
Chapter 2

Manifolds

Intuitively, a manifold is a generalization of curves and surfaces to higher dimen-

sions. It is locally Euclidean in that every point has a neighborhood, called a chart,

homeomorphic to an open subset of Rn. The coordinates on a chart allow one to

carry out computations as though in a Euclidean space, so that many concepts from

Rn, such as differentiability, point-derivations, tangent spaces, and differential forms,

carry over to a manifold.

Bernhard Riemann

(1826–1866)

Like most fundamental mathematical concepts,

the idea of a manifold did not originate with a sin-

gle person, but is rather the distillation of years of

collective activity. In his masterpiece Disquisitiones

generales circa superficies curvas (“General Inves-

tigations of Curved Surfaces”) published in 1827,

Carl Friedrich Gauss freely used local coordinates

on a surface, and so he already had the idea of

charts. Moreover, he appeared to be the first to con-

sider a surface as an abstract space existing in its

own right, independent of a particular embedding in

a Euclidean space. Bernhard Riemann’s inaugural

lecture Über die Hypothesen, welche der Geometrie

zu Grunde liegen (“On the hypotheses that under-

lie geometry”) in Göttingen in 1854 laid the foun-

dations of higher-dimensional differential geometry.

Indeed, the word “manifold” is a direct translation of

the German word “Mannigfaltigkeit,” which Riemann used to describe the objects of

his inquiry. This was followed by the work of Henri Poincaré in the late nineteenth

century on homology, in which locally Euclidean spaces figured prominently. The

late nineteenth and early twentieth centuries were also a period of feverish develop-

ment in point-set topology. It was not until 1931 that one finds the modern definition

of a manifold based on point-set topology and a group of transition functions [37].

© Springer Science+Business Media, LLC 2011
47L.W. Tu, An Introduction to Manifolds, Universitext, DOI 10.1007/978-1-4419-7400-6_2,



48 §5 Manifolds

In this chapter we give the basic definitions and properties of a smooth manifold

and of smooth maps between manifolds. Initially, the only way we have to verify

that a space is a manifold is to exhibit a collection of C∞ compatible charts covering

the space. In Section 7 we describe a set of sufficient conditions under which a

quotient topological space becomes a manifold, giving us a second way to construct

manifolds.

§5 Manifolds

While there are many kinds of manifolds—for example, topological manifolds, Ck-

manifolds, analytic manifolds, and complex manifolds—in this book we are con-

cerned mainly with smooth manifolds. Starting with topological manifolds, which

are Hausdorff, second countable, locally Euclidean spaces, we introduce the concept

of a maximal C∞ atlas, which makes a topological manifold into a smooth manifold.

This is illustrated with a few simple examples.

5.1 Topological Manifolds

We first recall a few definitions from point-set topology. For more details, see Ap-

pendix A. A topological space is second countable if it has a countable basis. A

neighborhood of a point p in a topological space M is any open set containing p. An

open cover of M is a collection {Uα}α∈A of open sets in M whose union
⋃

α∈A Uα

is M.

Definition 5.1. A topological space M is locally Euclidean of dimension n if every

point p in M has a neighborhood U such that there is a homeomorphism φ from U

onto an open subset of Rn. We call the pair (U,φ : U →Rn) a chart, U a coordinate

neighborhood or a coordinate open set, and φ a coordinate map or a coordinate

system on U . We say that a chart (U,φ) is centered at p ∈U if φ(p) = 0.

Definition 5.2. A topological manifold is a Hausdorff, second countable, locally

Euclidean space. It is said to be of dimension n if it is locally Euclidean of dimen-

sion n.

For the dimension of a topological manifold to be well defined, we need to know

that for n 6= m an open subset of Rn is not homeomorphic to an open subset of Rm.

This fact, called invariance of dimension, is indeed true, but is not easy to prove

directly. We will not pursue this point, since we are mainly interested in smooth

manifolds, for which the analogous result is easy to prove (Corollary 8.7). Of course,

if a topological manifold has several connected components, it is possible for each

component to have a different dimension.
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Example. The Euclidean space Rn is covered by a single chart (Rn,1Rn), where

1Rn : Rn→Rn is the identity map. It is the prime example of a topological manifold.

Every open subset of Rn is also a topological manifold, with chart (U,1U).

Recall that the Hausdorff condition and second countability are “hereditary prop-

erties”; that is, they are inherited by subspaces: a subspace of a Hausdorff space is

Hausdorff (Proposition A.19) and a subspace of a second-countable space is second

countable (Proposition A.14). So any subspace of Rn is automatically Hausdorff and

second countable.

Example 5.3 (A cusp). The graph of y = x2/3 in R2 is a topological manifold (Fig-

ure 5.1(a)). By virtue of being a subspace of R2, it is Hausdorff and second count-

able. It is locally Euclidean, because it is homeomorphic to R via (x,x2/3) 7→ x.

(a) Cusp (b) Cross

p

Fig. 5.1.

Example 5.4 (A cross). Show that the cross in R2 in Figure 5.1 with the subspace

topology is not locally Euclidean at the intersection p, and so cannot be a topological

manifold.

Solution. Suppose the cross is locally Euclidean of dimension n at the point p. Then

p has a neighborhood U homeomorphic to an open ball B := B(0,ε) ⊂ Rn with

p mapping to 0. The homeomorphism U → B restricts to a homeomorphism U −
{p} → B−{0}. Now B−{0} is either connected if n ≥ 2 or has two connected

components if n = 1. Since U −{p} has four connected components, there can be

no homeomorphism from U −{p} to B−{0}. This contradiction proves that the

cross is not locally Euclidean at p. ⊓⊔

5.2 Compatible Charts

Suppose (U,φ : U → Rn) and (V,ψ : V → Rn) are two charts of a topological man-

ifold. Since U ∩V is open in U and φ : U → Rn is a homeomorphism onto an open

subset of Rn, the image φ(U ∩V ) will also be an open subset of Rn. Similarly,

ψ(U ∩V ) is an open subset of Rn.

Definition 5.5. Two charts (U,φ : U → Rn), (V,ψ : V → Rn) of a topological

manifold are C∞-compatible if the two maps



50 §5 Manifolds

φ ◦ ψ−1 : ψ(U ∩V )→ φ(U ∩V ), ψ ◦ φ−1 : φ(U ∩V )→ ψ(U ∩V )

are C∞ (Figure 5.2). These two maps are called the transition functions between

the charts. If U ∩V is empty, then the two charts are automatically C∞-compatible.

To simplify the notation, we will sometimes write Uαβ for Uα ∩Uβ and Uαβ γ for

Uα ∩Uβ ∩Uγ .

φ ψ

U Vφ(U ∩V )

Fig. 5.2. The transition function ψ ◦ φ−1 is defined on φ(U ∩V ).

Since we are interested only in C∞-compatible charts, we often omit mention of

“C∞” and speak simply of compatible charts.

Definition 5.6. A C∞ atlas or simply an atlas on a locally Euclidean space M is a

collection U= {(Uα ,φα)} of pairwise C∞-compatible charts that cover M, i.e., such

that M =
⋃

α Uα .

| | | |

−π 0 π 2π

φ1(A) φ1(B)

φ2(B) φ2(A)

φ1(U1)

φ2(U2)

|

|

U1

U2

)()(

A

B

Fig. 5.3. A C∞ atlas on a circle.

Example 5.7 (A C∞ atlas on a circle). The unit circle S1 in the complex plane C may

be described as the set of points {eit ∈ C | 0 ≤ t ≤ 2π}. Let U1 and U2 be the two

open subsets of S1 (see Figure 5.3)

U1 = {eit ∈ C | −π < t < π},
U2 = {eit ∈ C | 0 < t < 2π},
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and define φα : Uα →R for α = 1,2 by

φ1(e
it) = t, −π < t < π ,

φ2(e
it) = t, 0 < t < 2π .

Both φ1 and φ2 are branches of the complex log function (1/i) logz and are home-

omorphisms onto their respective images. Thus, (U1,φ1) and (U2,φ2) are charts on

S1. The intersection U1∩U2 consists of two connected components,

A = {eit | −π < t < 0},
B = {eit | 0 < t < π},

with

φ1(U1∩U2) = φ1(A ∐ B) = φ1(A) ∐ φ1(B) = ]−π ,0[ ∐ ]0,π [,

φ2(U1∩U2) = φ2(A ∐ B) = φ2(A) ∐ φ2(B) = ]π ,2π [ ∐ ]0,π [.

