=e

� �
: ð2:1:12Þ

And finally, the radiation flux is received via the integration over a spectrum:

U ¼
Z

US eð Þ de=e
photon

s

� �
: ð2:1:13Þ

The field strength of the monochromatic electromagnetic wave (for example, the
laser radiation) is characterized by the dimensionless parameter:

a0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2e2 A2h i

mc2ð Þ2

s

¼ e E0

mc x
: ð2:1:14Þ

In the last formula by A2
	 


a mean-square value of an electromagnetic vector
potential is designated, E0 is an amplitude of a wave.

In the majority of experiments the beams of the electromagnetic radiation,
formed by means of different optical systems, including, for instance, mirrors,
apertures, lenses, etc. are used. In this case, the radiation power can be distributed
on the area of the target according to an arbitrary law. Then after the integration
with respect to the beam cross-section, we can receive:

P ¼
Z

r

dP

dS
dr ¼ Ireff ; ð2:1:15Þ
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where I ¼ dP=dSh i is an averaged value of the power flux density, reff is an
effective area of the beam. In the laser physics, the parameter laser field strength
[2] is often used

I ¼ P

reff

; I½ � ¼W/cm2; ð2:1:16Þ

which can be expressed through the density of the energy of the laser flash q:

I ¼ P� cs
reff � cs

¼ c
W

V
¼ cq: ð2:1:17Þ

In the last expression through s is designated the flash duration, V is a volume,
occupied with laser photons. Then instead of (2.1.14), it is possible to receive a
more evident formula:

a2
0 ¼

2r0Ik2

p mc3
¼ 2r0k

2 q
p mc2

; ð2:1:18Þ

where r0 = 2.82 9 10-13 is the classical radius of an electron, as well as the
‘‘engineering’’ formula:

a0 ¼ 0:85� 10�9k l½ � I1=2 W/cm2
� �

: ð2:1:19Þ

In formulas (2.1.18) and (2.1.19), k is a length of a monochromatic wave.
Going from the energy density to the concentration of photons per volume unit

n: n ¼ q=�hx, it is possible to receive the estimation of (2.1.18) through the number
of photons in a volume 4a k2

e k; i.e. in a parallelepiped with transverse cross section

�k2
e (�ke is the Compton wavelength of the electron) and length 4ak:

a2
0 ¼ 4a k2

e k n; ð2:1:20Þ

a ¼ 1=137 is the fine structure constant.
For a field strength parameter a0 C 1, it is spoken about the ‘‘strong’’ elec-

tromagnetic wave, whereas the ‘‘linear’’ model of the classical electrodynamics
remains valid for a0 � 1.

2.2 Polarization Characteristics of Radiation

Hereinafter, the usage of the term ‘‘the photon beam’’ supposes that it concerns the
electromagnetic radiation propagating along the fixed direction with a negligibly
small angular divergence, the characteristics of which (intensity, polarization,
position of maximum in spectrum, temporal modulation, etc.) are possible to
adjust in a rather large range.
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A single photon, i.e. an elementary particle with a spin equal to 1, definitionally
exists in a pure spin state (just as the flat monochromatic electromagnetic wave—a
classical analogue of a photon—is always completely polarized). There is a whole
ensemble of photons in a real beam, therefore, for the description of a beam
polarization as a whole (after averaging on ensemble), the matrix of the density qij

(Hermitian tensor of the second rank determined in a plane, which is perpendicular
to a direction of photon beam propagation) is used:

qij ¼
1
2

1þ n3 n1 � in2

n1 þ in2 1� n3

 !

