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Abstract  There has been widespread interest in the nuclear body (NB) Promyelocytic 
leukemia (PML) because of its link to several human disorders, including 
Promyelocytic  leukemia and AIDS. The notion of PML NB interaction with its 
surrounding and other NBs such as RNA Polymerase II (RNA Pol II) is of great 
importance as it can improve our understanding of the function of PML. In this 
paper, spatial point process methods are used to conduct multivariate analysis to 
assess the relationship between the spatial locations of PML NBs relative to RNA 
Pol II. We also propose a model for PML NB locations. By fitting a model to the 
PML NBs we are able to gain insight into how PML NBs are distributed across the 
nucleus in relation to themselves and the nuclear boundary.

Keywords  Spatial Point Pattern • PML • RNA Pol II • Marked Point Process 
• Inhomogeneous Poisson Process • K-function

2.1 � Introduction

The notion of Promyelocytic leukemia (PML) nuclear body (NB) interaction with 
its surrounding is one of great importance. Lanctot et al. (2007) have reported that 
gene expression is mediated by interaction between chromatin and protein complexes. 
Dellaire and Bazett-Jones (2004) have proposed that PML NBs are dynamic 
sensors of cellular stress, that associates with regions of DNA damage. Borden 
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(2002) has suggested that PML NBs tend to be near certain nuclear compartments 
such as Cajal/coiled bodies, cleavage bodies, and splicing speckles .

Knowledge of the PML NBs in relation to other structures may provide clues to 
PML NB functions. Furthermore, its relative location may give insight into what 
specific targets it regulates (Borden 2002). Following this, most reported strategies 
for assessing PML NB functions in essence are designed to answer questions relat-
ing to which nuclear structures the bodies are near to, what other macromolecules 
localize with the body, and the effects of disrupting the locations of the body 
(Borden 2002). Wang et al. (2004) analysed the correlation between the minimum 
locus-PML distances against their transcriptional activity to show that PML associ-
ate with transcriptionally active genomic regions.

The Imperial College Centre for Structural Biology has been able to provide 
images obtained via confocal microscopy. Such images provide the spatial loca-
tions (three-dimensional coordinate space) of PML and centroids of other nuclear 
bodies (RNA Polymerase II etc.) (see Fig. 2.1), and also the nuclear boundary (see 
Fig. 2.2). These data will be used for the quantitative analysis presented in this 
paper. Note that we are considering replicated data, that is, data for several cell 
nuclei representing multiple independently and identically distributed realisations 
of some spatial stochastic process. Replication can add complications to statistical 
inference (see Section 2.4 on modelling PML NB data), but is important as it pro-
vides further credibility to the outcome of the statistical analysis.

We shall carry out multivariate (or equivalently, marked) point pattern analysis 
so that we can provide some statistical evidence for biological ideas regarding 

Fig. 2.1  Microscopy image of cell nucleus with PML bodies (green) and RNA-Polymerase II (red)
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PML NBs association with other nuclear bodies. Specifically, Borden (2002) 
stated that general transcription factors such as RNA Polymerase II do not colo-
calize with PML bodies. This is consistent with experimental results obtained by 
Xie and Pombo (2006) which supported the view that although PML NBs are 
present in transcriptionally active areas, they are not generally sites of poly-
merase II assembly. We shall attempt to use spatial point pattern analysis to 
confirm or otherwise these findings. We also explore and discuss how one might 
go about modelling the relationship between PML NB size with its positioning in 
the nuclear interior.

This paper is structured as follows. In the next section we will provide a back-
ground to point process theory and its application for multiple event types. We shall 
then go onto discuss how multivariate spatial analysis can be used for assessing the 

Fig. 2.2  PPSD2 data: Microscopy image of cell nucleus with PML bodies (green) and nucleoli 
(red), with nuclear lamina (blue)
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relationship between the spatial location of PML NBs relative to RNA Polymerase 
II. In the final section we discuss a possible approach for modelling PML NB loca-
tions before ending with concluding remarks.

2.2 � Spatial Point Processes: Theory, Models and Statistics

The earliest discussions on spatial point processes date back to the early 1950s 
when used by Skellam (1952) and Thompson (1955) in statistical ecology. The 
work of Matérn in 1960, later re-published in 1986, has been viewed as pioneering 
(Cox and Isham 1980; Kemp 1988). More recently, Møller and Waagepetersen 
(2004) have provided more detailed accounts of modern spatial point process theory, 
statistics and models; see also Stoyan (2006).

We begin by introducing notation, definitions and some important concepts. 
These initial definitions and concepts are as those given by Cressie (1991), Karr 
(1991), Stoyan and Stoyan (1994), Stoyan et al. (1995), and Stoyan (2006). We 
begin by considering a collection of points observed within the nucleus, resulting 
in a data set having two or three coordinates if we utilize microscopic slices or 
the entire confocal image respectively. Throughout we denote locations by 
x = (x, y) or x = (x, y, z) and use subscripts i = 1, …, n to denote the locations of n 
observations in the data set. We shall denote the 2-dimensional disk (3-dimen-
sional ball) of radius r centered at x by B ( , )d rx , although the superscript d will 
sometimes be omitted.

