
Cognitive Technologies

Parsing Beyond Context-Free Grammars

Bearbeitet von
Laura Kallmeyer

1st Edition. 2010. Buch. xii, 248 S. Hardcover
ISBN 978 3 642 14845 3

Format (B x L): 15,5 x 23,5 cm
Gewicht: 555 g

Weitere Fachgebiete > Literatur, Sprache > Sprachwissenschaften Allgemein >
Grammatik, Syntax, Morphologie

Zu Inhaltsverzeichnis

schnell und portofrei erhältlich bei

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft.
Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm
durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr

als 8 Millionen Produkte.

http://www.beck-shop.de/Kallmeyer-Parsing-Beyond-Context-Free-Grammars/productview.aspx?product=839000&utm_source=pdf&utm_medium=clickthru_lp&utm_campaign=pdf_839000&campaign=pdf/839000
http://www.beck-shop.de/trefferliste.aspx?toc=8576
http://www.beck-shop.de/trefferliste.aspx?toc=8576
http://www.beck-shop.de/fachbuch/inhaltsverzeichnis/9783642148453_TOC_001.pdf

2

Grammar Formalisms for Natural Languages

2.1 Context-Free Grammars and Natural Languages

2.1.1 The Generative Capacity of CFGs

For a long time there has been a debate about whether CFGs are suffi-
ciently powerful to describe natural languages. Several approaches have used
CFGs, oftentimes enriched with some additional mechanism of transformation
(Chomsky, 1956) or with features (Gazdar et al., 1985) for natural languages.
These approaches were able to treat a large range of linguistic phenomena.

However, in the 1980s Stuart Shieber was able to prove in (1985) that
there are natural languages that cannot be generated by a CFG. Before that,
Bresnan et al. (1982) made a similar argument but their proof is based on the
tree structures obtained with CFGs while Shieber argues on the basis of weak
generative capacity, i.e., of the string languages.

The phenomena considered in both papers are cross-serial dependencies.
Bresnan et al. (1982) argue that CFGs cannot describe cross-serial dependen-
cies in Dutch while Shieber (1985) argues the same for Swiss German. Swiss
German has case marking; therefore dependencies are visible on the strings
and one can show that the string languages are not context-free.

Let us first consider the Dutch data from (Bresnan et al., 1982).

(3) ... dat Jan de kinderen zag zwemmen
... that Jan the children saw swim

‘... that Jan saw the children swim’

In (3), we have two verbs and two noun phrases. The links mark the
dependencies between these: the children is an argument of swim while Jan
is an argument of saw. The dependency links are in a crossing configuration.
This phenomenon can be iterated, as shown in (4) and (5).

L. Kallmeyer, Parsing Beyond Context-Free Grammars, Cognitive Technologies,
DOI 10.1007/978-3-642-14846-0 2, c© Springer-Verlag Berlin Heidelberg 2010

18 2 Grammar Formalisms for Natural Languages

(4) ... dat Jan Piet de kinderen zag helpen zwemmen
... that Jan Piet the children saw help swim

‘... that Jan saw Piet help the children swim’

(5) ... dat Jan Piet Marie de kinderen zag helpen leren zwemmen
... that Jan Piet Marie the children saw help teach swim

‘... that Jan saw Piet help Marie teach the children to swim’

In principle, an unbounded number of crossed dependencies is possible.
However, except for the first and last verb any permutation of the NPs and
the verbs is grammatical as well (even though with a completely different de-
pendency structure since the dependencies are always cross-serial). Therefore,
the string language of Dutch cross-serial dependencies amounts roughly to
{nkvk | k > 0}, which is a context-free language.

Bresnan et al. (1982) argue that the strong generative capacity of CFGs is
too limited for the Dutch examples. A weakness of the argument is however
that an argument about syntactic structure makes always certain theoretical
stipulations. Although it is very probable, it does not absolutely prove that,
even using different syntactic theories, there is no context-free analysis for the
Dutch examples. It only shows that the syntactic structures Bresnan et al.
(1982) think the appropriate ones cannot be obtained with a CFG.

Shieber’s argument about Swiss German cross-serial dependencies is more
convincing since it relies only on the string language, i.e., it concerns the weak
generative capacity of CFGs. Swiss German displays the same dependency
patterns as Dutch in examples such as (3)–(5). The crucial difference is that
Swiss German has case marking. Let us consider the Swiss German data.

(6) ... das mer em Hans es huus hälfed aastriiche
... that we HansDAT houseACC helped paint

‘... that we helped Hans paint the house’

(7) ... das mer d’chind em Hans es huus lönd hälfe aastriiche
... that we the childrenACC HansDAT houseACC let help paint

‘... that we let the children help Hans paint the house’

2.1 Context-Free Grammars and Natural Languages 19

In Swiss German, as in Dutch, the dependencies are always cross-serial in
these examples. But, since we have case marking, permutations of the noun
phrases would lead to ungrammatical sentences. This is why Shieber was able
to show that Swiss German (as a string language) is not context-free.

Proposition 2.1.
The language L of Swiss German is not context-free (Shieber, 1985).

The argumentation of the proof goes as follows: We assume that L is
context-free. Then the intersection of a regular language with the image of
L under a homomorphism must be context-free as well. We find a particular
homomorphism and a regular language such that the result obtained in this
way is a non-context-free language. This is a contradiction to our assumption
and, consequently, the assumption does not hold.

Shieber considers sentences of the following form:

(8) ... das mer d’chind em Hans es huus haend
... that we the childrenACC HansDAT houseACC have
wele laa hälfe aastriiche
wanted let help paint
‘... that we have wanted to let the children help Hans paint the house’

Swiss German allows constructions of the form (Jan säit) (‘Jan says’)das
mer (d’chind)i (em Hans)j es huus haend wele (laa)i (hälfe)j aastriiche. In
these constructions the number of accusative NPs d’chind must equal the
number of verbs (here laa) selecting for an accusative and the number of
dative NPs em Hans must equal the number of verbs (here hälfe) selecting
for a dative object. Furthermore, the order must be the same in the sense
that if all accusative NPs precede all dative NPs, then all verbs selecting an
accusative must precede all verbs selecting a dative.