¼ 1
2

dij þ nr
� �

; ð2:2:1Þ

where r ¼ r1; r2; r3f g are the Pauli matrices.
Three real-valued parameters ni (i = 1, 2, 3)—so-called Stokes parameters

completely describe a polarization state of a photon beam. The Stokes parameters
n1, n3 characterize the linear polarization of a beam, and n2 the circular one. The
values n2

1 þ n2
3 and n2 are the Lorentz-invariants. Parameters n1, n3 are scalars, and

n2 is pseudo-scalar.
In case when none of Stokes parameters is equal to zero, it is spoken about

elliptic polarization, and when n2 = 0—about linear polarization of the radiation.
In the last case, the following values are often used instead of the Stokes

parameters:

P ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

1 þ n2
3

q
ð2:2:2Þ

is a degree of polarization;

u0 ¼ 1=2ð Þ arctg n1=n3ð Þ ð2:2:3Þ

—the inclination angle of a plane of the maximal linear polarization concerning
the chosen system of basis vectors (for instance, concerning a plane XZ, if Z-axis is
directed along a photon beam direction).

The degree of linear polarization P can be determined as follows:

P ¼ Njj � N?
� �

= Njj þ N?
� �

; ð2:2:4Þ

where Njj ?ð Þ is the number of the photons polarized parallel (perpendicularly) to a
plane of the maximal linear polarization.

Reverse transition to the Stokes parameters follows from (2.2.2), (2.2.3):

n1 ¼ P sin 2u0ð Þ; n3 ¼ P cos 2u0ð Þ: ð2:2:5Þ

An unpolarized beam can be always presented as superposition of two non-
interacting completely polarized beams of photons with identical intensity and
with mutually perpendicular planes of polarization. Similarly, it is possible to
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present a partly polarized photon beam (for which 0\n2
1 þ n2

2 þ n2
3\1) as

superposition of completely polarized and non-polarized beams with various
intensities.

In the classical electrodynamics, the Stokes parameters are calculated as
follows:

n1 ¼
E�1E2 þ E1E�2
E1j j2þ E2j j2

; n2 ¼ i
E�1E2 � E1E�2
E1j j2þ E2j j2

; n3 ¼
E1j j2� E2j j2

E1j j2þ E2j j2
: ð2:2:6Þ

The components of the field are calculated in a system, where the third axis
coincides with the direction of a wave vector. If the task has any chosen plane, the
coordinate system is assigned via basis vectors. If in problem there is a chosen
plane, then the coordinate system is

e1 ¼ c1 n; b½ �; e2 ¼ e1; n½ �; n ¼ k=x; ð2:2:7Þ

where b is the vector, perpendicular to the chosen plane; k is a wave vector; x is a
frequency; c1 is a normalization factor.

For the radiation of ultrarelativistic particles the cone of outgoing photons has
an opening of order c-1 (c is the Lorentz-factor) relative to the average value of the
electron momentum. Therefore, it is possible to speak about the mean polarization
of a beam (with accuracy to c-2) if the radiation cone is formed by the aperture
with opening DX� c�2. In this case, for calculation of average Stokes parameters
in (2.2.6), it is necessary to use the bilinear combinations of fields E�i Ek

	 

, aver-

aged on the given angular interval:

E�i Ek

	 

¼
Z

DX

dX E�i Ek; i; k ¼ 1; 2: ð2:2:8Þ

Generally speaking, the averaging similar to (2.2.8) can be carried out not only by the
angular variables but also by any other non-observable kinematic ones. Thus, during
the calculation of polarization characteristics of coherent bremsstrahlung, the
averaging similar to (2.2.8) is carried out by the momentum of a final electron [3].

2.3 The Formation Length of Radiation by a Charged Particle

Ter-Mikaelyan in his monograph [4] considering the spatial region, in which the
bremsstrahlung is generated by ultrarelativistic electron moving in a medium, has
shown that the longitudinal size of this region (along the direction of the initial
electron) sharply increases with the growth of the electron Lorentz-factor and with
decrease of the photon energy. This spatial scale, which was named ‘‘formation
length’’ ‘f, can have macroscopic sizes greatly exceeding the wavelength of the
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bremsstrahlung photon. After the passage of the length ‘f, the electron and emitted
photon can be considered as independent particles.

The estimation of this spatial scale can be found from classical electrodynamics
(see, for example, [5]). In this approach, the charge, which passes through a rather
small area and where external fields are concentrated, is emitted an electromag-
netic wave with the length k without appreciable distortion of a charge trajectory
and the change of its energy (see Fig. 2.1).