2.3 � Spatial Point Process: Definitions and Calculations

We assume that the points – PMLs, genomic loci, other nuclear bodies stained in 
the experiment – observed in the images follow a spatial point process, that is, the 
points occur according to a random mechanism that we can characterize in terms 
of the distribution of the numbers of points that occur in disjoint spatial regions. For 
a spatial point process, denoted X, we write 

∈

= ∑( ) ( ),
i

B i
X

X B I
x

x

where (.)BI denotes the indicator function for set B, to indicate the count of the 
number of points of X observed in the region B. For set S, the notation X(S) = n 
means that S contains n points of X. A spatial point pattern – a realisation of a 
spatial point process – is defined through the locations of points (Cressie 1991). We 
will at times make the assumption that the spatial point process X is stationary or 
isotropic; X is stationary (or equivalently, homogeneous) if it has the property that 

′
′= + ∈{ : }X X

x
x x x  has the same distribution for all x¢ ∈ ℜd. Also, the point process 

X is said to be isotropic if it is invariant under rotation. Stationarity and isotropy 
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can be very important assumptions in spatial point process analysis. Practitioners 
will at times (often implicitly) assume that stationarity holds (without carrying out 
formal tests for stationarity), or be content that it holds approximately so that 
certain point process techniques can be readily adopted (see Baddeley et al. 1992; 
Glasbey and Roberts 1997 as examples).

The intensity measure, L, of X is a point process characteristic analogous to the 
mean of real-valued random variables, that is defined as 
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that is, the expected number of points lying in the region B. In the homogeneous 
case it suffices to consider an intensity, l since then L(B) = ln(B), where n(B) is the 
area (or volume) of B. In general, we define the kth moment measure m(k) by 
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, and × denoting the Cartesian product. Stoyan and Stoyan (1994) 

provide a more detailed account on higher order moments, including geometrical 
interpretations.

2.4 � Binomial and Poisson Point Processes

2.4.1 � The Binomial Point Process

The points x
1
…x

n
 form a Binomial point process, X

Bin(W, n)
 in the set W if they are 

independently and uniformly distributed inside W, with 
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 subsets of W. The intensity, l, of this process is given by 
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The simulation of virtually all spatial point processes in W requires simulating a 
binomial point process (n points uniformly inside W). Simulating n events uni-
formly inside W, a unit square or cube is straightforward; for a unit cube, one simply 
superimposes n independent uniform random points, u

1
, …, u

n
 where u

i
 = (u

i1
, u

i2
, u

i3
), 

and u
ij
 ~ Uniform(0, 1). Once simulated inside the unit cube, we can then apply scal-

ing and translation in order to obtain a simulation inside any fixed cuboid. Coordinate 
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transformation can be used for simulating uniformly inside a sphere. That is, if 
u = (u

1
, u

2
, u

3
) is a uniform point in the unit cube, then x = (x

1
, x

2
, x

3
) where 

= = =1 2 3sin( )cos( ) sin( )sin( ) cos( )x R x R x Rq f q f q

and R = u
1

1 ∕ 3, q = arccos(1 − 2u
2
), and j = 2pu

3
 is uniform inside the unit sphere. 

Once again, the relevant scaling can be applied for the case where simulation inside 
an ellipsoid is required. For less straightforward sets and irregularly shaped regions, 
W

0
, rejection sampling (see for example Ripley 1987) can be used. This involves, 

for example, simulating uniformly inside W ⊃ W
0
 and retaining the points that lie in 

W
0
. Simulation is repeated until the desired number of points are obtained.
Data sets PPDS2 and PPDS3 provide the locations of points that constitute empty 

space inside the nucleus. We exploit this information as a means of simulating u points 
uniformly inside the nucleus. Specifically, for the u points x

1
, …, x

u
 that are classified 

as empty space, n such points are chosen at random (without replacement). Random 
selection is made by equipping each of the x

1
, …, x

u
 with a unique integer {1,..., }k u∈ . 

The point x is selected if the randomly chosen {1,2,..., }y u∈ is its assigned integer. 
Occasionally, we attempt to simulate uniformly inside the nuclear interior by adopting 
methods for simulating uniformly inside a convex hull (Fishman 1996).

2.4.2 � The Homogeneous Poisson Point Process

A default standard model for point patterns is the homogeneous Poisson process. 
The homogeneous (stationary) Poisson process X

P
, is defined by the following 

postulates:

	(i)	 For some constant l > 0, and set B, X
P
(B) follows a Poisson distribution with 

mean ln(B). The parameter l is the intensity. For the three-dimensional case, 
this can be interpreted as the number of events per unit volume.

	(ii)	 Given X
P
(B) = n, the n events in B form an independent sample from the uniform 

distribution on B.
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These postulates are simultaneously the definition of complete spatial randomness 
(CSR). The void probabilities of X

P
 are given by ( )( ( ) 0) exp ( )X B B= = −λνP . The 

first order moment L follows from property (i) and is given by 

( ) [ ( )] ( )B X B BΛ = = λνE
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The homogeneous Poisson spatial point process can be simulated inside W directly 
from the first two postulates. First we simulate n ~ Poisson(ln(B)), then simulate n 
points uniformly inside W (that is, simulate ∼

 Bin( , )~ W nXx ).

2.4.3 � Inhomogeneous Poisson Point Process

One of the most simple alternatives to the homogeneous Poisson point process is the 
inhomogeneous Poisson point process. The inhomogeneous Poisson point process is 
obtained by replacing the intensity l by a spatially varying density l(x). Let L be a 
diffuse Radon measure on d . An inhomogeneous Poisson point process is a point 
process possessing the following two properties:

	(i)	 The number of events in a bounded B has a Poisson distribution with mean 
L(B)

( )Λ
= = −Λ ∈ …P ( ( ))

( ( ) ) exp ( ) ,  for {0,1,2, }
!

nB
X B n B n

n

	(ii)	 The number of points in k disjoint sets form k independent random variables.