The following homomorphism f separates the iterated noun phrases and
verbs in these examples from the surrounding material:

f(“d’chind”) = a f(“Jan säit das mer”) = w
f(“em Hans”) = b f(“es huus haend wele”) = x

f(“laa”) = c f(“aastriiche”) = y
f(“hälfe”) = d f(s) = z otherwise

To make sure we concentrate only on the constructions of the described
form, we intersect f(L) with the regular language wa∗b∗xc∗d∗y. Whenever
we have a sentence whose image under f is in the intersection, this sentence
has the form (Jan säit) das mer (d’chind)i (em Hans)j es huus haend wele
(laa)k (hälfe)l aastriiche for some i, j, k, l ≥ 0. Furthermore, because of the
constraints we observe in Swiss German, i = k and j = l. Therefore, the
result of this intersection is {waibjxcidjy | i, j ≥ 0}, a language that is not

20 2 Grammar Formalisms for Natural Languages

context-free.1 Consequently, the original language L, Swiss German, is not
context-free either.

Alternatively, one can also reduce Swiss German to the copy language
{ww |w ∈ {a, b}∗} by appropriate homomorphisms and an intersection with a
regular language (see Problem 2.2 for more details). For grammar formalisms
whose language classes are closed under homomorphisms and intersection with
regular languages, this means the following: If such a formalism cannot gen-
erate the copy language, then it is not powerful enough to describe all natural
languages. Therefore, the fact that a formalism can generate the copy language
is often considered a necessary condition for the ability to describe natural
languages.

2.1.2 CFGs and Lexicalization

Besides the fact that the generative capacity of CFGs is too weak to describe
all natural languages, CFGs cannot be strongly lexicalized. A set of gram-
mars can be strongly lexicalized if, for every grammar in this set, we can
find a strongly equivalent lexicalized grammar in the same set. This prop-
erty is sometimes claimed useful for formalisms intended to describe natural
languages (Schabes, 1990; Joshi and Schabes, 1997).

Lexicalized grammars are grammars where each rewriting rule contains at
least one terminal. On the one hand, lexicalized grammars are computation-
ally interesting since in a lexicalized grammar the number of analyses for a
sentence is finite (if the grammar is finite of course). On the other hand, they
are linguistically interesting since, if we assume that each lexical item comes
with the possibility of certain partial syntactic constructions, we would like
to associate it with a set of such structures.

Another linguistic aspect of lexicalized grammars is that they relate of-
tentimes immediately to dependency structures since combinations during
derivation can be interpreted as dependencies. This link is investigated in
detail in (Kuhlmann, 2007).

Lexicalization is particularly useful for parsing since the lexical elements
give us a strong indication for which rewriting rules to use, i.e., they help to
restrict the search space during parsing.

A lexicalized grammar can never generate the empty word ε. Therefore,
in the following we consider only languages that do not contain ε.

Definition 2.2 (Lexicalized Grammar). A grammar is lexicalized if it
consists of

• a finite set of elementary objects of finite size each associated with a non-
empty lexical item (called its anchor),

1 To see that, we can intersect this language with the regular language a∗b∗c∗d∗,
which leads to {aibjcidj | i, j ≥ 0}. This language can be shown to be non-context-
free using the pumping lemma for context-free languages.

2.1 Context-Free Grammars and Natural Languages 21

CFG rewriting step αAβ ⇒ αX1 . . . Xkβ with production A→ X1 . . . Xk

Corresponding tree substitution:

A
α β

� A
α β

X1 . . . Xk

because of

A

X1 . . . Xk

Fig. 2.1. Context-free derivation steps as substitution

• and an operation/operations for composing these structures that do not
copy, erase or restructure unbounded components of their arguments.

The objects might be for instance productions as in CFG or trees as in
TAG or tree descriptions (“quasi trees”) as in D-Tree Substitution Grammar
(Rambow, Vijay-Shanker, and Weir, 2001).

An elementary object can contain more than one lexical item. We then
call the set of its lexical items a multicomponent anchor.

Lexicalized grammars are finitely ambiguous, i.e., no sentence of finite
length can be analyzed in an infinite number of ways. Consequently the recog-
nition problem for lexicalized grammars is decidable.

Definition 2.3 (Lexicalization).
A formalism F can be strongly (weakly) lexicalized by a formalism F ′ if

for any finitely ambiguous grammar G in F there is a lexicalized grammar G′

in F ′ such that G and G′ are strongly (weakly) equivalent.

CFG can be weakly lexicalized by CFG since for each CFG whose string
language does not contain ε, a weakly equivalent lexicalized CFG can be found,
namely the one in Greibach Normal Form (GNF) (see Hopcroft and Ullman
(1979)).2 However, the derivation trees obtained with the original CFG and
the one in Greibach Normal Form are different in general.

In order to show that CFGs cannot be strongly lexicalized by CFGs, we
show that they cannot be strongly lexicalized by Tree Substitution Grammars,
a formalism that is strongly equivalent to CFG. Therefore, we now introduce
Tree Substitution Grammars.

We can consider context-free derivation steps as tree substitutions since a
non-terminal leaf is replaced with a tree of height 1 (one mother node and n
daughters) as depicted in Figure 2.1.

Extending the height of the trees permitted leads to Tree Substitution
Grammars:

2 A CFG is in Greibach Normal Form if each production is of the form A → a x
with A ∈ N, a ∈ T, x ∈ (N ∪ T)∗.

22 2 Grammar Formalisms for Natural Languages

Definition 2.4 (Tree Substitution Grammar).
A Tree Substitution Grammar (TSG) consists of a quadruple 〈T,N, I, S〉

such that

• T and N are disjoint alphabets, the terminals and non-terminals,
• I is a finite set of syntactic trees, and
• S ∈ N is the start symbol.

We call the syntactic trees in I the elementary trees.

Every elementary tree is a derived tree and we can obtain larger derived
trees from existing ones by replacing some of the non-terminal leaves with
elementary trees having the same non-terminal as root label. Such operations
are called substitution.

Definition 2.5 (Substitution).
Let γ = 〈V,E, r〉 be a syntactic tree, γ′ = 〈V ′, E′, r′〉 an initial tree and

v ∈ V . γ[v, γ′], the result of substituting γ′ into γ at node v is defined as
follows:

• if v is no leaf or l(v) = l(r′), then γ[v, γ′] is undefined;
• otherwise, γ[v, γ′] := 〈V ′′, E′′, r′′〉 with V ′′ = V ∪ V ′′ \ {v} and E′′ =

(E \ {〈v1, v2〉 | v2 = v}) ∪ E′ ∪ {〈v1, r′〉 | 〈v1, v〉 ∈ E}.

A leaf that has a non-terminal label is called a substitution node.

A sample substitution is shown in Figure 2.2 where the John-tree with
root node label NP is substituted into the NP substitution node in the laughs
tree.