Here we use the notation A ∐ B to indicate a union in which the two subsets A and

B are disjoint. The transition function φ2 ◦ φ−1
1 : φ1(A ∐ B)→ φ2(A ∐ B) is given

by

(φ2 ◦ φ−1
1 )(t) =

{
t +2π for t ∈ ]−π ,0[,

t for t ∈ ]0,π [.

Similarly,

(φ1 ◦ φ−1
2 )(t) =

{
t−2π for t ∈ ]π ,2π [,

t for t ∈ ]0,π [.

Therefore, (U1,φ1) and (U2,φ2) are C∞-compatible charts and form a C∞ atlas on S1.

Although the C∞ compatibility of charts is clearly reflexive and symmetric, it is

not transitive. The reason is as follows. Suppose (U1,φ1) is C∞-compatible with

(U2,φ2), and (U2,φ2) is C∞-compatible with (U3,φ3). Note that the three coordinate

functions are simultaneously defined only on the triple intersection U123. Thus, the

composite

φ3 ◦ φ−1
1 = (φ3 ◦ φ−1

2 ) ◦ (φ2 ◦ φ−1
1 )

is C∞, but only on φ1(U123), not necessarily on φ1(U13) (Figure 5.4). A priori we

know nothing about φ3 ◦ φ−1
1 on φ1(U13−U123) and so we cannot conclude that

(U1,φ1) and (U3,φ3) are C∞-compatible.

We say that a chart (V,ψ) is compatible with an atlas {(Uα ,φα )} if it is compat-

ible with all the charts (Uα ,φα) of the atlas.

Lemma 5.8. Let {(Uα ,φα)} be an atlas on a locally Euclidean space. If two charts

(V,ψ) and (W,σ) are both compatible with the atlas {(Uα , φα)}, then they are

compatible with each other.
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φ1(U123)

φ1 φ2

φ3

U1 U2

U3

Fig. 5.4. The transition function φ3 ◦ φ−1
1 is C∞ on φ1(U123).

b b b

b
p

ψ(p) φα (p) σ(p)φα ◦ ψ−1 σ ◦ φ−1
α

V W

Uα
ψ σ

φα

Fig. 5.5. Two charts (V,ψ), (W,σ) compatible with an atlas.

Proof. (See Figure 5.5.) Let p ∈ V ∩W . We need to show that σ ◦ ψ−1 is C∞ at

ψ(p). Since {(Uα ,φα )} is an atlas for M, p ∈Uα for some α . Then p is in the triple

intersection V ∩W ∩Uα .

By the remark above, σ ◦ψ−1 = (σ ◦ φ−1
α ) ◦ (φα ◦ψ−1) is C∞ on ψ(V ∩W ∩Uα ),

hence at ψ(p). Since p was an arbitrary point of V ∩W , this proves that σ ◦ ψ−1 is

C∞ on ψ(V ∩W ). Similarly, ψ ◦ σ−1 is C∞ on σ(V ∩W ). ⊓⊔

Note that in an equality such as σ ◦ ψ−1 = (σ ◦ φ−1
α ) ◦ (φα ◦ ψ−1) in the proof

above, the maps on the two sides of the equality sign have different domains. What

the equality means is that the two maps are equal on their common domain.

5.3 Smooth Manifolds

An atlas M on a locally Euclidean space is said to be maximal if it is not contained

in a larger atlas; in other words, if U is any other atlas containing M, then U =M.
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Definition 5.9. A smooth or C∞ manifold is a topological manifold M together

with a maximal atlas. The maximal atlas is also called a differentiable structure

on M. A manifold is said to have dimension n if all of its connected components

have dimension n. A 1-dimensional manifold is also called a curve, a 2-dimensional

manifold a surface, and an n-dimensional manifold an n-manifold.

In Corollary 8.7 we will prove that if an open set U ⊂ Rn is diffeomorphic to an

open set V ⊂ Rm, then n = m. As a consequence, the dimension of a manifold at a

point is well defined.

In practice, to check that a topological manifold M is a smooth manifold, it is

not necessary to exhibit a maximal atlas. The existence of any atlas on M will do,

because of the following proposition.

Proposition 5.10. Any atlas U = {(Uα ,φα )} on a locally Euclidean space is con-

tained in a unique maximal atlas.

Proof. Adjoin to the atlas U all charts (Vi,ψi) that are compatible with U. By Propo-

sition 5.8 the charts (Vi,ψi) are compatible with one another. So the enlarged collec-

tion of charts is an atlas. Any chart compatible with the new atlas must be compatible

with the original atlas U and so by construction belongs to the new atlas. This proves

that the new atlas is maximal.

Let M be the maximal atlas containing U that we have just constructed. If M′ is

another maximal atlas containing U, then all the charts in M′ are compatible with U

and so by construction must belong to M. This proves that M′ ⊂M. Since both are

maximal, M′ =M. Therefore, the maximal atlas containing U is unique. ⊓⊔

In summary, to show that a topological space M is a C∞ manifold, it suffices to

check that

(i) M is Hausdorff and second countable,

(ii) M has a C∞ atlas (not necessarily maximal).

From now on, a “manifold” will mean a C∞ manifold. We use the terms “smooth”

and “C∞” interchangeably. In the context of manifolds, we denote the standard coor-

dinates on Rn by r1, . . . ,rn. If (U,φ : U → Rn) is a chart of a manifold, we let xi =
ri ◦ φ be the ith component of φ and write φ = (x1, . . . ,xn) and (U,φ)= (U,x1, . . . ,xn).
Thus, for p ∈ U , (x1(p), . . . ,xn(p)) is a point in Rn. The functions x1, . . . ,xn are

called coordinates or local coordinates on U . By abuse of notation, we sometimes

omit the p. So the notation (x1, . . . ,xn) stands alternately for local coordinates on the

open set U and for a point in Rn. By a chart (U,φ) about p in a manifold M, we will

mean a chart in the differentiable structure of M such that p ∈U .

5.4 Examples of Smooth Manifolds

Example 5.11 (Euclidean space). The Euclidean space Rn is a smooth manifold with

a single chart (Rn, r1, . . ., rn), where r1, . . ., rn are the standard coordinates on Rn.
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Example 5.12 (Open subset of a manifold). Any open subset V of a manifold M is

also a manifold. If {(Uα ,φα )} is an atlas for M, then {(Uα ∩V,φα |Uα∩V} is an

atlas for V , where φα |Uα∩V : Uα ∩V →Rn denotes the restriction of φα to the subset

Uα ∩V .

Example 5.13 (Manifolds of dimension zero). In a manifold of dimension zero, every

singleton subset is homeomorphic to R0 and so is open. Thus, a zero-dimensional

manifold is a discrete set. By second countability, this discrete set must be countable.

Example 5.14 (Graph of a smooth function). For a subset of A ⊂ Rn and a function

f : A→Rm, the graph of f is defined to be the subset (Figure 5.6)

Γ( f ) = {(x, f (x)) ∈ A×Rm}.

If U is an open subset of Rn and f : U →Rn is C∞, then the two maps

bc

bc

b

b

x

(x, f (x))

Rn

Rm

( )

Γ( f )

U

Fig. 5.6. The graph of a smooth function f : Rn ⊃U → Rm.

φ : Γ( f )→U, (x, f (x)) 7→ x,

and

(1, f ) : U → Γ( f ), x 7→ (x, f (x)),

are continuous and inverse to each other, and so are homeomorphisms. The graph

Γ( f ) of a C∞ function f : U → Rm has an atlas with a single chart (Γ( f ),φ), and is

therefore a C∞ manifold. This shows that many of the familiar surfaces of calculus,

for example an elliptic paraboloid or a hyperbolic paraboloid, are manifolds.

Example 5.15 (General linear groups). For any two positive integers m and n let

Rm×n be the vector space of all m× n matrices. Since Rm×n is isomorphic to Rmn,

we give it the topology of Rmn. The general linear group GL(n,R) is by definition

GL(n,R) := {A ∈ Rn×n | det A 6= 0}= det−1(R−{0}).

Since the determinant function
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det: Rn×n→R

is continuous, GL(n,R) is an open subset of Rn×n ≃Rn2
and is therefore a manifold.

The complex general linear group GL(n,C) is defined to be the group of non-

singular n×n complex matrices. Since an n× n matrix A is nonsingular if and only

if det A 6= 0, GL(n,C) is an open subset of Cn×n ≃ R2n2
, the vector space of n× n

complex matrices. By the same reasoning as in the real case, GL(n,C) is a manifold

of dimension 2n2.

φ1

φ2

φ4 φ3

U1

U2

U3U4

Fig. 5.7. Charts on the unit circle.