The function L(B) can be written as 

Λ = λ∫( ) ( )
B

B dx x

The function l(. ) is the intensity function of the inhomogeneous point process. An 
inhomogeneous Poisson spatial point process in a set W can be simulated by using 
the rejection or random thinning algorithm of Lewis and Shedler (1976). The algo-
rithm for an inhomogeneous Poisson process with intensity function l(x) is as fol-
lows: Simulate a homogeneous spatial Poisson point process of intensity l

max
, 

where l
max

 is the largest intensity value over W. Then independently delete each 
point x

i
 with probability 

	
λ

−
λ  max

( )
1 ix

	 (2.1)

The retained points form a realisation of events from an inhomogeneous Poisson 
process with intensity function l(x).

2.4.4 � Estimating Intensity

Estimation of many point process functions rely on the estimation of the intensity 
of a stationary point process. Given a sampling region W, a natural unbiased estimator 
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for the intensity of a stationary point process is =ˆ ( ) / ( )X W Wl n . The intensity 
function l(. ) of an inhomogeneous Poisson process can also be estimated using 
parametric or non-parametric methods such as kernel-based estimation (see, for 
example, section 8.5.1 of Cressie 1991).

2.4.5 � Edge-Effects

Estimating point process functions of interest in some bounded region W, the sam-
pling or observation window, is not trouble-free. Problems generally encountered 
are those arising from edge effects, that is, estimation problems created by not being 
able to observe data outside the edges of the observation region. These problems 
are usually encountered when the region W on which the point pattern is observed 
is a subset of a larger region on which the process is defined. Therefore estimation 
of summary statistics is biased by having censored events which may be interacting 
with events in the observation window. The methods of dealing with edge effects 
can be split into three categories, the simplest being the use of border methods 
(Diggle 2003), using estimators that explicitly account for edge effects, and wrap-
ping W into a torus by identifying opposite edges. However, the toroidal wrapping 
technique does not generally apply to the confocal microscopy data.

2.5 � Testing for Spatial Point Processes

2.5.1 � The Empty Space Function F

Let X be a stationary and isotropic point process. That is, all probability distributions 
associated with X are invariant under rotation and translation (Baddeley et al. 1992). The 
empty space function of X, denoted F, or F(r) from now onwards, is the probability 
distribution of the distance from an arbitrary point to the nearest event. That is, for r ³ 0 

= ≤ = >P P B( ) ( (0, ) ) ( ( (0, )) 0)dF r D X r X r

where { }= − ∈′ ′( , ) inf :D A Ax x x x is the shortest (Euclidean) distance from 
x to A. For homogeneous Poisson process with intensity l is given by 
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Using (2.2) and by estimating the empty space function of a point pattern we  
can assess whether there is regularity or aggregation (clustering) in a point pattern. 
Estimated values of F(r) greater than that given by (2.2) suggests that there  
is regularity, while lower values suggest aggregation (Baddeley et  al. 1992). 
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Baddeley et al. (1992) state that the empty space function is typically estimated by 
taking a fine grid in the sampling region W and computing the distance from each 
grid point to the nearest event. This technique results in edge effects as we are 
unable to search for points outside W. The only approach currently in use is the 
border method (Baddeley et al. 1992). When adopting this technique, only events 
that are at least a distance r from the boundary of W are considered.

2.5.2 � The Nearest Neighbour Distribution Function G

The G function is the distribution of the distance from a typical event of the process 
to the nearest other point of the process. For stationary point process X, the G(r) 
function associated with X is given by 

( ) ( (0, {0}) | 0 ) ( ( (0, )) 1 | 0 ) 0dG r D X r X X r X r= ≤ ∈ = > ∈ ≥P P B

where \ {0}X is the process excluding a point at zero. By stationarity the point 0 
can be replaced by any arbitrary point x. An alternative definition of the G(r) func-
tion using the Campbell-Mecke theorem (see section 4.4 of Stoyan et al. 1995) is 
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For a homogeneous Poisson process with intensity l the G(r) function is given by 
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A border-corrected estimate for the G function is given by 
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where =( ) ( , \ { })r D Xx x x , and W
  r

 is an erosion of W, that is, W
  r

 = { x ∈ W: 
 ℬd(x, r) ⊂ W} .

2.5.3 � The Pair Correlation Function g

The pair correlation function, g(r) is the frequency of event pairs within distance r. 
The pair correlation function is widely used in spatial statistics and particularly in 
astronomy and astrophysics, for example (Kerscher 1998). Provided that the second 
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order product density exists, then in the stationary and isotropic case we can write 
the correlation function r(2)(x, x¢) ≡ r(2)(r) for r =  ½½ x − x¢ ½½ . The pair correlation 
function is defined for a stationary point process with intensity l by 

	
=

(2)

2

( )
( )

r
g r

r
l 	

(2.3)

For a Poisson process, we have g(r) = 1. Furthermore, g(r) > 1 indicates clustering 
while g(r) < 1 is a sign of regularity. The pair correlation function can be estimated 
using estimator (2)ˆ ( )rr for the second order product density.