S

NP↓ VP

V

laughs

NP

John

�

S

NP VP

John V

laughs

Fig. 2.2. Sample substitution

A tree is completed if all leaves are labeled by terminals. The tree language
T (G) of a TSG G is the set of all completed derived trees that have the root
label S. The string language of G is then the set of strings yielded by the trees
in the tree language.

TSGs are weakly equivalent to CFGs and each CFG is a TSG.

Proposition 2.6. CFG cannot be strongly lexicalized by TSG (Schabes, 1990;
Joshi and Schabes, 1997).

2.1 Context-Free Grammars and Natural Languages 23

Proof. Consider the CFG G with productions S → S S, S → a. Assume that
there is a strongly equivalent lexicalized TSG G′. Then each tree in the tree
language is derived from some initial tree t with a leaf labeled with a such
that the path between this leaf and the root has a constant length n. Below
this leaf nothing can be added, i.e., each tree derived from t still has a path
of length n. Let nmax be the maximal path length between root and leaf with
label a in the initial trees of G′. Then there is no derived tree in the tree
language of G′ such that all paths have a length > nmax. But such trees exist
in the tree language of G. Contradiction. ��

Then, trivially, CFGs cannot strongly lexicalize CFGs either.
The reason why TSG cannot strongly lexicalize CFG is that in a TSG

we always add material below one of the leaves. Consequently, TSGs do not
permit the distance between two nodes in the same elementary tree to increase.
One way to overcome this is to allow not only leaves but also internal nodes to
be replaced with new elementary trees. This leads to tree-rewriting grammars
with adjunction, i.e., to Tree Adjoining Grammars.

2.1.3 Mild Context-Sensitivity

Once it was clear that CFGs were not powerful enough to describe all natural
language phenomena, the question of the appropriate context-sensitive for-
malism for natural languages arose. In an attempt to characterize the amount
of context-sensitivity required, Aravind Joshi introduced the notion of mild
context-sensitivity (1985). This is a term that refers to classes of languages,
not to formalisms.

Definition 2.7 (Mildly context-sensitive).

1. A set L of languages is mildly context-sensitive iff
a) L contains all context-free languages.
b) L can describe cross-serial dependencies: There is an n ≥ 2 such that

{wk |w ∈ T ∗} ∈ L for all k ≤ n.
c) The languages in L are polynomially parsable, i.e., L ⊂ PTIME.
d) The languages in L have the constant growth property.

2. A formalism F is mildly context-sensitive iff the set {L |L = L(G) for
some G ∈ F} is mildly context-sensitive.

The constant growth property roughly means that, if we order the words
of a language according to their length, then the length grows in a linear way.
E.g., {a2n |n ≥ 0} does not have the constant growth property. The following
definition is from Weir (1988).

Definition 2.8 (Constant Growth Property).
Let X be an alphabet and L ⊆ X∗. L has the constant growth property iff

there is a constant c0 > 0 and a finite set of constants C ⊂ IN \ {0} such that
for all w ∈ L with |w| > c0, there is a w′ ∈ L with |w| = |w′| + c for some
c ∈ C.

24 2 Grammar Formalisms for Natural Languages

As already mentioned, mild context-sensitivity is introduced as a property
of a set of languages. So far, it has not been possible to identify a grammar
formalism that generates the largest possible mildly context-sensitive set of
string languages. The closest approximation we know of are Linear Context-
Free Rewriting Systems (LCFRSs), introduced in (Vijay-Shanker, Weir, and
Joshi, 1987; Weir, 1988), and equivalent formalisms such as set-local Multicom-
ponent Tree Adjoining Grammars (MCTAGs) (Weir, 1988), Multiple Context-
Free Grammars (MCFGs) (Seki et al., 1991) and simple Range Concatenation
Grammars (simple RCGs) (Boullier, 2000b). However, recent research on cer-
tain types of MCTAG suggests that there might be mildly context-sensitive
grammar formalisms that are not comparable with LCFRS and equivalent
formalisms, i.e., that generate languages that cannot be generated by LCFRS
and vice versa (Kallmeyer and Satta, 2009).

There are different ways to show the constant growth property for a spe-
cific formalism. Oftentimes, constant growth follows from a pumping lemma.
If there is no pumping lemma, then one might show the constant growth
property of a language class by showing the semilinearity (Parikh, 1966) of
the languages. Constant growth follows from semilinearity.

Let us introduce semilinearity.
First, we define for 〈a1, . . . , an〉, 〈b1, . . . , bn〉 ∈ INn and m ∈ IN that

〈a1, . . . , an〉 + 〈b1, . . . , bn〉 := 〈a1 + b1, . . . , an + bn〉 and m〈a1, . . . , an〉 :=
〈ma1, . . . ,man〉.

A Parikh mapping is a function counting for each letter of an alphabet the
occurrences of this letter in a word w:

Definition 2.9 (Parikh mapping).
Let X = {a1, . . . , an} be an alphabet with some (arbitrary) fixed order of

the elements. The Parikh mapping p : X∗ → INn (with respect to this order)
is defined as follows:

• For all w ∈ X∗ : p(w) := 〈|w|a1 , . . . , |w|an
〉 where |w|ai

is the number of
occurrences of ai in w.

• For all languages L ⊆ X∗ : p(L) := {p(w) |w ∈ L} is the Parikh image of
L.

Two words are letter equivalent if they contain equal number of occurrences
of each terminal symbol, and two languages are letter equivalent if every string
in one language is letter equivalent to a string in the other language and vice-
versa.

Definition 2.10 (Letter equivalent).
Let X be an alphabet.

1. Two words w1, w2 ∈ X∗ are letter equivalent if there is a Parikh mapping
p such that p(w1) = p(w2).

2. Two languages L1, L2 ⊆ X∗ are letter equivalent if there is a Parikh
mapping p such that p(L1) = p(L2).

2.1 Context-Free Grammars and Natural Languages 25

Definition 2.11 (Semilinear).

1. Let x0, . . . , xm with m ≥ 0 be in INn for some n ≥ 0.
The set {x0 +n1x1 + · · ·+nmxm |ni ∈ IN for 1 ≤ i ≤ m} is a linear subset
of INn.

2. The union of finitely many linear subsets of INn is a semilinear subset of
INn.

3. A language L ⊆ X∗ is semilinear iff there is a Parikh mapping p such that
p(L) is a semilinear subset of INn for some n ≥ 0.

Lemma 2.12. The constant growth property holds for semilinear languages.