Example 5.16 (Unit circle in the (x,y)-plane). In Example 5.7 we found a C∞ atlas

with two charts on the unit circle S1 in the complex plane C. It follows that S1 is

a manifold. We now view S1 as the unit circle in the real plane R2 with defining

equation x2 + y2 = 1, and describe a C∞ atlas with four charts on it.

We can cover S1 with four open sets: the upper and lower semicircles U1,U2,

and the right and left semicircles U3,U4 (Figure 5.7). On U1 and U2, the coordinate

function x is a homeomorphism onto the open interval ]− 1,1[ on the x-axis. Thus,

φi(x,y) = x for i = 1,2. Similarly, on U3 and U4, y is a homeomorphism onto the

open interval ]−1,1[ on the y-axis, and so φi(x,y) = y for i = 3,4.

It is easy to check that on every nonempty pairwise intersection Uα∩Uβ , φβ ◦ φ−1
α

is C∞. For example, on U1∩U3,

(φ3 ◦ φ−1
1 )(x) = φ3

(
x,
√

1− x2
)
=
√

1− x2,

which is C∞. On U2∩U4,

(φ4 ◦ φ−1
2 )(x) = φ4

(
x,−

√
1− x2

)
=−

√
1− x2,

which is also C∞. Thus, {(Ui,φi)}4
i=1 is a C∞ atlas on S1.

Example 5.17 (Product manifold). If M and N are C∞ manifolds, then M×N with

its product topology is Hausdorff and second countable (Corollary A.21 and Propo-

sition A.22). To show that M×N is a manifold, it remains to exhibit an atlas on it.

Recall that the product of two set maps f : X → X ′ and g : Y → Y ′ is

f ×g : X×Y → X ′ ×Y ′, ( f × g)(x,y) = ( f (x),g(y)) .
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Proposition 5.18 (An atlas for a product manifold). If {(Uα ,φα)} and {(Vi,ψi)}
are C∞ atlases for the manifolds M and N of dimensions m and n, respectively, then

the collection

{(Uα ×Vi,φα ×ψi : Uα ×Vi→ Rm×Rn)}
of charts is a C∞ atlas on M×N. Therefore, M×N is a C∞ manifold of dimension

m+n.

Proof. Problem 5.5. ⊓⊔

Example. It follows from Proposition 5.18 that the infinite cylinder S1×R and the

torus S1×S1 are manifolds (Figure 5.8).

Infinite cylinder. Torus.

Fig. 5.8.

Since M×N×P = (M×N)×P is the successive product of pairs of spaces, if

M, N, and P are manifolds, then so is M×N ×P. Thus, the n-dimensional torus

S1×·· ·× S1 (n times) is a manifold.

Remark. Let Sn be the unit sphere

(x1)2 +(x2)2 + · · ·+(xn+1)2 = 1

in Rn+1. Using Problem 5.3 as a guide, it is easy to write down a C∞ atlas on Sn,

showing that Sn has a differentiable structure. The manifold Sn with this differen-

tiable structure is called the standard n-sphere.

One of the most surprising achievements in topology was John Milnor’s dis-

covery [27] in 1956 of exotic 7-spheres, smooth manifolds homeomorphic but not

diffeomorphic to the standard 7-sphere. In 1963, Michel Kervaire and John Milnor

[24] determined that there are exactly 28 nondiffeomorphic differentiable structures

on S7.

It is known that in dimensions < 4 every topological manifold has a unique dif-

ferentiable structure and in dimensions > 4 every compact topological manifold has

a finite number of differentiable structures. Dimension 4 is a mystery. It is not known



5.4 Examples of Smooth Manifolds 57

whether S4 has a finite or infinite number of differentiable structures. The statement

that S4 has a unique differentiable structure is called the smooth Poincaré conjecture.

As of this writing in 2010, the conjecture is still open.

There are topological manifolds with no differentiable structure. Michel Kervaire

was the first to construct an example [23].

Problems

5.1. The real line with two origins

Let A and B be two points not on the real line R. Consider the set S = (R−{0})∪{A,B} (see

Figure 5.9).

b

b
A

B

Fig. 5.9. Real line with two origins.

For any two positive real numbers c, d, define

IA(−c,d) = ]−c,0[ ∪ {A} ∪ ]0,d[

and similarly for IB(−c,d), with B instead of A. Define a topology on S as follows: On

(R−{0}), use the subspace topology inherited from R, with open intervals as a basis. A basis

of neighborhoods at A is the set {IA(−c,d) | c,d > 0}; similarly, a basis of neighborhoods at

B is {IB(−c,d) | c,d > 0}.

(a) Prove that the map h : IA(−c,d)→ ]−c,d[ defined by

h(x) = x for x ∈ ]−c,0[ ∪ ]0,d[,

h(A) = 0

is a homeomorphism.

(b) Show that S is locally Euclidean and second countable, but not Hausdorff.

5.2. A sphere with a hair

A fundamental theorem of topology, the theorem on invariance of dimension, states that if two

nonempty open sets U ⊂Rn and V ⊂Rm are homeomorphic, then n = m (for a proof, see [18,

p. 126]). Use the idea of Example 5.4 as well as the theorem on invariance of dimension to

prove that the sphere with a hair in R3 (Figure 5.10) is not locally Euclidean at q. Hence it

cannot be a topological manifold.
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b

q

Fig. 5.10. A sphere with a hair.

5.3. Charts on a sphere

Let S2 be the unit sphere

x2 +y2 + z2 = 1

in R3. Define in S2 the six charts corresponding to the six hemispheres—the front, rear, right,

left, upper, and lower hemispheres (Figure 5.11):

U1 = {(x,y,z) ∈ S2 | x > 0}, φ1(x,y,z) = (y,z),

U2 = {(x,y,z) ∈ S2 | x < 0}, φ2(x,y,z) = (y,z),

U3 = {(x,y,z) ∈ S2 | y > 0}, φ3(x,y,z) = (x,z),

U4 = {(x,y,z) ∈ S2 | y < 0}, φ4(x,y,z) = (x,z),

U5 = {(x,y,z) ∈ S2 | z > 0}, φ5(x,y,z) = (x,y),

U6 = {(x,y,z) ∈ S2 | z < 0}, φ6(x,y,z) = (x,y).

Describe the domain φ4(U14) of φ1 ◦ φ−1
4 and show that φ1 ◦ φ−1

4 is C∞ on φ4(U14). Do the

same for φ6 ◦ φ−1
1 .

U6

U5

U4 U3U1

U2

Fig. 5.11. Charts on the unit sphere.

5.4.* Existence of a coordinate neighborhood

Let {(Uα ,φα )} be the maximal atlas on a manifold M. For any open set U in M and a point

p ∈U , prove the existence of a coordinate open set Uα such that p ∈Uα ⊂U .

5.5. An atlas for a product manifold

Prove Proposition 5.18.
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§6 Smooth Maps on a Manifold

Now that we have defined smooth manifolds, it is time to consider maps between

them. Using coordinate charts, one can transfer the notion of smooth maps from

Euclidean spaces to manifolds. By the C∞ compatibility of charts in an atlas, the

smoothness of a map turns out to be independent of the choice of charts and is there-

fore well defined. We give various criteria for the smoothness of a map as well as

examples of smooth maps.

Next we transfer the notion of partial derivatives from Euclidean space to a co-

ordinate chart on a manifold. Partial derivatives relative to coordinate charts allow

us to generalize the inverse function theorem to manifolds. Using the inverse func-

tion theorem, we formulate a criterion for a set of smooth functions to serve as local

coordinates near a point.

6.1 Smooth Functions on a Manifold

b

φ(p) φ(U)⊂ Rn

b p
U

M

R

f

φ

Fig. 6.1. Checking that a function f is C∞ at p by pulling back to Rn.

Definition 6.1. Let M be a smooth manifold of dimension n. A function f : M→R

is said to be C∞ or smooth at a point p in M if there is a chart (U,φ) about p in M

such that f ◦ φ−1, a function defined on the open subset φ(U) of Rn, is C∞ at φ(p)
(see Figure 6.1). The function f is said to be C∞ on M if it is C∞ at every point of M.

Remark 6.2. The definition of the smoothness of a function f at a point is indepen-

dent of the chart (U,φ), for if f ◦ φ−1 is C∞ at φ(p) and (V,ψ) is any other chart

about p in M, then on ψ(U ∩V ),

f ◦ ψ−1 = ( f ◦ φ−1) ◦ (φ ◦ ψ−1),

which is C∞ at ψ(p) (see Figure 6.2).
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b

p

b

ψ(p)

b

φ(p)

R

f

φ ◦ ψ−1

ψ−1
φ−1

UV

Fig. 6.2. Checking that a function f is C∞ at p via two charts.