2.5.4 � The K Function

The K function appears at present to be the most popular second order characteristic 
used in point process analysis. For a stationary point process with intensity l, lK(r) 
is the mean number of events that are within distance r of the typical event, 
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λ
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(2.4)

The Campbell-Mecke theorem yields the alternative definition 
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for arbitrary B with 0 < n(B) < ∞, where B ( ( , ) { })dX rx x is the count of the number 
of points in the ball radius r centered at x, excluding x. For a homogeneous Poisson 
process with intensity l, K(r) is given by 
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A border-corrected estimate of K(r) for region W is 
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2.5.5 � Relationships Between Spatial Point Process Functions

The K and g functions are closely related, as K can be expressed in terms of g by 
the equation 

	
1

0
( ) ( ) ( )

r
dK r c d u g u du−= ∫ 	
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for some specified constant c(d). Some other characteristics have been defined as 
combinations and variants of those discussed. Of particular importance is the 
J-function, suggested by Van Lieshout and Baddeley (1999). For a stationary point 
process the J(r) function is defined as 

1 ( )
( )

1 ( )

G r
J r

F r

−
=

−

for F(r) < 1. The J(r) function is J(r) = 1 for a homogeneous Poisson process. 
However, J(r) = 1 does not imply that the point process is a homogeneous Poisson. 
J(r) can be estimated by using 

−
=

−

ˆ1 ( )ˆ( ) ˆ1 ( )

G r
J r

F r

In general, for r > 0, J(r) < 1 indicates clustering and J(r) > 1 is a sign of 
regularity.

An alternative to the K-function is the L-function, defined as 

 
=   ν

1/
( )

( )
( (0,1))

.
d

d

K r
L r

@

which can be estimated using the estimate ˆ ( )K r . For a homogeneous Poisson 
process, L(r) = r, so that L(r) − r = 0.

The pair correlation and K-functions can be defined for the non-stationary case, 
see Møller and Waagepetersen (2004). The anisotropic versions of these functions 
are defined by Stoyan and Stoyan (1994). Baddeley et al. (2000) propose defini-
tions for the non-stationary versions of the F and G function in their concluding 
discussions on the analysis of inhomogeneous point patterns.

2.6 � More Complicated Point Process Models

Earlier we discussed the simplest point process, the homogeneous Poisson process. 
We can divide the most commonly used and more complicated point process mod-
els into three categories, inhomogeneous Poisson models, models for point patterns 
which exhibit clustering, and models for point patterns which are regular. The 
exception to this classification are Cox processes, an important class of models that 
can be used to model both clustering and regularity (see chapter 5 of Møller and 
Waagepetersen (2004)).

Preliminary analysis on PPDS1 provided some possible evidence for clustering 
and hence our discussions here are favoured towards models for clustered data. The 
cluster models we discuss briefly include the Matérn cluster process (see for 
example Cressie (1991)). This model has, for example, been used for modelling 
tree roots data (Fleischer et al. 2006). We also consider the Gauss–Poisson process 
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(Stoyan et al. 1995). Point process models tend to be generalisations of other point 
process models; the homogeneous Poisson process is a special case of the inhomo-
geneous one, which can be generalised to a Cox process.

Models can also be formed by the three fundamental operations discussed in 
section 5.1 of Stoyan et al. (1995). These operations include superposition, thinning 
and clustering. In a clustering operation the events of a point process are replaced 
by clusters of points, X

0
. The clusters (X

0
s) themselves are spatial point processes. 

It is common practice to refer to the events as “parents” and the events of the clus-
ters as “daughters”. The two cluster processes we discuss here are members of a 
group of processes called Neyman–Scott processes. Neyman–Scott processes result 
from homogeneous independent clustering applied to a stationary Poisson process. 
Some Neyman–Scott process such as the Matérn cluster process are also Cox 
processes.

2.6.1 � Gauss–Poisson Process

A Gauss–Poisson process (Newman 1970) is an example of a Poisson cluster pro-
cess (Stoyan et al. 1995). The parent points have a homogeneous Poisson distribu-
tion with intensity l and the number of daughters of each parent is one, two or three 
with probability q

0
,q

1
, and q

2
 respectively. If the parent has one daughter then the 

daughter is placed at the parent location. If the parent has two daughters then one 
is placed at the parent and the other is placed randomly at distance s from the first 
daughter. The resulting pattern only includes daughter points (and hence the parent 
points are deleted). Some further results for Gauss–Poisson processes can be found 
in Milne and Westcott (1972).

2.6.2 � Matérn Cluster Process

Matérn’s cluster process consists of parents that come from a homogeneous Poisson 
point process with intensity l

p
. Each parent has m daughters which are uniformly 

distributed inside (0, )d RB  (with the parent point being regarded as the origin). The 
parameter m comes from a Poisson distribution with intensity l

m
. Implicit expres-

sions for the K and g function for a Matérn cluster process can be found in Stoyan 
et al. (1995).

The Matérn cluster process and Gauss–Poisson process can be simulated in the 
compact window W directly via the model definitions. Although care should be 
taken with regards to edge effects. A simple way to account for edge effects is to 
simulate the parent points inside the dilated window 

(0, )d R
W
B

 where R is such that 
for the 0( (0, ))dP X R⊃ B  is very small or zero (Stoyan et  al. 1995). Brix and 
Kendall (2002) discuss the simulation of cluster point processes without edge 
effects.
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2.6.3 � Markov Point Processes

Markov or Gibbs point processes have been intensively used in spatial statistics 
since 1970 (Stoyan and Stoyan 1994). Although they are models for various types 
of point patterns, they are usually recognised for their ability to provide a more 
flexible framework for modeling spatial point patterns that exhibit inhibition (com-
pared to a homogeneous Poisson distribution) (Cressie 1991). Markov point pro-
cesses were first defined by Ripley and Kelly (1977). As redefined by Cressie 
(1991), a spatial point process on bounded set dV ⊂   is said to be Markov of 
range r if it is a spatial point process that has conditional intensity at x Î V given 
the realisation of the process in A \ x that depends only only on the events in 
B ( , )d rx x. Each Markov process is characterised by a likelihood ratio f(. ) with 
respect to a unit intensity Poisson process. Furthermore, f(. ) is usually defined up 
to a normalising constant that cannot be evaluated in closed form Diggle (2003). A 
popular example of a Markov point process is the Strauss process (Strauss 1975). 
In this case, for a configuration of n < ∞ points, we have 