Proof. Assume L ⊆ X∗ is semilinear and p(L) is a semilinear Parikh image
of L where p(L) is the union of the linear sets M1, . . . ,Ml. Then the constant
growth property holds for L with

c0 := max{Σn
i=1yi | there are x1, . . . , xm such that

{〈y1, . . . , yn〉 + n1x1 + · · · + nmxm |ni ∈ IN}
is one of the sets M1, . . . ,Ml} and

C := {Σn
i=1yi | there are x1, . . . , xm such that

{x1 + n1〈y1, . . . , yn〉 + · · · + nmxm |ni ∈ IN}
is one of the sets M1, . . . ,Ml}.

��

Parikh has shown that a language is semilinear if and only if it is letter
equivalent to a regular language. The proof is given in (Kracht, 2003, p. 151).
As a consequence, we obtain that context-free languages are semilinear.

Proposition 2.13 (Parikh Theorem).
Each context-free language is semilinear (Parikh, 1966).

Furthermore, each language that is letter equivalent to a semilinear lan-
guage is semilinear as well since the Parikh images of the two languages are
equal. Therefore, in order to show the semilinearity (and constant growth) of a
language, it is sufficient to show letter equivalence to a context-free language.

As far as we know, Joshi’s hypothesis that natural languages are mildly
context-sensitive has been questioned only by two natural language phe-
nomena that have been claimed to be non-semilinear, namely case stacking
in Old Georgian (Michaelis and Kracht, 1997) and Chinese number names
(Radzinski, 1991). The analyses of Old Georgian, however, are based on very
few data since there are no speakers of Old Georgian today. Therefore, it is
hard to tell whether there is really an infinite progression of case stacking
possible. Concerning Chinese number names, it is not totally clear to what
extent this constitutes a syntactic phenomenon. Therefore, even with these
counterexamples, there is still good reason to assume that natural languages
are mildly context-sensitive.

26 2 Grammar Formalisms for Natural Languages

NP

John

S

NP VP

V

laughs

VP

ADV VP∗

always

derived tree:
S

NP VP

John ADV VP

always V

laughs

Fig. 2.3. TAG derivation for John always laughs

2.2 Grammar Formalisms Beyond CFG

We have seen that CFGs are not powerful enough to deal with all natural
language phenomena. This is one of the reasons why we are interested in
investigating extensions of CFG. We now introduce the different formalisms
that will be treated in this book. The formalisms presented in this section will
be defined in detail in the corresponding chapters on parsing. This section
aims only at providing an intuition of how these formalisms extend CFG, how
they model natural language phenomena and how they are related to each
other.

2.2.1 Tree Adjoining Grammars

The Formalism

Starting from Tree Substitution Grammars, if we allow also for replacing inter-
nal nodes with new trees, we obtain Tree Adjoining Grammars. Tree Adjoining
Grammar (TAG, Joshi, Levy, and Takahashi (1975; Joshi and Schabes (1997))
is a tree-rewriting formalism. A TAG consists of a finite set of syntactic trees
(so-called elementary trees). Starting from the elementary trees, larger trees
are derived by substitution (replacing a leaf with a new tree) and adjunction
(replacing an internal node with a new tree). In case of an adjunction, the tree
being adjoined has exactly one leaf that is marked as the foot node (marked
with an asterisk). Such a tree is called an auxiliary tree. When adjoining it
to a node n, in the resulting tree, the subtree with root n from the old tree
is attached to the foot node of the auxiliary tree. Non-auxiliary elementary
trees are called initial trees. A derivation starts with an initial tree. In a final
derived tree, all leaves must have terminal labels.

For a sample derivation see Figure 2.3 where the tree for John is substituted
for the subject NP slot while the auxiliary tree for the modifier always adjoins
to the VP node in the tree of laughs.

The internal nodes in I ∪A can be marked as OA (obligatory adjunction)
and NA (null adjunction, i.e., no adjunction allowed). Furthermore, for nodes

2.2 Grammar Formalisms Beyond CFG 27

that are not NA, one can specify the set of auxiliary trees that can be adjoined
at that node.

As a second example, Figure 2.4 shows a TAG for the copy language and
Figure 2.5 shows a sample derivation using the trees from this grammar. (NA
stands for “null adjunction”, i.e., no adjunction allowed at that node. OA
stands for “obligatory adjunction”, i.e., adjunction mandatory at that node.)
In this TAG, the NA constraints are crucial since they make sure that the
adjunction always targets the middle S node. Without adjunction constraints,
it is not possible for TAG to generate the copy language.

α
S

ε

βa SNA

a S

S∗
NA a

βb SNA

b S

S∗
NA b

Fig. 2.4. TAG for the copy language

S

ε

SNA

a S

S∗
NA a

�

SNA

a S

S∗
NA a

ε

SNA

a S

S∗
NA a

ε

SNA

b S

S∗
NA b

�

SNA

a SNA

b S

S∗
NA b

S∗
NA a

ε

Fig. 2.5. A sample derivation of a word in the copy language

TAG derivations are represented by derivation trees (unordered trees) that
record the history of how the elementary trees are put together. A derived tree
is the result of carrying out the substitutions and adjunctions, i.e., the deriva-
tion tree describes uniquely the derived tree. Each edge in a derivation tree
stands for an adjunction or a substitution. The edges are labeled with Gorn
addresses. E.g., the derivation tree in Figure 2.6 indicates that the elementary
tree for John is substituted for the node at address 1 and always is adjoined
at node address 2 (the fact that the former is an adjunction and the latter is

28 2 Grammar Formalisms for Natural Languages

derivation tree:
laugh

1 2

john always

Fig. 2.6. TAG derivation tree for John always laughs

a substitution can be inferred from the fact that the node at address 1 is a
leaf that is not a foot node while the node at address 2 is an internal node).

The fact that TAGs are able to generate the copy language indicates that
they are powerful enough to describe cross-serial dependencies. An actual
analysis has been proposed in (Kroch and Santorini, 1991); it is shown in
Figures 2.7 and 2.8.

SNA

SOA Vi

NP VP zwemmen

de kinderen Vi

ε

SNA

SOA Vi

NP VP leren

Marie S∗
NA Vi

ε

SNA

SOA Vi

NP VP helpen

Piet S∗
NA Vi

ε

SNA

NP VP

Jan S∗
NA V

zag

Fig. 2.7. TAG for cross-serial dependencies

Lexicalization

As we have seen in Section 2.1.2, in order to lexicalize CFGs one has to extract
recursive sub-trees (with root and some leaf having the same non-terminal
symbol) and put them into extra structures. This leads to a set of trees with
an adjunction operation, i.e., to a TAG.