In Definition 6.1, f : M→ R is not assumed to be continuous. However, if f is

C∞ at p ∈M, then f ◦ φ−1 : φ(U)→ R, being a C∞ function at the point φ(p) in an

open subset of Rn, is continuous at φ(p). As a composite of continuous functions,

f = ( f ◦ φ−1) ◦ φ is continuous at p. Since we are interested only in functions that

are smooth on an open set, there is no loss of generality in assuming at the outset that

f is continuous.

Proposition 6.3 (Smoothness of a real-valued function). Let M be a manifold of

dimension n, and f : M→ R a real-valued function on M. The following are equiv-

alent:

(i) The function f : M→ R is C∞.

(ii) The manifold M has an atlas such that for every chart (U,φ) in the atlas,

f ◦ φ−1 : Rn ⊃ φ(U)→ R is C∞.

(iii) For every chart (V,ψ) on M, the function f ◦ ψ−1 : Rn ⊃ ψ(V )→ R is C∞.

Proof. We will prove the proposition as a cyclic chain of implications.

(ii) ⇒ (i): This follows directly from the definition of a C∞ function, since by (ii)

every point p ∈M has a coordinate neighborhood (U,φ) such that f ◦ φ−1 is C∞ at

φ(p).
(i) ⇒ (iii): Let (V,ψ) be an arbitrary chart on M and let p ∈ V . By Remark 6.2,

f ◦ ψ−1 is C∞ at ψ(p). Since p was an arbitrary point of V , f ◦ ψ−1 is C∞ on ψ(V ).
(iii)⇒ (ii): Obvious. ⊓⊔

The smoothness conditions of Proposition 6.3 will be a recurrent motif through-

out the book: to prove the smoothness of an object, it is sufficient that a smoothness

criterion hold on the charts of some atlas. Once the object is shown to be smooth, it

then follows that the same smoothness criterion holds on every chart on the manifold.

Definition 6.4. Let F : N→M be a map and h a function on M. The pullback of h

by F , denoted by F∗h, is the composite function h ◦ F .

In this terminology, a function f on M is C∞ on a chart (U,φ) if and only if its

pullback (φ−1)∗ f by φ−1 is C∞ on the subset φ(U) of Euclidean space.
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6.2 Smooth Maps Between Manifolds

We emphasize again that unless otherwise specified, by a manifold we always mean

a C∞ manifold. We use the terms “C∞” and “smooth” interchangeably. An atlas or a

chart on a smooth manifold means an atlas or a chart contained in the differentiable

structure of the smooth manifold. We generally denote a manifold by M and its

dimension by n. However, when speaking of two manifolds simultaneously, as in a

map f : N→M, we will let the dimension of N be n and that of M be m.

Definition 6.5. Let N and M be manifolds of dimension n and m, respectively. A

continuous map F : N → M is C∞ at a point p in N if there are charts (V,ψ) about

F(p) in M and (U,φ) about p in N such that the composition ψ ◦ F ◦ φ−1, a map

from the open subset φ(F−1(V )∩U) of Rn to Rm, is C∞ at φ(p) (see Figure 6.3).

The continuous map F : N→M is said to be C∞ if it is C∞ at every point of N.

φ(p)

V

F(p)
b

b

b

b

U

p

F

φ−1 ψ

N M

Fig. 6.3. Checking that a map F : N→M is C∞ at p.

In Definition 6.5, we assume F : N→M continuous to ensure that F−1(V ) is an

open set in N. Thus, C∞ maps between manifolds are by definition continuous.

Remark 6.6 (Smooth maps into Rm). In case M = Rm, we can take (Rm,1Rm) as a

chart about F(p) in Rm. According to Definition 6.5, F : N→ Rm is C∞ at p ∈ N if

and only if there is a chart (U,φ) about p in N such that F ◦ φ−1 : φ(U)→Rm is C∞

at φ(p). Letting m = 1, we recover the definition of a function being C∞ at a point.

We show now that the definition of the smoothness of a map F : N→M at a point

is independent of the choice of charts. This is analogous to how the smoothness of a

function N→ R at p ∈ N is independent of the choice of a chart on N about p.

Proposition 6.7. Suppose F : N→M is C∞ at p ∈ N. If (U,φ) is any chart about p

in N and (V,ψ) is any chart about F(p) in M, then ψ ◦ F ◦ φ−1 is C∞ at φ(p).

Proof. Since F is C∞ at p ∈ N, there are charts (Uα ,φα ) about p in N and (Vβ ,ψβ )

about F(p) in M such that ψβ ◦ F ◦ φ−1
α is C∞ at φα(p). By the C∞ compatibility
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of charts in a differentiable structure, both φα ◦ φ−1 and ψ ◦ ψ−1
β

are C∞ on open

subsets of Euclidean spaces. Hence, the composite

ψ ◦ F ◦ φ−1 = (ψ ◦ ψ−1
β ) ◦ (ψβ ◦ F ◦ φ−1

α ) ◦ (φα ◦ φ−1)

is C∞ at φ(p). ⊓⊔

The next proposition gives a way to check smoothness of a map without specify-

ing a point in the domain.

Proposition 6.8 (Smoothness of a map in terms of charts). Let N and M be smooth

manifolds, and F : N→M a continuous map. The following are equivalent:

(i) The map F : N→M is C∞.

(ii) There are atlases U for N and V for M such that for every chart (U,φ) in U and

(V,ψ) in V, the map

ψ ◦ F ◦ φ−1 : φ(U ∩F−1(V ))→ Rm

is C∞.

(iii) For every chart (U,φ) on N and (V,ψ) on M, the map

ψ ◦ F ◦ φ−1 : φ(U ∩F−1(V ))→ Rm

is C∞.

Proof. (ii)⇒ (i): Let p ∈ N. Suppose (U,φ) is a chart about p in U and (V,ψ) is a

chart about F(p) in V. By (ii), ψ ◦ F ◦ φ−1 is C∞ at φ(p). By the definition of a C∞

map, F : N→M is C∞ at p. Since p was an arbitrary point of N, the map F : N→M

is C∞.

(i)⇒ (iii): Suppose (U,φ) and (V,ψ) are charts on N and M respectively such that

U ∩F−1(V ) 6=∅. Let p ∈U ∩F−1(V ). Then (U,φ) is a chart about p and (V,ψ) is

a chart about F(p). By Proposition 6.7, ψ ◦ F ◦ φ−1 is C∞ at φ(p). Since φ(p) was

an arbitrary point of φ(U ∩F−1(V )), the map ψ ◦ F ◦ φ−1 : φ(U ∩F−1(V ))→ Rm

is C∞.

(iii)⇒ (ii): Clear. ⊓⊔

Proposition 6.9 (Composition of C∞ maps). If F : N→M and G : M→ P are C∞

maps of manifolds, then the composite G ◦ F : N→ P is C∞.

Proof. Let (U,φ), (V,ψ), and (W,σ) be charts on N, M, and P respectively. Then

σ ◦ (G ◦ F) ◦ φ−1 = (σ ◦ G ◦ ψ−1) ◦ (ψ ◦ F ◦ φ−1).

Since F and G are C∞, by Proposition 6.8(i)⇒(iii), σ ◦ G ◦ ψ−1 and ψ ◦ F ◦ φ−1 are

C∞. As a composite of C∞ maps of open subsets of Euclidean spaces, σ ◦ (G ◦ F) ◦
φ−1 is C∞. By Proposition 6.8(iii)⇒(i), G ◦ F is C∞. ⊓⊔
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6.3 Diffeomorphisms

A diffeomorphism of manifolds is a bijective C∞ map F : N→M whose inverse F−1

is also C∞. According to the next two propositions, coordinate maps are diffeomor-

phisms, and conversely, every diffeomorphism of an open subset of a manifold with

an open subset of a Euclidean space can serve as a coordinate map.

Proposition 6.10. If (U,φ) is a chart on a manifold M of dimension n, then the

coordinate map φ : U → φ(U)⊂ Rn is a diffeomorphism.

Proof. By definition, φ is a homeomorphism, so it suffices to check that both φ
and φ−1 are smooth. To test the smoothness of φ : U → φ(U), we use the atlas

{(U,φ)} with a single chart on U and the atlas {(φ(U),1φ(U))} with a single chart

on φ(U). Since 1φ(U) ◦ φ ◦ φ−1 : φ(U)→ φ(U) is the identity map, it is C∞. By

Proposition 6.8(ii)⇒(i), φ is C∞.