= > ≤ ≤ >( )( ) , 0,0 1, 0n Rf x Rjab g b g

Where j(R) is the number of distinct pair of events within distance r. The 
Papangelou conditional intensity defined by 

′
∗ ′ ′∩

λ = ∈ 
( )

( , ) ,
( )

f
V

f

x x
x x x x

x

where we take a ∕ 0 = 0 for a ³ 0 (Kallenberg 1984) is a fundamental characteristic 
(Møller and Waagepetersen 2001). If f is hereditary (that is f(x) > 0 Þ f(y) > 0 for 
y Ì x), then there is a one-to-one correspondence between f and l *. Distribution 
characteristics (such as the summary statistics introduced earlier) for Markov mod-
els are difficult to calculate (Stoyan and Stoyan 1994). Further theory on Markov 
point process can be found in Stoyan et al. (1995) while a good exposition on simu-
lating Markov point processes can be found in Møller and Waagepetersen (2001) 
and Møller and Waagepetersen (2004).

2.6.4 � Cox Processes

A Cox process is a natural approach for generalising the definition of Poisson point 
process (Møller and Waagepetersen 2004). A Cox Process on 

dV ⊂   is often 
referred to as a ‘doubly stochastic’ Poisson point process as the intensity measure 
is replaced by a random locally finite measure ZL. More formally, we say that a 
point process X is a Cox process driven by ZL if X | ZL = L is an inhomogeneous 
Poisson process with mean measure L. Due to their generality and associated 
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manageable closed form calculations, Cox processes tend to find important applications 
as stochastic models (Stoyan et al. 1995). Examples of Cox processes include the 
Matérn cluster process. A particular useful class of Cox processes is the class of 
Log Gaussian Cox Processes. A detailed account of Cox processes can be found in 
Møller and Waagepetersen (2002).

2.7 � Marked Spatial Point Processes

A rigorous definition of a point process can be found in Karr (1991). A marked spa-
tial point process is a mathematical model for random or irregularly placed points 
lying in some two- or three-dimensional region, for which each point realization has 
an associated mark, a random variable representing the magnitude or type of some 
feature that can be measured at that spatial location. A multivariate spatial point pat-
tern is a special case of a marked spatial point pattern, where there is a finite number 
of marks, each representing an event-type (Cressie 1991). A bivariate spatial point 
process may be used to model the locations of two different types of subnuclear 
bodies in the nucleus, while a marked spatial point process may be used (as done in 
this paper) to model the size of one type of subnuclear body in the nucleus.

Spatial pattern analysis (whether marked or unmarked) often begins with tests to 
determine whether objects are uniformly placed within a specified region. For PML 
data this is equivalent to testing whether the PML NBs are randomly placed within 
the cell nucleus. Several techniques have been adopted for assessing the spatial 
distribution of nuclear bodies. A popular and relatively fast approach for assessing 
whether nuclear bodies exhibit spatial positioning preference is known as erosion 
or “nuclear peeling” (Shiels et al. 2007); this entails some form of radial analysis, 
in which the nucleus is subdivided into concentric rings or shells from the periphery 
to the centre. Other techniques for investigating subnuclear body spatial preference 
have included those adopted by Bolzer et al. (2005). They used the mean of inter-
body distances and Kolmogorov–Smirnov tests to assess the spatial distribution of 
subnuclear bodies.

Tests for uniformity are known as tests for CSR (see Section 2.4.2). Such tests 
will often provide useful insight into any spatial features (such as clustering) and 
they often entail computing and interpreting (possibly several) distance-based 
summary statistics. Estimation of these statistics is generally complicated by 
edge effects. This issue arises for the PML data because the cell nucleus is 
assumed to cover a finite bounded region and thus estimation of the statistic 
(which are potentially defined for unbounded regions) can be biased. CSR tests 
performed on PML data PPDS1, using estimates of the F(r)-function (which, 
informally, is the probability that a PML NB is within distance r of an arbitrary 
chosen other PML NB), provided some evidence to reject the null hypothesis of 
CSR (see Umande 2008). Thus there is evidence that PML are not uniformly 
placed inside the nucleus.
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2.8 � Bivariate Spatial Point Process Analysis of PML NBs 
and RNA Polymerase II

One of the most popular summary statistics used for CSR tests in the univariate 
case is the K(r)-function (Diggle 2003). The bivariate version of the K(r)-function, 
K

ij
(r) of a stationary (invariant under translation) marked point process was first 

introduced by Hanisch and Stoyan (1979). Heuristically, letting l
k
 denote the inten-

sity of events of type X
k
, K

ij
(r) is the expected number of events of type j that are 

within distance r of an event of type i. Informally, this means, if X
i
 denotes the 

location of PML NBs and X
j
 RNA Polymerase II then l

i
 is the average number of 

PML NBs per unit volume of the cell nucleus and K
ij
(r) is the average number of 