As an example, consider again the CFG in Figure 2.9 that cannot be
lexicalized using only substitution. With adjunction, a lexicalization of this
CFG is possible. The corresponding TAG is given in Figure 2.9.

In general it can be shown that CFGs can be lexicalized by TAGs and,
furthermore, TAGs are closed under strong lexicalization. I.e., for each gram-
mar that is a CFG or a TAG, there is a strongly equivalent lexicalized TAG
(LTAG) (Schabes, 1990; Joshi and Schabes, 1997).

2.2 Grammar Formalisms Beyond CFG 29

SNA

SOA V1

NP VP zwemmen

de kinderen V1

ε

SNA

SOA V2

NP VP leren

Marie S∗
NA V2

ε

SNA

SNA V1

SOA V2 zwemmen

NP VP leren

Marie S∗
NA V2

NP VP ε

de kinderen V1

ε

SNA

SOA V3

NP VP helpen

Piet S∗
NA V3

ε

SNA

SNA V1

SNA V2 zwemmen

SOA V3 leren

NP VP helpen

Piet S∗
NA V3

ε
Marie de kinderen

SNA

NP VP

Jan S∗
NA V

zag

Fig. 2.8. Derivation of (5) using adjunction

CFG:
S → SS,
S → a

Strongly equivalent LTAG:
S

a

S

S∗ S

a

Fig. 2.9. CFG and strongly equivalent lexicalized TAG

30 2 Grammar Formalisms for Natural Languages

Extended domain of locality and factoring of recursion

Because of the move to larger trees (compared to CFGs) and the addition of
adjunction, TAGs have some properties that make them particularly interest-
ing for natural language processing.

TAG elementary trees allow to express locally dependencies such as filler-
gap dependencies, even if they are ‘unbound’. This is why TAG is said to
have an extended domain of locality. Two properties are crucial for obtaining
this extended domain of locality: TAG elementary trees can be arbitrarily
large (but have to be finite), and recursion can be factored away because
of adjunction. Consequently, even so-called unbounded dependencies can be
captured locally, i.e., inside single elementary trees (Kroch, 1987; Frank, 1992;
Frank, 2002). Because of the constraints that hold for adjunction, in many
cases one gets locality constraints for unbounded dependencies for free.

(9) a. whomi did John tell Sam that Bill likes ti
b. whomi did John tell Sam that Mary said that Bill likes ti

As an example that illustrates this property of TAG, consider the deriva-
tion of (9a.) in Figure 2.10 with the recursive part being put in a separate
tree that gets adjoined.

S

WHi SOA

whom COMP S

that NP VP

Bill V NP

likes εi

S

INFL NP VP

did John V NP S∗

tell Sam

derived tree:

S

WHi S

whom INFL NP VP

did John V NP S

tell Sam
that Bill likes εi

Fig. 2.10. Derivation for an unbounded dependency

When dealing with natural languages, one always uses Lexicalized Tree Ad-
joining Grammars (LTAGs). The linguistic theory implemented within LTAG

2.2 Grammar Formalisms Beyond CFG 31

is roughly as follows. The grammar contains extended projections of each lex-
ical item (the elementary trees anchored by this lexical item). These extended
projections satisfy certain linguistic principles that are not part of the TAG
formalism itself. The extended projections are minimal in the sense that they
contain slots only for the arguments of their lexical head. Recursion is fac-
tored away. Consequently, the set of elementary structures in the grammar
is finite. Every constraint concerning larger structures (constraints on “un-
bounded dependencies”) does not need to be stipulated but, instead, follows
from the possibilities of adjunction in the extended projections.

We will give a more detailed discussion of LTAG for natural languages in
Chapter 4.

2.2.2 Linear Indexed Grammars

Indexed grammars (IGs) were introduced by (Aho, 1968). An indexed gram-
mar looks like a CFG except that the non-terminals are equipped with stacks
of indices, i.e., besides the non-terminals N and the terminals T , we have an
alphabet I of indices. In a derived sentential form x, non-terminals can be
equipped with stacks of indices, i.e., x ∈ (NI∗ ∪ T)∗.

The productions in an IG have the form (i) A→ α or (ii) A→ Bf or (iii)
Af → α with A,B ∈ N, f ∈ I, α ∈ (N ∪ T)∗. The first kind of production
works like context-free productions while copying the stack of A to all non-
terminals in α. The second kind of production adds a symbol to the stack of
A while replacing A with B. The third kind of production deletes a symbol f
from the stack of A and then works like the first kind of production.

As an example consider the IG for {a2n |n ≥ 0} with N := {S,A,B}, I :=
{f, g}, T := {a} and productions P := {S → a, S → Ag,A → Af,A →
B,Bf → BB,Bg → aa}. This grammar works as follows: For a word a2n

with n ≥ 1, we first apply the production S → Ag and then n times the
production A→ Af . This leads to a non-terminal A with a stack of length n.
Then the A is turned into a B, and, while reducing the stack, the B is doubled
(with the production Bf → BB). This happens n − 1 times. Then we reach
the last stack symbol and, while reducing this as well, we finally generate two
terminals aa. Crucially, when doubling the B with Bf → BB, the remaining
stack is passed to both Bs in the right-hand side of the production. This
guarantees that the two parts have the same number of as (since they have
the same stacks). Figure 2.11 shows a sample derivation with this grammar.

An indexed grammar is called a linear indexed grammar (LIG) (Gazdar,
1988; Vijay- Shanker, 1987) if in a production A→ α or Af → α the stack of
A is copied only to one non-terminal in α.

We write the productions in a LIG as follows:

• A[. . .] → X1 . . . Xi[. . .] . . . Xn with Xj ∈ N ∪ T for j = i, Xi ∈ N .
• A[. . .] → B[f . . .]
• A[f . . .] → X1 . . . Xi[. . .] . . . Xn with Xj ∈ N ∪ T for j = i, Xi ∈ N .

32 2 Grammar Formalisms for Natural Languages

S ⇒ Ag production S → Ag
⇒ Afg production A→ Af
∗⇒ Afffg
⇒ Bfffg production A→ B
⇒ BffgBffg production Bf → BB
∗⇒ BfgBfgBfgBfg
∗⇒ BgBgBgBgBgBgBgBg
∗⇒ aaaaaaaaaaaaaaaa production Bg → aa

Fig. 2.11. IG derivation for a24
= a16

As an example consider the LIG for the copy language from Figure 2.12.