To test the smoothness of φ−1 : φ(U)→U , we use the same atlases as above.

Since φ ◦ φ−1 ◦ 1φ(U) = 1φ(U) : φ(U)→ φ(U), the map φ−1 is also C∞. ⊓⊔

Proposition 6.11. Let U be an open subset of a manifold M of dimension n. If

F : U → F(U) ⊂ Rn is a diffeomorphism onto an open subset of Rn, then (U,F)
is a chart in the differentiable structure of M.

Proof. For any chart (Uα ,φα ) in the maximal atlas of M, both φα and φ−1
α are C∞

by Proposition 6.10. As composites of C∞ maps, both F ◦ φ−1
α and φα ◦ F−1 are C∞.

Hence, (U,F) is compatible with the maximal atlas. By the maximality of the atlas,

the chart (U,F) is in the atlas. ⊓⊔

6.4 Smoothness in Terms of Components

In this subsection we derive a criterion that reduces the smoothness of a map to the

smoothness of real-valued functions on open sets.

Proposition 6.12 (Smoothness of a vector-valued function). Let N be a manifold

and F : N→Rm a continuous map. The following are equivalent:

(i) The map F : N→Rm is C∞.

(ii) The manifold N has an atlas such that for every chart (U,φ) in the atlas, the

map F ◦ φ−1 : φ(U)→Rm is C∞.

(iii) For every chart (U,φ) on N, the map F ◦ φ−1 : φ(U)→ Rm is C∞.

Proof. (ii)⇒ (i): In Proposition 6.8(ii), take V to be the atlas with the single chart

(Rm,1Rm) on M = Rm.

(i)⇒ (iii): In Proposition 6.8(iii), let (V,ψ) be the chart (Rm,1Rm) on M = Rm.

(iii)⇒ (ii): Obvious. ⊓⊔

Proposition 6.13 (Smoothness in terms of components). Let N be a manifold. A

vector-valued function F : N → Rm is C∞ if and only if its component functions

F1, . . . ,Fm : N→R are all C∞.
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Proof.

The map F : N→Rm is C∞

⇐⇒ for every chart (U,φ) on N, the map F ◦ φ−1 : φ(U)→ Rm is C∞ (by Proposi-

tion 6.12)

⇐⇒ for every chart (U,φ) on N, the functions Fi ◦ φ−1 : φ(U)→ R are all C∞

(definition of smoothness for maps of Euclidean spaces)

⇐⇒ the functions Fi : N→ R are all C∞ (by Proposition 6.3). ⊓⊔

Exercise 6.14 (Smoothness of a map to a circle).* Prove that the map F : R→ S1, F(t) =
(cos t,sint) is C∞.

Proposition 6.15 (Smoothness of a map in terms of vector-valued functions). Let

F : N → M be a continuous map between two manifolds of dimensions n and m

respectively. The following are equivalent:

(i) The map F : N→M is C∞.

(ii) The manifold M has an atlas such that for every chart (V,ψ) = (V,y1, . . . ,ym) in

the atlas, the vector-valued function ψ ◦ F : F−1(V )→Rm is C∞.

(iii) For every chart (V,ψ) = (V,y1, . . . ,ym) on M, the vector-valued function ψ ◦ F :

F−1(V )→Rm is C∞.

Proof. (ii) ⇒ (i): Let V be the atlas for M in (ii), and let U = {(U,φ)} be

an arbitrary atlas for N. For each chart (V,ψ) in the atlas V, the collection

{(U ∩F−1(V ),φ |U∩F−1(V ))} is an atlas for F−1(V ). Since ψ ◦ F : F−1(V )→ Rm

is C∞, by Proposition 6.12(i)⇒(iii),

ψ ◦ F ◦ φ−1 : φ(U ∩F−1(V ))→ Rm

is C∞. It then follows from Proposition 6.8(ii)⇒(i) that F : N→M is C∞.

(i)⇒ (iii): Being a coordinate map, ψ is C∞ (Proposition 6.10). As the composite of

two C∞ maps, ψ ◦ F is C∞.

(iii)⇒ (ii): Obvious. ⊓⊔

By Proposition 6.13, this smoothness criterion for a map translates into a smooth-

ness criterion in terms of the components of the map.

Proposition 6.16 (Smoothness of a map in terms of components). Let F : N→M

be a continuous map between two manifolds of dimensions n and m respectively. The

following are equivalent:

(i) The map F : N→M is C∞.

(ii) The manifold M has an atlas such that for every chart (V,ψ) = (V,y1, . . . ,ym) in

the atlas, the components yi ◦ F : F−1(V )→ R of F relative to the chart are all

C∞.

(iii) For every chart (V,ψ) = (V,y1, . . . ,ym) on M, the components yi ◦ F : F−1(V )→
R of F relative to the chart are all C∞.



6.5 Examples of Smooth Maps 65

6.5 Examples of Smooth Maps

We have seen that coordinate maps are smooth. In this subsection we look at a few

more examples of smooth maps.

Example 6.17 (Smoothness of a projection map). Let M and N be manifolds and

π : M×N → M, π(p,q) = p the projection to the first factor. Prove that π is a C∞

map.

Solution. Let (p,q) be an arbitrary point of M×N. Suppose (U,φ) = (U,x1, . . . ,xm)
and (V,ψ) = (V,y1, . . . ,yn) are coordinate neighborhoods of p and q in M and N

respectively. By Proposition 5.18, (U ×V,φ ×ψ) = (U ×V,x1, . . . ,xm,y1, . . . ,yn) is

a coordinate neighborhood of (p,q). Then

(
φ ◦ π ◦ (φ ×ψ)−1

)
(a1, . . . ,am,b1, . . . ,bn) = (a1, . . . ,am),

which is a C∞ map from (φ×ψ)(U×V ) in Rm+n to φ(U) in Rm, so π is C∞ at (p,q).
Since (p,q) was an arbitrary point in M×N, π is C∞ on M×N.

Exercise 6.18 (Smoothness of a map to a Cartesian product).* Let M1, M2, and N be

manifolds of dimensions m1, m2, and n respectively. Prove that a map ( f1, f2) : N→M1×M2

is C∞ if and only if fi : N→Mi, i = 1,2, are both C∞.

Example 6.19. In Examples 5.7 and 5.16 we showed that the unit circle S1 defined by

x2 + y2 = 1 in R2 is a C∞ manifold. Prove that a C∞ function f (x,y) on R2 restricts

to a C∞ function on S1.

Solution. To avoid confusing functions with points, we will denote a point on S1

as p = (a,b) and use x, y to mean the standard coordinate functions on R2. Thus,

x(a,b) = a and y(a,b) = b. Suppose we can show that x and y restrict to C∞ functions

on S1. By Exercise 6.18, the inclusion map i : S1→ R2, i(p) = (x(p),y(p)) is then

C∞ on S1. As the composition of C∞ maps, f |S1 = f ◦ i will be C∞ on S1 (Proposition

6.9).

Consider first the function x. We use the atlas (Ui,φi) from Example 5.16. Since

x is a coordinate function on U1 and on U2, by Proposition 6.10 it is C∞ on U1∪U2 =
S1−{(±1,0)}. To show that x is C∞ on U3, it suffices to check the smoothness of

x ◦ φ−1
3 : φ3(U3)→ R:

(
x ◦ φ−1

3

)
(b) = x

(√
1−b2,b

)
=
√

1−b2.

On U3, we have b 6=±1, so that
√

1− b2 is a C∞ function of b. Hence, x is C∞ on U3.

On U4, (
x ◦ φ−1

4

)
(b) = x

(
−
√

1−b2,b
)
=−

√
1−b2,

which is C∞ because b is not equal to±1. Since x is C∞ on the four open sets U1, U2,

U3, and U4, which cover S1, x is C∞ on S1.

The proof that y is C∞ on S1 is similar.
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Armed with the definition of a smooth map between manifolds, we can define a

Lie group.

Definition 6.20. A Lie group1 is a C∞ manifold G having a group structure such

that the multiplication map

µ : G×G→ G

and the inverse map

ι : G→G, ι(x) = x−1,

are both C∞.

Similarly, a topological group is a topological space having a group structure

such that the multiplication and inverse maps are both continuous. Note that a topo-

logical group is required to be a topological space, but not a topological manifold.

Examples.

(i) The Euclidean space Rn is a Lie group under addition.

(ii) The set C× of nonzero complex numbers is a Lie group under multiplication.

(iii) The unit circle S1 in C× is a Lie group under multiplication.