PML NBs that are within a distance r of the RNA Polymerase II.
For n

1
 the number of type 1 events, and n

2
 the number of type 2 events, the 

K
ij
(r)-function can be estimated inside the bounded window dW ⊂   (i.e. the 

interior of the nucleus) using the estimator 
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as suggested by Hanisch and Stoyan (1979). Here n(W) is the volume of the nuclear 
interior. The estimate for the intensity parameter, λi  is given by  / ( )λ = νi in W . 
The function w is an edge-correction factor such as the proportion of the surface 
area of the three-dimensional ball centred at x, passing through x¢. For relative ease 
of calculation and efficiency, we prefer the edge-correction w(x, x¢) = n(W ∩ b(x, ½½ 
x − x¢ ½½)). To adopt this preferred form of edge-correction, we can utilise the 
quadrature approximation 

	 ( )( ) ( )( )′

′

∈ ∩ −
=

ν
ν ∩ − ≈ ∑ I ,

1

( )
,

i

U

W b
i

W
W b

U x x x x
x x x 	 (2.8)

We estimated the K
12

(r)-function using (2.7) and the preferred form of edge-
correction (2.8) for cell 4 of PPDS3. The data used to produced Fig. 2.3 suggest 
that, heuristically, for this particular cell, we would expect to observe fewer RNA 
Polymerase II bodies within a distance of 0.5 units of the typical PML, compared 
to if the RNA Polymerase II exhibited CSR. From the biological literature, it 
appears that the inhibition (and perhaps more generally, spatial relationship 
between RNA Polymerase II and PML NBs) is driven by the biological function of 
PML NBs with different cell nuclei. Also, it may be interesting to compare these 
results with the findings of Xie and Pombo (2006) who reported that PML bodies 
contain no detectable RNA polymerase II, but are often surrounded by them at a 
distance greater than 25 nm. From the detail provided in the Appendix, we estimate 
that 0.5 units is approximately 41 nm.
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Following investigation on edge-correction provided by Umande (2008), we are 
cautious towards interpreting the results provided in Fig. 2.3 for large values of r. We 
therefore also consider the outcome of simulation studies. Specifically, a plot of 
K

12
(r)-functions with simulation envelopes, as shown in Fig. 2.8, can provide further 

insight. The K
12

(r)-function simulation envelopes for cell nucleus k of PPDS3 was 
obtained by simulating 100 independent realisations of a homogeneous Poisson pro-
cess, … 1 100, ,k kx x , inside the convex hull, representing the nuclear boundary of cell k. 
Each simulated realisation,  jkx , of the homogeneous Poisson process had a condi-
tional number of events, n

k
, where n

k
 is the number of RNA Polymerase II found 

inside cell nucleus k. For each  jkx  we estimate the K
12

(r)-function without applying 
an edge-correction, where 1 is an event of type PML and 2 is an event belonging to 
 jkx . As we are conducting a like-for-like comparison, in the sense that a biased 

estimate of the K(r)-function is being compared to a another biased estimate of the 
same function, there is no need for an edge-correction. We hence obtain 100 esti-
mates of the K

12
(r)-function, 

1 10012 12{ ( ), , ( )}
k k

K r K r…  for each cell k.
The upper and lower simulation envelopes for each cell nucleus are respectively 

1 10012 12 inf{ ( ), , ( )}
k k

K r K r…  and 
1 10012 12 sup{ ( ), , ( )}

k k
K r K r… . The results presented in 

Fig. 2.8 suggest that, apart from cell 4, generally, for a wide range of r, there are 
fewer RNA Polymerase II bodies within distance r of the typical PML body com-
pared to RNA Polymerase II bodies randomly scattered inside the nucleus. The 
results for cell 4 are consistent with those obtained for small r (relative to the 
nuclear magnitude), for the other cells in PPDS3. However, on the contrary to the 
other cells, for larger r, the PML in cell nucleus 4 typically tend to have a much 
greater number of RNA Polymerase II bodies within distance r, compared to RNA 
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Fig. 2.3  The K
12

(r)-function plot for the PML NB (type 1) and RNA Polymerase II (type 2) in 
cell nucleus 4 of PPDS3. The solid curve is K
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 and the dashed curve is K
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Polymerase II randomly placed inside the nucleus. Simulation studies also 
confirmed that there are enough nuclear bodies in cell 4 of PPDS3 for one to 
make legitimate observations for features of the spatial point pattern at distances of 
0.5 units. This is owed to the high number of RNA Polymerase II bodies (there are 
72 RNA Polymerase II bodies in cell 4 of PPDS3).

2.9 � A Marked Inhomogeneous Poisson Process Model for PML

Obtaining a model for the spatial distribution of PML NBs is important. Below, we 
outline how one could fit an inhomogeneous Poisson process to the type of PML 
data used throughout this paper. By successfully fitting an inhomogeneous Poisson 
process to replicated PML NB data, suggests a form of a spatial preference for PML 
within the cell nucleus. Also, very importantly, the formulation of an appropriate 
model can have potential applications in spotting certain illnesses by comparing the 
distribution of PML NBs from cells that have been taken from the subject being 
diagnosed, with the distribution of PML NBs as suggested by the model. At present, 
this is of course rather ambitious, given the technological limitations.

We have hinted above at a possible candidate model to describe the spatial loca-
tions of PML NBs. On rejecting the null hypothesis of CSR, a model that is commonly 
considered is the inhomogeneous Poisson process. The inhomogeneous Poisson 
process model is essentially the model that would generate CSR data but with a spatially 
varying parameter l(. ). In terms of the PML NB data, under this model, the number 
of PML NBs per unit volume is assumed to vary throughout the nuclear interior. The 
inhomogeneous Poisson process intensity function l(x) determines how the PML 
NBs are distributed throughout the nuclear interior; determining l(x) is the core mod-
elling challenge.