The determination of the formation length follows from the phase relationships:
on the length ‘f, which a charge passes after the area of a field at velocity b, the
front of a wave, emitted in angle h, should ‘‘lag behind’’a charge for a wave length:

‘f

b
� ‘f cos h ¼ k; ð2:3:1Þ

and (2.3.1) directly results in the formula for the formation length:

‘f ¼
k

1=b� cos h
: ð2:3:2Þ

In the ultrarelativistic approach 1=b � 1þ c�2=2ð Þfor the ‘‘straightforward’’
radiation we have

‘f ¼ 2c2k: ð2:3:3Þ

If the following area of a field concentration is located along a trajectory on the
distance L\‘f (see Fig. 2.1), then in this case the electromagnetic waves, emitted
by a charge in two areas of an external field, will interfere in a destructive manner,
i.e. the intensity of resulting radiation will be less than the sum of intensities from
two independent sources.

Let carry out the quantum consideration of the formation length problem on an
example of bremsstrahlung, following to Ter-Mikaelyan [4].

We shall estimate the minimal value of a longitudinal recoil momentum ql,
which is transferred to a nucleus, during the process of bremsstrahlung of the
ultrarelativistic electron with energy e1. Such situation is realized for collinear
geometry, when the final electron with energy e2 and a photon with energy �hx
move along the direction of the initial electron:

ql min ¼ p1 � p2 � k: ð2:3:4Þ

Fig. 2.1 The scheme
illustrates the concept of the
formation length
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Here p1, p2, k are momenta of initial and final electrons and photons, accordingly.
Neglecting the energy transferred to a nucleus (i.e. in case of fulfillment of a
condition e1 ¼ e2 þ �hx), momentum pi in the ultrarelativistic approach becomes

p1 ¼
e1

c
1� 1

2c2
1

� �
; p2 ¼

e1 � �hx
c

1� 1

2c2
2

� �
;

and (2.3.4) results in

ql min ¼
mc

2c1

�hx
e2
: ð2:3:5Þ

From the uncertainty principle it follows that the last expression defines the length:

‘ ¼ h

ql min

¼ 2c1�ke
e2

�hx
; ð2:3:6Þ

where �ke is the Compton wavelength of an electron. It is clear that for the case
�hx� e1; e2 (i.e. e2 � e1) from the formula (2.3.6) follows the expression (2.3.3):

‘ ¼ 2c2k ¼ ‘f

that illustrates the generality of the concept of the formation length both for
quantum consideration, where recoil effects are important, and for classical one.

The concept of the formation length plays an important role in considering of
various physical effects (see in detail the review [6]). With regard to the radiation
in periodic structures, where a constructive interference is the reason of mono-
chromaticity of the radiation spectrum (for the fixed radiation angle h), the
wavelength corresponding to the spectral line with minimal frequency (so-called
‘‘fundamental’’ harmonic), is defined from the relationship

‘f ¼ d; ð2:3:7Þ

where d is a period of the structure.
Expression (2.3.7) does not depend on the radiation mechanism and is appli-

cable both in classical electrodynamics (for instance, for undulator radiation or
Smith–Purcell radiation), and in quantum one (the typical example is the coherent
bremsstrahlung). The mentioned mechanisms, as well as some others, are con-
sidered in the following chapters of this book.

2.4 Interference Factor and the Resonance Condition

Let us consider the electromagnetic radiation of the charge moving on a flat
periodic trajectory (Fig. 2.2). Let us designate through E1 kð Þ the radiation field on
the first period, where k is a wave vector; Dte ¼ d=bkc is time of the electron
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passing with velocity bkc through the first period; DtK ¼ d cos h=c is time of the
wave front passing from the first period till identical position on the second period.

The phase difference of two wave packages generated by electron on the first
and second periods are the follows:

U ¼ x Dte � DtKð Þ ¼ 2p
k

bjjc
d

bjjc
� d cos h

c

 !