(iv) The Cartesian product G1×G2 of two Lie groups (G1,µ1) and (G2,µ2) is a Lie

group under coordinatewise multiplication µ1× µ2.

Example 6.21 (General linear group). In Example 5.15 we defined the general linear

group

GL(n,R) = {A = [ai j] ∈Rn×n | det A 6= 0}.
As an open subset of Rn×n, it is a manifold. Since the (i, j)-entry of the product of

two matrices A and B in GL(n,R),

(AB)i j =
n

∑
k=1

aikbk j,

is a polynomial in the coordinates of A and B, matrix multiplication

µ : GL(n,R)×GL(n,R)→ GL(n,R)

is a C∞ map.

Recall that the (i, j)-minor of a matrix A is the determinant of the submatrix of

A obtained by deleting the ith row and the jth column of A. By Cramer’s rule from

linear algebra, the (i, j)-entry of A−1 is

(A−1)i j =
1

det A
· (−1)i+ j(( j, i)-minor of A),

which is a C∞ function of the ai j’s provided det A 6= 0. Therefore, the inverse map

ι : GL(n,R)→GL(n,R) is also C∞. This proves that GL(n,R) is a Lie group.

1Lie groups and Lie algebras are named after the Norwegian mathematician Sophus Lie

(1842–1899). In this context, “Lie” is pronounced “lee,” not “lye.”
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In Section 15 we will study less obvious examples of Lie groups.

NOTATION. The notation for matrices presents a special challenge. An n×n matrix

A can represent a linear transformation y = Ax, with x,y ∈ Rn. In this case, yi =

∑ j ai
jx

j, so A = [ai
j]. An n×n matrix can also represent a bilinear form 〈x,y〉= xT Ay

with x,y ∈ Rn. In this case, 〈x,y〉 = ∑i, j xiai jy
j, so A = [ai j]. In the absence of any

context, we will write a matrix as A = [ai j], using a lowercase letter a to denote an

entry of a matrix A and using a double subscript ( )i j to denote the (i, j)-entry.

6.6 Partial Derivatives

On a manifold M of dimension n, let (U,φ) be a chart and f a C∞ function As a

function into Rn, φ has n components x1, . . . ,xn. This means that if r1, . . . ,rn are

the standard coordinates on Rn, then xi = ri ◦ φ . For p ∈U , we define the partial

derivative ∂ f/∂xi of f with respect to xi at p to be

∂

∂xi

∣∣∣∣
p

f :=
∂ f

∂xi
(p) :=

∂
(

f ◦ φ−1
)

∂ ri
(φ(p)) :=

∂

∂ ri

∣∣∣∣
φ(p)

(
f ◦ φ−1

)
.

Since p = φ−1(φ(p)), this equation may be rewritten in the form

∂ f

∂xi

(
φ−1(φ(p))

)
=

∂
(

f ◦ φ−1
)

∂ ri
(φ(p)).

Thus, as functions on φ(U),

∂ f

∂xi
◦ φ−1 =

∂
(

f ◦ φ−1
)

∂ ri
.

The partial derivative ∂ f/∂xi is C∞ on U because its pullback (∂ f/∂xi) ◦ φ−1 is C∞

on φ(U).
In the next proposition we see that partial derivatives on a manifold satisfy the

same duality property ∂ ri/∂ r j = δ i
j as the coordinate functions ri on Rn.

Proposition 6.22. Suppose (U,x1, . . . ,xn) is a chart on a manifold. Then ∂xi/∂x j = δ i
j .

Proof. At a point p ∈U , by the definition of ∂/∂x j|p,

∂xi

∂x j
(p) =

∂
(
xi ◦ φ−1

)

∂ r j
(φ(p)) =

∂
(
ri ◦ φ ◦ φ−1

)

∂ r j
(φ(p)) =

∂ ri

∂ r j
(φ(p)) = δ i

j. ⊓⊔

Definition 6.23. Let F : N →M be a smooth map, and let (U,φ) = (U,x1, . . . ,xn)
and (V,ψ) = (V,y1, . . . ,ym) be charts on N and M respectively such that F(U)⊂ V .

Denote by

Fi := yi ◦ F = ri ◦ ψ ◦ F : U → R
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the ith component of F in the chart (V,ψ). Then the matrix [∂Fi/∂x j] is called

the Jacobian matrix of F relative to the charts (U,φ) and (V,ψ). In case N and

M have the same dimension, the determinant det[∂Fi/∂x j] is called the Jacobian

determinant of F relative to the two charts. The Jacobian determinant is also written

as ∂ (F1, . . . ,Fn)/∂ (x1, . . . ,xn).

When M and N are open subsets of Euclidean spaces and the charts are (U,r1,

. . ., rn) and (V,r1, . . . ,rm), the Jacobian matrix [∂Fi/∂ r j], where Fi = ri ◦ F , is the

usual Jacobian matrix from calculus.

Example 6.24 (Jacobian matrix of a transition map). Let (U,φ) = (U,x1, . . . ,xn) and

(V,ψ) = (V,y1, . . . ,yn) be overlapping charts on a manifold M. The transition map

ψ ◦ φ−1 : φ(U ∩V )→ ψ(U ∩V ) is a diffeomorphism of open subsets of Rn. Show

that its Jacobian matrix J(ψ ◦ φ−1) at φ(p) is the matrix [∂yi/∂x j] of partial deriva-

tives at p.

Solution. By definition, J(ψ ◦ φ−1) = [∂ (ψ ◦ φ−1)i/∂ r j], where

∂
(
ψ ◦ φ−1

)i

∂ r j
(φ(p)) =

∂
(
ri ◦ ψ ◦ φ−1

)

∂ r j
(φ(p)) =

∂
(
yi ◦ φ−1

)

∂ r j
(φ(p)) =

∂yi

∂x j
(p).

6.7 The Inverse Function Theorem

By Proposition 6.11, any diffeomorphism F : U → F(U) ⊂ Rn of an open subset U

of a manifold may be thought of as a coordinate system on U . We say that a C∞

map F : N → M is locally invertible or a local diffeomorphism at p ∈ N if p has a

neighborhood U on which F|U : U → F(U) is a diffeomorphism.

Given n smooth functions F1, . . . ,Fn in a neighborhood of a point p in a man-

ifold N of dimension n, one would like to know whether they form a coordinate

system, possibly on a smaller neighborhood of p. This is equivalent to whether

F = (F1, . . . ,Fn) : N → Rn is a local diffeomorphism at p. The inverse function

theorem provides an answer.

Theorem 6.25 (Inverse function theorem for Rn). Let F : W → Rn be a C∞ map

defined on an open subset W of Rn. For any point p in W, the map F is locally

invertible at p if and only if the Jacobian determinant det[∂Fi/∂ r j(p)] is not zero.

This theorem is usually proved in an undergraduate course on real analysis. See

Appendix B for a discussion of this and related theorems. Because the inverse func-

tion theorem for Rn is a local result, it easily translates to manifolds.

Theorem 6.26 (Inverse function theorem for manifolds). Let F : N→M be a C∞

map between two manifolds of the same dimension, and p ∈ N. Suppose for some

charts (U,φ) = (U,x1, . . . ,xn) about p in N and (V,ψ) = (V,y1, . . . ,yn) about F(p)
in M, F(U) ⊂ V. Set Fi = yi ◦ F. Then F is locally invertible at p if and only if its

Jacobian determinant det[∂Fi/∂x j(p)] is nonzero.
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ψ ◦ F ◦ φ−1
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φ ψ
≃ ≃

φ(U) ψ(V )

Fig. 6.4. The map F is locally invertible at p because ψ ◦ F ◦ φ−1 is locally invertible at φ(p).

Proof. Since Fi = yi ◦ F = ri ◦ ψ ◦ F , the Jacobian matrix of F relative to the charts

(U,φ) and (V,ψ) is

[
∂Fi

∂x j
(p)

]
=

[
∂ (ri ◦ ψ ◦ F)

∂x j
(p)

]
=

[
∂ (ri ◦ ψ ◦ F ◦ φ−1)

∂ r j
(φ(p))

]
,

which is precisely the Jacobian matrix at φ(p) of the map

ψ ◦ F ◦ φ−1 : Rn ⊃ φ(U)→ ψ(V )⊂ Rn

between two open subsets of Rn. By the inverse function theorem for Rn,

det

[
∂Fi

∂x j
(p)

]
= det

[
∂ ri ◦ (ψ ◦ F ◦ φ−1)

∂ r j
(φ(p))

]
6= 0

if and only if ψ ◦ F ◦ φ−1 is locally invertible at φ(p). Since ψ and φ are diffeomor-

phisms (Proposition 6.10), this last statement is equivalent to the local invertibility

of F at p (see Figure 6.4). ⊓⊔

We usually apply the inverse function theorem in the following form.