Practitioners might consider biological literature when attempting to specify 
l(x). For example, McManus et  al. (2006) have reported that chromosomes and 
regions of chromosomes segregate differently within the nucleus depending on 
whether or not they are rich in potentially transcribed genes. The individual inter-
phase chromosome territories segregate their gene rich R-bands into the interior of 
the nucleoplasm, whereas their gene poor G-bands are gathered against the periph-
ery of the nucleus and against the nucleolar surface (see for example Shopland et al. 
(2003)). Euchromatin sequences are further organised such that they maintain a 
spatial relationship with the predominant nucleoplasmic nonchromatin structure, 
the splicing factor compartments (McManus et  al. 2006). Smaller nonchromatin 
structures such as PML associate with specific regions of the genome. In summary, 
this means there is biological reason to suggest that the spatial location of PML 
NBs is related to the nuclear boundary. Umande (2008) has used simulation studies 
and a variant of the empty space function to determine a possible relationship 
between the placement of PML NBs and the nuclear boundary.

A candidate model that stems from these ideas is one defined through the 
following postulates: 
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MP1 The event (PML NB) locations are a realisation of a homogeneous Poisson •	
process with intensity l inside bounded 3W ⊂   
MP2 Each event •	 x is retained with probability

 ( ) += − − − ∂ ∈( ) 1 expp Wk kx x  

Otherwise independently thinned (removed) with probability 1 − p(x) where ∂W 
denotes the boundary of W.

A model defined through postulates MP1-MP2 is an inhomogeneous Poisson process 
with intensity function lp(x) (see Umande (2008) for a mathematical proof). 
Furthermore, note that under this model, as ½½x − ∂W ½½ → 0, p(x) → 0 which means 
that PML NBs are less likely to be observed close to the boundary.

We can fit Model 1 to PPDS2 as follows. We first note that for a single replicate, 
the likelihood, ℓ, of the data D, is given by 

( ) ( | ).p p M= D D  

For k iid replicates the likelihood ℓ
Rep

 is given by 

== ∏ D M D
 Rep 1

( ) ( | )k
j jj

p p

and the log-likelihood is given by 

1

 log( ( ))  log( ( | ))
k

j j
j

p p
=

= +∑ D M D

We can therefore fit the marks separately to the model. However, note that before 
modelling replicated data that one is uncertain follow the same statistical distribu-
tion, it is advisable to begin by testing whether or not the data is “similar” (i.e. 
whether the data truly does come from the same statistical distribution). Diggle 
(2003) and Webster et al. (2006) provide details on tests that can be used for testing 
spatial point pattern similarity. The procedures are not straightforward when 
applied to data analysed here; bootstrapping techniques and a non-stationary ver-
sion of the K(r)-function are used.

We will now provide an exposition on how we can mark the PML NBs and gain 
initial insight into the mark distribution by analysing an appropriate spatial point 
process characteristic and can thus use the marks analysis to completely specify a 
marked point process model for the PML NB spatial locations. As mentioned above, 
the extension of other popular characteristics to the multivariate case is generally not 
difficult (for discrete marks). For the general marked case, the empty space function, 
F(r) of the marked spatial point process X[m] is the cumulative distribution function 
of the distance from a randomly selected origin to the nearest event in X[m]. That is 

( )= ∩ × ≠M[ ]( ) ( (0, ) ) 0/mF r P X b r

Also, let B be a subset of M  with [ ] ( ) 0mX
Z B > . We define the nearest neighbour 

function for events with marks in B by
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( )= ∩ × ≠M[ ]

! [ ]

,0
( ) ( (0, ) ) 0/m

m
B X

G r P X b r

for r ³ 0. Here P!  denotes a probability with respect to the Palm distribution. Van Lieshout 
(2004) introduced a J-function for marked spatial point patterns. The J-function 
with respect to mark set B, J

B
 is given by 

1 ( )
( )

1 ( )
B

B

G t
J t

F t

−
=

−

for all t ³ 0 and F(t) < 1. For an independently marked Poisson process, G
B
(t) = F(t) 

for all t and so J
B
 ≡ 1. Values greater than 1 are a sign of inhibition, while values less 

than 1 are a sign of clustering.
Van Lieshout (2004) proved, for X a stationary point process on d  with inten-

sity 0 < l < ∞, that if X is randomly labelled with mark distribution Z on mark space 
M  and if X[m] is the marked point process obtained, then for all r ³ 0 with F(r) < 1, 
the J-function with respect to a mark set B ⊂M  with [ ] ( ) 0mX

Z B >  is given by

	  ( ) ( )B XJ r J r=  

where J
X
(r) is the J-function of X and where the marked spatial point process X[m] 

is said to have the random labelling property if the marks of the events are condi-
tionally iid given the event locations.

For each PML NB in PPDS2, we calculated an approximate PML body length 
from the image data used to produce PPDS2. This was done by measuring the 
maximum distance between any two points, of the points that have been classified 
as being a part of that PML NB in the image processing stage. That is, in the data 
provided by the Imperial College London centre for structural biology, each PML 
NB j is described as a set of points 1{ ,.... }j ujx x (see Appendix). The length of PML 
NB j was calculated as inf{ }− =: , 1,....,ij sjx x i s u . We use these lengths to assign 
marks to the PML NBs in PPDS2.