S0 → S[#]
S[..]→ aSa[..] Sa[..]→ S[a..]
S[..]→ bSb[..] Sb[..]→ S[b..]
S → T
T [a..]→ T [..]a T [b..]→ T [..]b
T [#]→ ε

Fig. 2.12. LIG for the copy language

It has been shown that LIG and TAG are weakly equivalent (Vijay-
Shanker, 1987; Vijay-Shanker and Weir, 1994).

When constructing a LIG that is equivalent to a given TAG, whenever an
adjunction is performed, while traversing the adjoined tree, the stack can be
used to keep track of the tree one has to go back to once the adjunction is
finished. It needs to be passed along the path from the root to the foot node.
Figure 2.13 shows the LIG one obtains when constructing an equivalent LIG
for the TAG for the copy language given in Figure 2.4 along these lines.

〈S, α〉 → ε
〈S, α〉 → 〈S1, βa〉[〈α, 0〉] 〈S, α〉 → 〈S1, βb〉[〈α, 0〉]
〈S1, βa〉[. . .]→ a〈S2, βa〉[. . .] 〈S1, βb〉[. . .]→ b〈S2, βb〉[. . .]
〈S2, βa〉[. . .]→ 〈S3, βa〉[. . .]a 〈S2, βb〉[. . .]→ 〈S3, βb〉[. . .]b
〈S2, βa〉[. . .]→ 〈S1, βa〉[〈βa, 2〉 . . .] 〈S2, βa〉[. . .]→ 〈S1, βb〉[〈βa, 2〉 . . .]
〈S2, βb〉[. . .]→ 〈S1, βa〉[〈βb, 2〉 . . .] 〈S2, βb〉[. . .]→ 〈S1, βb〉[〈βb, 2〉 . . .]
〈S3, βa〉[〈α, 0〉 . . .]→ 〈S, α〉[. . .] 〈S3, βb〉[〈α, 0〉 . . .]→ 〈S, α〉[. . .]
〈S3, βa〉[〈βa, 2〉 . . .]→ 〈S2, βa〉[. . .] 〈S3, βb〉[〈βa, 2〉 . . .]→ 〈S2, βa〉[. . .]
〈S3, βa〉[〈βb, 2〉 . . .]→ 〈S2, βb〉[. . .] 〈S3, βb〉[〈βb, 2〉 . . .]→ 〈S2, βb〉[. . .]

Fig. 2.13. Equivalent LIG for the TAG from Figure 2.4

2.2 Grammar Formalisms Beyond CFG 33

Productions of the Generalized CFG (start symbol is S):
S → f1(A, B, C) A→ f2(A) B → f3(B) C → f4(C)

A→ f5() B → f5() C → f5()

Strings φ(t) yielded by the terms t:
φ(f5()) := 〈ε, ε〉,
φ(f2(t)) := 〈aw1, aw2〉 where 〈w1, w2〉 = φ(t),
φ(f3(t)) := 〈bw1, bw2〉 where 〈w1, w2〉 = φ(t),
φ(f4(t)) := 〈cw1, cw2〉 where 〈w1, w2〉 = φ(t),
φ(f1(t1, t2, t3)) := 〈w1u1v1w2u2v2〉

where 〈w1, w2〉 = φ(t1), 〈u1, u2〉 = φ(t2), 〈v1, v2〉 = φ(t3)

Fig. 2.14. An LCFRS for {anbmckanbmck |n, m, k ≥ 0}

LIGs themselves are not used for natural languages. Their interest lies
in their relations to other formalisms, in particular in their equivalence to
TAGs. Because of this equivalence, LIGs have been proposed for TAG parsing
(Vijay-Shanker and Weir, 1993; Boullier, 1996).

2.2.3 Linear Context-Free Rewriting Systems

Linear Context-Free Rewriting Systems (LCFRSs) are introduced in (Vijay-Shanker,
Weir, and Joshi, 1987; Weir, 1988). They are grammars that have an under-
lying context-free structure. More concretely, an LCFRS consists of

1. a generalized context-free grammar (GCFG) that generates a set of terms,
2. a yield function that specifies the strings yielded by these structures.

LCFRS is more powerful than TAG and LIG. More concretely, every TAG
can be written as an LCFRS.

In an LCFRS, the yield φ(t) of a term t is a sequence of strings. A unique
equation is associated with each production A → f(A1, . . . , An) in C. It de-
scribes how to compute the yield of a term f(t1, . . . , tn) from the yields of
t1, . . . , tn and a bounded collection of new terminals. When computing the
yield of a left-hand side from the yields of a right-hand side, we must neither
copy nor erase.

As an example consider the LCFRS in Figure 2.14.
The languages generated by these grammars are mildly context-sensitive

and they properly contain the languages generated by TAG. Figure 2.15 shows
an example of an equivalent LCFRS for a given TAG.

2.2.4 Multicomponent Tree Adjoining Grammars

Multicomponent Tree Adjoining Grammars (MCTAGs) were first introduced
in (Joshi, Levy, and Takahashi, 1975) as simultaneous TAGs, later redefined
as multicomponent TAGs (MCTAGs) in (Weir, 1988; Joshi, 1985). The under-
lying linguistic motivation is the idea to separate the contribution of a lexical

34 2 Grammar Formalisms for Natural Languages

TAG for L4 = {anbncndn |n ≥ 0}: α:
S

ε
β:

SNA

a S d

b S∗
NA c

Productions of the corresponding Generalized CFG (start symbol is α):
α→ fα(), β → fβ() (no adjunctions),
α→ fα:ε(β), β → fβ:1(β) (adjunctions of β).

Strings φ(t) yielded by the terms t:
φ(fα()) := ε,
φ(fβ()) := 〈ab, cd〉,
φ(fα:ε(t)) := 〈w1w2〉 where 〈w1, w2〉 = φ(t),
φ(fβ:1(t)) := 〈aw1b, cw2d〉 where 〈w1, w2〉 = φ(t).

Fig. 2.15. An LCFRS for a given TAG

item into several components. Instead of single trees, these grammars contain
(finite) sets of trees. In each derivation step, a new set is picked and all trees
from the set are added simultaneously, i.e., they are attached (by substitution
or adjunction) to different nodes in the already derived tree.

As in TAG, a derivation starts from an initial tree and in the end, in the
final derived tree, all leaves must have terminal labels (or the empty word)
and there must not be any OA constraints left.