Corollary 6.27. Let N be a manifold of dimension n. A set of n smooth func-

tions F1, . . . ,Fn defined on a coordinate neighborhood (U,x1, . . . ,xn) of a point

p ∈ N forms a coordinate system about p if and only if the Jacobian determinant

det[∂Fi/∂x j(p)] is nonzero.

Proof. Let F = (F1, . . . ,Fn) : U →Rn. Then

det[∂Fi/∂x j(p)] 6= 0

⇐⇒ F : U → Rn is locally invertible at p (by the inverse function theorem)

⇐⇒ there is a neighborhood W of p in N such that F : W → F(W ) is a diffeomor-

phism (by the definition of local invertibility)
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⇐⇒ (W,F1, . . . ,Fn) is a coordinate chart about p in the differentiable structure of

N (by Proposition 6.11). ⊓⊔

Example. Find all points in R2 in a neighborhood of which the functions x2+y2−1,y
can serve as a local coordinate system.

Solution. Define F : R2→ R2 by

F(x,y) =
(
x2 + y2−1,y

)
.

The map F can serve as a coordinate map in a neighborhood of p if and only if it is

a local diffeomorphism at p. The Jacobian determinant of F is

∂
(
F1,F2

)

∂ (x,y)
= det

[
2x 2y

0 1

]
= 2x.

By the inverse function theorem, F is a local diffeomorphism at p= (x,y) if and only

if x 6= 0. Thus, F can serve as a coordinate system at any point p not on the y-axis.

Problems

6.1. Differentiable structures on R

Let R be the real line with the differentiable structure given by the maximal atlas of the chart

(R,φ = 1 : R→ R), and let R′ be the real line with the differentiable structure given by the

maximal atlas of the chart (R,ψ : R→ R), where ψ(x) = x1/3.

(a) Show that these two differentiable structures are distinct.

(b) Show that there is a diffeomorphism between R and R′. (Hint: The identity map R→ R

is not the desired diffeomorphism; in fact, this map is not smooth.)

6.2. The smoothness of an inclusion map

Let M and N be manifolds and let q0 be a point in N. Prove that the inclusion map iq0
: M→

M×N, iq0
(p) = (p,q0), is C∞.

6.3.* Group of automorphisms of a vector space

Let V be a finite-dimensional vector space over R, and GL(V ) the group of all linear auto-

morphisms of V . Relative to an ordered basis e = (e1, . . . ,en) for V , a linear automorphism

L ∈ GL(V ) is represented by a matrix [ai
j] defined by

L(e j) = ∑
i

ai
jei.

The map

φe : GL(V )→ GL(n,R),

L 7→ [ai
j],

is a bijection with an open subset of Rn×n that makes GL(V ) into a C∞ manifold, which we

denote temporarily by GL(V )e. If GL(V )u is the manifold structure induced from another

ordered basis u = (u1, . . . ,un) for V , show that GL(V )e is the same as GL(V )u.

6.4. Local coordinate systems

Find all points in R3 in a neighborhood of which the functions x, x2 +y2 + z2−1, z can serve

as a local coordinate system.
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§7 Quotients

Gluing the edges of a malleable square is one way to create new surfaces. For ex-

ample, gluing together the top and bottom edges of a square gives a cylinder; gluing

together the boundaries of the cylinder with matching orientations gives a torus (Fig-

ure 7.1). This gluing process is called an identification or a quotient construction.

Fig. 7.1. Gluing the edges of a malleable square.

The quotient construction is a process of simplification. Starting with an equiv-

alence relation on a set, we identify each equivalence class to a point. Mathematics

abounds in quotient constructions, for example, the quotient group, quotient ring,

or quotient vector space in algebra. If the original set is a topological space, it is

always possible to give the quotient set a topology so that the natural projection map

becomes continuous. However, even if the original space is a manifold, a quotient

space is often not a manifold. The main results of this section give conditions under

which a quotient space remains second countable and Hausdorff. We then study real

projective space as an example of a quotient manifold.

Real projective space can be interpreted as a quotient of a sphere with antipodal

points identified, or as the set of lines through the origin in a vector space. These

two interpretations give rise to two distinct generalizations—covering maps on the

one hand and Grassmannians of k-dimensional subspaces of a vector space on the

other. In one of the exercises, we carry out an extensive investigation of G(2,4), the

Grassmannian of 2-dimensional subspaces of R4.

7.1 The Quotient Topology

Recall that an equivalence relation on a set S is a reflexive, symmetric, and transitive

relation. The equivalence class [x] of x ∈ S is the set of all elements in S equivalent

to x. An equivalence relation on S partitions S into disjoint equivalence classes. We

denote the set of equivalence classes by S/∼ and call this set the quotient of S by

the equivalence relation∼. There is a natural projection map π : S→ S/∼ that sends

x ∈ S to its equivalence class [x].
Assume now that S is a topological space. We define a topology on S/∼ by

declaring a set U in S/∼ to be open if and only if π−1(U) is open in S. Clearly, both

the empty set ∅ and the entire quotient S/∼ are open. Further, since
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π−1

(⋃

α

Uα

)
=
⋃

α

π−1(Uα)

and

π−1

(⋂

i

Ui

)
=
⋂

i

π−1(Ui),

the collection of open sets in S/∼ is closed under arbitrary unions and finite inter-

sections, and is therefore a topology. It is called the quotient topology on S/∼. With

this topology, S/∼ is called the quotient space of S by the equivalence relation ∼.

With the quotient topology on S/∼, the projection map π : S→ S/∼ is automatically

continuous, because the inverse image of an open set in S/∼ is by definition open

in S.

7.2 Continuity of a Map on a Quotient

Let∼ be an equivalence relation on the topological space S and give S/∼ the quotient

topology. Suppose a function f : S→ Y from S to another topological space Y is

constant on each equivalence class. Then it induces a map f̄ : S/∼→ Y by

f̄ ([p]) = f (p) for p ∈ S.

In other words, there is a commutative diagram

S
f //

π
��

Y.

S/∼
f̄

==||||||||

Proposition 7.1. The induced map f̄ : S/∼→ Y is continuous if and only if the map

f : S→ Y is continuous.

Proof.

(⇒) If f̄ is continuous, then as the composite f̄ ◦ π of continuous functions, f is also

continuous.

(⇐) Suppose f is continuous. Let V be open in Y . Then f−1(V ) = π−1( f̄−1(V )) is

open in S. By the definition of quotient topology, f̄−1(V ) is open in S/∼. Since V

was arbitrary, f̄ : S/∼→ Y is continuous. ⊓⊔

This proposition gives a useful criterion for checking whether a function f̄ on a

quotient space S/∼ is continuous: simply lift the function f̄ to f := f ◦ π on S and

check the continuity of the lifted map f on S. For examples of this, see Example 7.2

and Proposition 7.3.
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7.3 Identification of a Subset to a Point

If A is a subspace of a topological space S, we can define a relation ∼ on S by

declaring

x∼ x for all x ∈ S

(so the relation is reflexive) and

x∼ y for all x,y ∈ A.

This is an equivalence relation on S. We say that the quotient space S/∼ is obtained

from S by identifying A to a point.

Example 7.2. Let I be the unit interval [0,1] and I/∼ the quotient space obtained from

I by identifying the two points {0,1} to a point. Denote by S1 the unit circle in the

complex plane. The function f : I→ S1, f (x) = exp(2π ix), assumes the same value

at 0 and 1 (Figure 7.2), and so induces a function f̄ : I/∼→ S1.

b

0 1

f

Fig. 7.2. The unit circle as a quotient space of the unit interval.

Proposition 7.3. The function f̄ : I/∼→ S1 is a homeomorphism.

Proof. Since f is continuous, f̄ is also continuous by Proposition 7.1. Clearly, f̄ is a

bijection. As the continuous image of the compact set I, the quotient I/∼ is compact.

Thus, f̄ is a continuous bijection from the compact space I/∼ to the Hausdorff space

S1. By Corollary A.36, f̄ is a homeomorphism. ⊓⊔

7.4 A Necessary Condition for a Hausdorff Quotient

The quotient construction does not in general preserve the Hausdorff property or

second countability. Indeed, since every singleton set in a Hausdorff space is closed,

if π : S→ S/∼ is the projection and the quotient S/∼ is Hausdorff, then for any

p ∈ S, its image {π(p)} is closed in S/∼. By the continuity of π , the inverse image

π−1({π(p)}) = [p] is closed in S. This gives a necessary condition for a quotient

space to be Hausdorff.