¼ 2p
d

k
1� bk cos h

 �

: ð2:4:1Þ

Thus, the field of radiation on the second period is defined by the expression

E2 kð Þ ¼ E1 kð Þ exp iUð Þ: ð2:4:2Þ

Reasoning by analogy, it is possible to express the radiation field for the nth
period as:

En kð Þ ¼ E1 kð Þ exp i n� 1ð ÞUð Þ: ð2:4:3Þ

Then the total field from the periodic structure containing N elements is repre-
sented as the sum

ER kð Þ ¼ E1 kð Þ þ E2 kð Þ þ E3 kð Þ þ 	 	 	 þ EN kð Þ
¼ E1 kð Þ 1þ exp iUð Þ þ exp i 2 Uð Þ þ 	 	 	 þ exp i N � 1ð ÞUð Þf g: ð2:4:4Þ

Having designated (expðiUÞ ¼ q), we shall receive an expression for the total
intensity of the field:

ER kð Þ ¼ E1 kð Þ 1þ qþ q2 þ 	 	 	 þ qN�1
� �

¼ E1 kð Þ1� qN

1� q
¼ E1 kð Þ 1� exp iNUð Þ

1� exp iUð Þ ; ð2:4:5Þ

using the well-known formula for a geometric progression.

Fig. 2.2 Constructive
interference of the
electromagnetic radiation in
the periodic structure
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The spectral–angular distribution of the radiation intensity can be calculated,
knowing the field intensity:

d2WR

dx dX
¼ const ER kð Þj j2

¼ const E1 kð Þj j2
|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

d2W
dx dX

1� exp iNUð Þj j2

1� exp iUð Þj j2
¼ d2W

dx dX
FN : ð2:4:6Þ

Here d2W
dx dX ¼ const E1 kð Þj j2 describes the radiation ‘‘collected’’ from one period of

a trajectory, and a multiplier

FN ¼
1� exp iNUð Þ
1� exp iUð Þ

����

����

2

ð2:4:7Þ

refers to as an interference factor, since it describes the interference from
N identical radiators.

Using known trigonometric rules, the last formula can be rewritten as

FN ¼
sin2 NU=2ð Þ
sin2 U=2ð Þ

: ð2:4:8Þ

The function FN has a set of sharp maxima for the values of an argument, which
makes a denominator zeroth:

U
2
¼ p

d

km
1� bk cos h

 �

¼ m p; m is an integer:

The last formula is reduced to the following expression for the case b � bk

km ¼
d

m
1� b cos hð Þ; ð2:4:9Þ

which was received regardless to any fixed radiation mechanism and can be
applied to any type of radiation, which is characterized by the periodic disturbance
of a trajectory. The received relationship is generalization of the resonance con-
dition (2.3.7) for m 6¼ 1.

Frequently, the index m ¼ 1; 2; 3; . . . refers to harmonic number. The harmonic
m = 1 for ultrarelativistic particles with frequency

x1 ¼
4pc2c

d 1þ c2h2� � ¼ 2c2x0

1þ c2h2 ð2:4:10Þ
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is identified as fundamental. The resonance condition brings to the following
conclusion: the frequencies of the higher harmonics in m time differ from fun-
damental ones:

xm ¼ m x1: ð2:4:11Þ

The diagram of the function FN is presented in Fig. 2.3 for h = 0 at N ¼ 5 and 10.
As expected, the function FN differs from zero in a small range of frequencies

close by xm, and the width of this range is defined by a number of the periods:

Dxm

xm
� 1

N
: ð2:4:12Þ

As it follows from the picture, the maximal value of the function is

FN max ¼ N2: ð2:4:13Þ

From (2.4.12) and (2.4.13) it follows that the area under the peak is

S�Dxm � FN max ¼ Nxm ð2:4:14Þ

and linearly increases with a number of periods.
For big values N 
 10 the function FN (2.4.7) is approximated well by

d-function:

FN � 2p Nd U� 2m pð Þ ¼ N

m
d

x
m x0

1� b cos hð Þ � 1

� �
: ð2:4:15Þ
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