A sample MCTAG with a derivation is shown in Figure 2.16.

α A

B

C

ε

{
βA A

a A∗
NA f

βB B

b B∗
NA e

βC C

c C∗
NA d

}

Derivation for aabbccddeeff :

A

B

C

ε

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A

a A∗
NA f

B

b B∗
NA e

C

c C∗
NA d

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A

a A∗
NA f

B

b B∗
NA e

C

c C∗
NA d

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

Fig. 2.16. MCTAG for L6 = {anbncndnenfn |n ≥ 0} with sample derivation

2.2 Grammar Formalisms Beyond CFG 35

MCTAGs are linguistically interesting because they extend the domain of
locality since the contributions of single lexical elements are separated into dif-
ferent trees. As an example, consider extractions out of complex NPs (Kroch,
1989) as in (10). A possible MCTAG analysis is shown in Figure 2.17.

(10) which paintingi did you see a picture of ti

S

aux S

did NP VP

you V NP

see ε

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

S

NPi S∗

which painting

NP

Det N

N PP

picture P NP∗
i

of

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

Fig. 2.17. MCTAG elementary trees for extraction from NP

An MCTAG is called tree-local iff in each derivation step, the nodes the
new trees attach to belong to the same elementary tree. It is called set-local
iff in each derivation step, the nodes the new trees attach to belong to the
same elementary tree set. Otherwise it is called non-local. The derivation in
Figure 2.16 for example is a set-local derivation. Usually, the term “MCTAG”
without specification of the locality means “set-local MCTAG”.

Concerning the respective generative capacity, it has been shown that tree-
local MCTAGs are strongly equivalent to TAGs while set-local MCTAGs are
weakly equivalent to LCFRSs. As an example, Figure 2.18 shows the LCFRS
that is equivalent to the set-local MCTAG from Figure 2.16.

GCFG productions:
α→ fα(), α→ gα(βA,B,C),
βA,B,C → fA,B,C(),
βA,B,C → gA,B,C(βA,B,C).

Yield function φ:
φ(fα()) := 〈ε〉,
φ(fA,B,C()) := 〈a, b, c, d, e, f〉,
φ(gα(t)) := 〈w1w2w3w4w5w6〉 where 〈w1, w2, w3, w4, w5, w6〉 = φ(t),
φ(gA,B,C(t)) := 〈w1a, w2b, w3c, dw4, ew5, fw6〉

where 〈w1, w2, w3, w4, w5, w6〉 = φ(t)

Fig. 2.18. LCFRS for L6 = {anbncndnenfn |n ≥ 0}

36 2 Grammar Formalisms for Natural Languages

2.2.5 Multiple Context-Free Grammars

Multiple Context-Free Grammars (MCFGs), (Seki et al., 1991), are very sim-
ilar to LCFRSs. The non-terminals in an MCFG, in contrast to CFG, can
yield sequences of terminals, i.e., their span can be discontinuous in the in-
put. Each non-terminal has a fixed dimension that determines the number of
components in its span. In other words, from a non-terminal of dimension k,
k-tuples of terminal strings are derived. The dimension of the start symbol S
is 1.

An MCFG, similar to the GCFG of an LCFRS, contains productions of the
form A0 → f [A1, . . . , Ak] where f is a function from a given set of functions
F . The idea is that f describes how to compute the yield of A0 (a dim(A0)-
tuple of terminal strings) from the yields of A1, . . . , Ak. f must be linear in
the sense that each of its arguments is used at most once to compute the new
string tuple. Note that the functions f are not required not to delete parts of
their input as in the case of LCFRS. In other words, it might be the case that
some of the arguments in the right-hand side of a production are not used to
compute the yield of the left-hand side. However, even though deletion in the
yield computation is allowed in MCFG and not in LCFRS, the two formalisms
are weakly equivalent (Seki et al., 1991).

As an example consider the MCFG in Figure 2.19 that generates the lan-
guage {anbncndn |n ≥ 1}.

Productions:
S → f [A], A→ g[A], A→ h[].

Yield functions:
h[] = (ab, cd), g[(x1, x2)] = (ax1b, cx2d), f [(x1, x2)] = (x1x2)

Fig. 2.19. MCFG for {anbncndn |n ≥ 1}

MCFGs have been investigated mainly in the context of biological appli-
cations such as the modeling of RNA pseudoknotted structures (Kato, Seki,
and Kasami, 2006). However, because of their equivalence to LCFRSs and
set-local MCTAGs, they are useful for natural language processing as well.

2.2.6 Range Concatenation Grammars

If we incorporate the definitions of the yield functions in MCFG and LCFRS
into the productions themselves, and, in addition, if we relax the conditions
on the yield functions, we obtain Range Concatenation Grammars (RCGs)
(Boullier, 2000b).

The idea of RCGs is roughly that the productions of RCGs (called clauses)
rewrite predicates ranging over parts of the input by other predicates. As an
example consider the clause S(aXb) → S(X). This clause signifies that the

2.2 Grammar Formalisms Beyond CFG 37

predicate S (a unary predicate) holds for a part of the input if (i) this part
starts with an a and ends with a b and (ii) S also holds for the part between
the a and the b.

The RCG with clauses S(aXb) → S(X), S(c) → ε for example generates
the language {ancbn |n ≥ 0}.

An RCG consists of an alphabet N of non-terminals (called predicates)
of a fixed arity (this corresponds to the dimension from MCFG) where the
special predicate S has arity 1. Furthermore, it has a terminal alphabet T and
an alphabet of variables V . The clauses have the form

A(α1, . . . , αdim(A)) → ε

or

A(α1, . . . , αdim(A)) → A1(α
(1)
1 , . . . , α

(1)
dim(A1)

) . . . A(n)
n (α1, . . . , α

(n)
dim(An))

where the predicates are from N and their arguments are words over (T ∪V).
For a given clause, an instantiation with respect to a string w = t1 . . . tn

maps all variables and all occurrences of terminals in the clause to ranges 〈i, j〉
with 0 ≤ i ≤ j ≤ |w|. A range 〈i, j〉 denotes the part of w between positions i
and j. An instantiation must be such that all occurrences of a terminal t are
mapped to a range whose yield is a t, and adjacent variables/occurrences of
terminals in one of the arguments are mapped on adjacent ranges, i.e., ranges
〈i, j〉, 〈k, l〉 with j = k.

A derivation step consists of replacing the left-hand side of an instantiated
clause with its right-hand side. The language of an RCG G is the set of strings
w that satisfy the start predicate S, in other words, the set of w such that ε
can be derived from S(〈0, |w|〉).