The J-function plots for the cell nuclei of PPDS2 is shown in Fig. 2.4. Figures 
2.4 and 2.5 suggests that, since the marked and unmarked J(r)-functions are not too 
dissimilar, we would generally not necessarily expect to observe the PML NBs 
placed in the nuclear interior, in such a way that depends on their relative sizes (in 
terms of length). Note also that we found that the proportions of the PML body 
length to nuclear length, denoted by zp was consistent with the theoretical propor-
tions provided in the biological literature. All of the PML NBs in PPDS2 were 
pooled and we calculated the linear correlation between zp and the proportion of 
PML NB distance to the boundary to nuclear length. We obtained a correlation of 
0.09, suggesting that the two are not strongly linearly correlated. The lack of cor-
relation between the length of the PML and distance to boundary, provides some 
evidence for random labelling with respect to PML size. This is consistent with the 
results obtained using the marked J-function. Hence, these results would not sup-
port for example, a view that larger PML NBs are found closer to the nuclear 
periphery or more internally.
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The final step in the model fitting discussions endeavours to identify each PML 
NB uniquely by assigning a mark to the PML NB. Each PML NB is now assigned 
a length. Consider the additional model postulate: 

MP3 Each PML NB •	 x is randomly assigned a proportional length zp ~ Z. That is, 
Z is a random variable that assigns to each PML NB, the mark 

 PML NB length
.

 nuclear length
zπ =

Formal tests on the data (see Fig. 2.6) suggest that a normal distribution is a plau-
sible model for the marks distribution Z.

A Kolmogorov–Smirnov test for the null hypothesis that the marks follow a 
normal distribution with mean 0.045 and standard deviation 0.019 provided a 
p-value of 0.92. Caution is required when choosing the mark space since physical 
restrictions mean that, realistically, the mark space (that the zp belong to) is A Ì (0, 1) 
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Fig. 2.4  Marked (solid curve) and unmarked (dashed line) J(r)-function for PPDS2 cells 1–4. 
The mark set B = [0.01,0.04]
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(and not for example + as implied by a normal distribution). This is because the 
PML NBs cannot be longer than the nucleus or have zero length. Hence, it is more 
appropriate to adopt a truncated normal distribution for Z. More precisely, Z has a 
normal distribution and lies within the interval (0,1). We estimated the mean and 
variance of the truncated (0,1) normal distribution, for the PML NB marks, to being 
(respectively) 0.045 and 0.019 (see for example Barr and Sherrill (1999) for detail 
on the parameter estimation). The diagnostic plots presented in Fig. 2.7 suggest that 
the truncated normal model that has been put forward for the PML NB marks dis-
tribution is a plausible one.

By using this model for the marks distribution as Z in MP3, and by letting MP3 
be an additional final postulate of the Model defined by MP1-MP2, we obtain a 
marked spatial point process model for the spatial distribution of PML NBs. We 
may also wish to assess how well the inhomogeneous Poisson process model fits 
the data. Umande (2008) has carried out such tests on data similar to that used in 
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(dashed curve) with the CDF of a normal distribution with mean 0.045 and standard deviation 
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this paper and found a model defined through MP1-MP2 as a credible model for 
PML NB locations.

2.10 � Conclusion

Tools from spatial point pattern analysis can be invaluable in the investigation of 
the configuration of nuclear bodies, in particular, the way that PML bodies are 
distributed across the nucleus in relation to themselves and to other nuclear bodies. 
By computing inter-object distances and the corresponding K and J functions, 
simulation-based statistical tests of hypotheses can be formulated and imple-
mented, and these tests allow the validity of important biological models to be 
assessed.
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Fig. 2.7  Panel (d) shows the empirical CDF of the PML NB marks (dashed curve) with CDF of 
a truncated normal distribution with mean 0.045 and standard deviation 0.019 (black line). The 
scatter plots are of PML NB centroid (x, y, z) coordinates (divided by nuclear length) against 
simulated realisations of a truncated (0,1) normal distribution with mean 0.045 and standard 
deviation 0.019 (the model marks distribution). The red crosses represent the data and the black 
crosses are for the simulated marks
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�Appendix

All of the datsets refered to in this paper (PPDS1, PPDS2 and PPDS3) were pro-
vided by the Imperial College London Centre for Structural Biology. The cells used 
are MRC-5 cell nuclei. Furthermore, the cells used for PPDS2 are all in the G

0
 

phase of the cell cycle.

•	 Distance Units for the Data Throughout this paper we refer to “units” for reporting 
measured distances in the cell nuclei. r units corresponds to r image pixels. There are 
12 pixels in 1 micrometer (mm). Hence 1 unit » 0. 083 mm or 83.3 nanometers (nm) .

•	 PPDS1 The dataset PPDS1 consists of five cells. We are provided with point coor-
dinates that are the centroids of PML NBs inside the cell nuclei. The sampling region 
is obtained by calculating the smallest ellipsoid that contains all of the PML points.

•	 PPDS2 and PPDS3 Once the confocal image is produced, PPDS2 is obtained by 
analysing the image data, to form a datset consisting of points that are labeled 
PML, nucleoli, nuclear boundary, or empty space inside the nucleus. We then run 
this (large) dataset trough a computer program that forms a point pattern by con-
verting the PML NBs into PML points, by calculating their centroids. PPDS3 is 
produced in a similar way to PPDS2 but contains an additional labelling to indi-
cate the locations of RNA Polymerase II. Further details, including the number 
of interior points, U, of PPDS2 and PPDS3 are shown in Tables 2.1 and 2.2.

Table 2.1  PPDS2 details

Cell PML Count U

1 12 49,942
2 11 50,189
3   9 49,975
4   7 49,969
5   9 49,900
6 11 49,974
7 14 50,091
8   6 50,078

Table 2.2  PPDS3 details

Cell PML Count RNA Pol II Count U

1   6 349 50,216
2   8 269 50,253
3 13 296 50,266
4 12   72 50,266
5 10 226 50,250
6 14 125 49,982
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