RCGs are called simple if (i) the arguments in the right-hand sides of the
clauses are single variables, (ii) no variable appears more than once in the
left-hand side of a clause or more than once in the right-hand side of a clause,
and (iii) each variable occurring in the left-hand side of a clause occurs also
in its right-hand side and vice versa.

Simple RCGs are weakly equivalent to LCFRSs and MCFGs. RCGs in
general however are more powerful; they generate exactly the class PTIME of
polynomially parsable languages (Bertsch and Nederhof, 2001). They properly
include the set of languages generated by LCFRS and even the maximal set
of mildly context-sensitive languages. An example of a language that can be
generated by a RCG but that is not semilinear is the language from Figure
2.20.

RCGs are equivalent to a restricted form of Literal Movement Gram-
mars (LMGs) (Groenink, 1996), so-called simple LMGs. These grammars have
rewriting rules that are like the ones in RCG with the additional constraints
that (i) the arguments in the right-hand sides of the clauses are single vari-
ables, (ii) no variable appears more than once in the left-hand side of a clause
and (iii) each variable occurring in the right-hand side of a clause occurs also

38 2 Grammar Formalisms for Natural Languages

RCG for the language {a2n | n ≥ 0}:
S(XY)→ S(X)eq(X, Y)
S(a)→ ε
eq(aX, aY)→ eq(X, Y)
eq(a, a)→ ε

A sample derivation (reduction to ε) for w = aaaa:
S(X Y) → S(X) eq(X, Y)

〈0, 2〉 〈2, 4〉 〈0, 2〉 〈0, 2〉 〈2, 4〉
aa aa aa aa aa

With this instantiation, S(〈0, 4〉)⇒ S(〈0, 2〉)eq(〈0, 2〉, 〈2, 4〉).
S(X Y) → S(X) eq(X, Y)

〈0, 1〉 〈1, 2〉 〈0, 1〉 〈0, 1〉 〈1, 2〉
a a a a a

S(a) → ε

〈0, 1〉
a

eq(a, a) → ε

〈0, 1〉 〈1, 2〉
a a

leads to S(〈0, 2〉)⇒ S(〈0, 1〉)eq(〈0, 1〉, 〈1, 2〉) ∗⇒ ε
eq(a X a Y) → eq(X, Y)

〈0, 1〉 〈1, 2〉 〈2, 3〉 〈3, 4〉 〈1, 2〉 〈3, 4〉
a a a a a a

eq(a, a) → ε

〈1, 2〉 〈3, 4〉
a a

leads to eq(〈0, 2〉, 〈2, 4〉)⇒ eq(〈1, 2〉, 〈3, 4〉)⇒ ε

Fig. 2.20. RCG for {a2n | n ≥ 0}

in its left-hand side. In contrast to RCG, an instantiation in a LMG maps
variables to strings of terminals. Consequently, the terminals in a clause need
not have corresponding terminals in the input and different occurrences of the
same variable can be mapped to different occurrences of the same string. This
is why with this restricted form of clauses one obtains a grammar formalism
with the same generative capacity as RCGs.

2.3 Summary

In this chapter, we have given an overview of the different grammar formalisms
that we will deal with in the course of this book.

The starting point was the observation that CFGs do not have enough
expressive power to deal with natural languages. A formal proof of this fact has
been given by Shieber (1985), showing that Swiss German is not context-free
because of its cross-serial dependencies. Shieber was able to make an argument
even on the basis of the weak generative capacity since Swiss German has case
marking and therefore dependencies are visible even in the string language.

Another property that has been argued as being desirable for an adequate
grammar formalism for natural languages is lexicalization. It has been shown
that in general, CFGs cannot be strongly lexicalized.

2.3 Summary 39

From these shortcomings arises the need for more powerful formalisms.
This has led to a rich variety of grammar formalisms that can be seen as
more and more extending the properties of context-free grammars. In TAG,
we allow not only replacing leaves with new trees as in CFG but we also allow
internal nodes to be replaced with new trees. In LCFRS, we allow the yields
of non-terminals to consist not only of single strings but of tuples of non-
adjacent strings. In RCG, we even allow strings to be used several times in
different contexts. All these grammar frameworks, and their respective equiv-
alent formalisms, constitute a hierarchy of string languages as shown in Figure
2.21.

A notion that has proved an important concept in the characterization of
grammar formalisms with respect to their relevance for natural languages is
the notion of mild context-sensitivity, introduced by Joshi (1985). A class of
languages is mildly context-sensitive if it contains all context-free languages,
if it can describe cross-serial dependencies, if it contains only polynomial lan-
guages and if its languages are of constant growth. The language classes of
TAG and of LCFRS in our hierarchy are mildly context-sensitive.

�

�

�

�

�

�

�

�

�

�

�

�

�
�
�
	CFG

TAG, LIG
tree-local MCTAG

LCFRS, MCFG, simple RCG
set-local MCTAG

RCG, simple LMG
(= PTIME)

mildly
context-sensitive

Fig. 2.21. The language hierarchy of the different grammar formalisms

Problems

2.1. Consider the language L2 = {anbn |n ≥ 0}.
1. Give a CFG for L2 with nested dependencies, i.e., such that for each word
a1 . . . anb1 . . . bn (the subscripts mark the occurrences of the as and bs
respectively) ai and bn+1−i are added in the same derivation step for all
1 ≤ i ≤ n.

40 2 Grammar Formalisms for Natural Languages

2. Show that for L2 there is no CFG displaying cross-serial dependencies,
i.e., no CFG such that for each word a1 . . . anb1 . . . bn, ai and bi are added
in the same derivation step for all 1 ≤ i ≤ n and, furthermore, different
as are added in different derivation steps.

2.2. Similar to the argument of Shieber (1985) for Swiss German, one can
apply first a homomorphism f , then intersect the result with some regular
language, and then apply another homomorphism g in order to reduce the
language of Swiss German to the copy language {ww |w ∈ {a, b}∗}. Find the
corresponding homomorphisms and the regular language.

2.3. Consider the following CFG:
S → NP VP NP → John
VP → ADV VP ADV → always
VP → V V → laughs
Find a TSG that strongly lexicalizes this grammar.

Why is this lexicalization not satisfying from a linguistic point of view?

2.4. 1. Show that the copy language {ww |w ∈ T ∗} for some alphabet T is
semilinear using the Parikh Theorem.

2. Show that {a2n |n ≥ 0} is not semilinear.