Proposition 7.4. If the quotient space S/∼ is Hausdorff, then the equivalence class

[p] of any point p in S is closed in S.
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Example. Define an equivalence relation ∼ on R by identifying the open interval

]0,∞[ to a point. Then the quotient space R/∼ is not Hausdorff because the equiva-

lence class ]0,∞[ of ∼ in R corresponding to the point ]0,∞[ in R/∼ is not a closed

subset of R.

7.5 Open Equivalence Relations

In this section we follow the treatment of Boothby [3] and derive conditions under

which a quotient space is Hausdorff or second countable. Recall that a map f : X→Y

of topological spaces is open if the image of any open set under f is open.

Definition 7.5. An equivalence relation ∼ on a topological space S is said to be

open if the projection map π : S→ S/∼ is open.

In other words, the equivalence relation ∼ on S is open if and only if for every

open set U in S, the set

π−1(π(U)) =
⋃

x∈U

[x]

of all points equivalent to some point of U is open.

Example 7.6. The projection map to a quotient space is in general not open. For

example, let ∼ be the equivalence relation on the real line R that identifies the two

points 1 and −1, and π : R→R/∼ the projection map.

b b b( )

−2 0−1 1

π

(

)

Fig. 7.3. A projection map that is not open.

The map π is open if and only if for every open set V in R, its image π(V ) is open

in R/∼, which by the definition of the quotient topology means that π−1(π(V )) is

open in R. Now let V be the open interval ]− 2,0[ in R. Then

π−1(π(V )) = ]−2,0[ ∪ {1},

which is not open in R (Figure 7.3). Therefore, the projection map π : R→ R/∼ is

not an open map.

Given an equivalence relation∼ on S, let R be the subset of S×S that defines the

relation

R = {(x,y) ∈ S×S | x∼ y}.
We call R the graph of the equivalence relation∼.



7.5 Open Equivalence Relations 75

b

S

S
R

U

V
(x,y)

Fig. 7.4. The graph R of an equivalence relation and an open set U×V disjoint from R.

Theorem 7.7. Suppose ∼ is an open equivalence relation on a topological space S.

Then the quotient space S/∼ is Hausdorff if and only if the graph R of∼ is closed in

S×S.

Proof. There is a sequence of equivalent statements:

R is closed in S×S

⇐⇒ (S×S)−R is open in S×S

⇐⇒ for every (x,y) ∈ S× S−R, there is a basic open set U ×V containing (x,y)
such that (U×V)∩R =∅ (Figure 7.4)

⇐⇒ for every pair x ≁ y in S, there exist neighborhoods U of x and V of y in S such

that no element of U is equivalent to an element of V

⇐⇒ for any two points [x] 6= [y] in S/∼, there exist neighborhoods U of x and V of

y in S such that π(U)∩π(V) =∅ in S/∼. (∗)
We now show that this last statement (∗) is equivalent to S/∼ being Hausdorff.

First assume (∗). Since∼ is an open equivalence relation, π(U) and π(V ) are disjoint

open sets in S/∼ containing [x] and [y] respectively. Therefore, S/∼ is Hausdorff.

Conversely, suppose S/∼ is Hausdorff. Let [x] 6= [y] in S/∼. Then there exist

disjoint open sets A and B in S/∼ such that [x] ∈ A and [y] ∈ B. By the surjectivity of

π , we have A = π(π−1A) and B = π(π−1B) (see Problem 7.1). Let U = π−1A and

V = π−1B. Then x ∈U , y ∈V , and A = π(U) and B = π(V) are disjoint open sets in

S/∼. ⊓⊔

If the equivalence relation ∼ is equality, then the quotient space S/∼ is S itself

and the graph R of ∼ is simply the diagonal

∆ = {(x,x) ∈ S× S}.

In this case, Theorem 7.7 becomes the following well-known characterization of a

Hausdorff space by its diagonal (cf. Problem A.6).

Corollary 7.8. A topological space S is Hausdorff if and only if the diagonal ∆ in

S×S is closed.
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Theorem 7.9. Let ∼ be an open equivalence relation on a topological space S with

projection π : S→ S/∼. If B= {Bα} is a basis for S, then its image {π(Bα)} under

π is a basis for S/∼.

Proof. Since π is an open map, {π(Bα)} is a collection of open sets in S/∼. Let W

be an open set in S/∼ and [x] ∈W , x ∈ S. Then x ∈ π−1(W ). Since π−1(W ) is open,

there is a basic open set B ∈B such that

x ∈ B⊂ π−1(W ).

Then

[x] = π(x) ∈ π(B)⊂W,

which proves that {π(Bα)} is a basis for S/∼. ⊓⊔

Corollary 7.10. If ∼ is an open equivalence relation on a second-countable space

S, then the quotient space S/∼ is second countable.

7.6 Real Projective Space

Define an equivalence relation on Rn+1−{0} by

x∼ y ⇐⇒ y = tx for some nonzero real number t,

where x, y ∈ Rn+1−{0}. The real projective space RPn is the quotient space of

Rn+1−{0} by this equivalence relation. We denote the equivalence class of a point

(a0, . . . ,an) ∈ Rn+1−{0} by [a0, . . . ,an] and let π : Rn+1−{0}→ RPn be the pro-

jection. We call [a0, . . . ,an] homogeneous coordinates on RPn.

Geometrically, two nonzero points in Rn+1 are equivalent if and only if they lie

on the same line through the origin, so RPn can be interpreted as the set of all lines

through the origin in Rn+1. Each line through the origin in Rn+1 meets the unit

b

b

b

Fig. 7.5. A line through 0 in R3 corresponds to a pair of antipodal points on S2.

sphere Sn in a pair of antipodal points, and conversely, a pair of antipodal points on

Sn determines a unique line through the origin (Figure 7.5). This suggests that we

define an equivalence relation∼ on Sn by identifying antipodal points:
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x∼ y ⇐⇒ x =±y, x,y ∈ Sn.

We then have a bijection RPn↔ Sn/∼.

Exercise 7.11 (Real projective space as a quotient of a sphere).* For x= (x1, . . . ,xn)∈Rn,

let ‖x‖ =
√

∑i(x
i)2 be the modulus of x. Prove that the map f : Rn+1−{0} → Sn given by

f (x) =
x

‖x‖

induces a homeomorphism f̄ : RPn→ Sn/∼. (Hint: Find an inverse map

ḡ : Sn/∼→ RPn

and show that both f̄ and ḡ are continuous.)

Example 7.12 (The real projective line RP1).

b

b

b bb

0 −a a

Fig. 7.6. The real projective line RP1 as the set of lines through 0 in R2.

Each line through the origin in R2 meets the unit circle in a pair of antipodal

points. By Exercise 7.11, RP1 is homeomorphic to the quotient S1/∼, which is in

turn homeomorphic to the closed upper semicircle with the two endpoints identified

(Figure 7.6). Thus, RP1 is homeomorphic to S1.

Example 7.13 (The real projective plane RP2). By Exercise 7.11, there is a homeo-

morphism

RP2 ≃ S2/{antipodal points}= S2/∼ .

For points not on the equator, each pair of antipodal points contains a unique point

in the upper hemisphere. Thus, there is a bijection between S2/∼ and the quotient of

the closed upper hemisphere in which each pair of antipodal points on the equator

is identified. It is not difficult to show that this bijection is a homeomorphism (see

Problem 7.2).

Let H2 be the closed upper hemisphere

H2 = {(x,y,z) ∈R3 | x2 + y2 + z2 = 1, z≥ 0}

and let D2 be the closed unit disk
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D2 = {(x,y) ∈R2 | x2 + y2 ≤ 1}.

These two spaces are homeomorphic to each other via the continuous map

ϕ : H2→D2,

ϕ(x,y,z) = (x,y),

and its inverse

ψ : D2→ H2,

ψ(x,y) =
(

x,y,
√

1− x2− y2
)
.

On H2, define an equivalence relation ∼ by identifying the antipodal points on the

equator:

(x,y,0)∼ (−x,−y,0), x2 + y2 = 1.

On D2, define an equivalence relation ∼ by identifying the antipodal points on the

boundary circle:

(x,y)∼ (−x,−y), x2 + y2 = 1.

Then ϕ and ψ induce homeomorphisms

ϕ̄ : H2/∼→ D2/∼, ψ̄ : D2/∼→H2/∼ .

In summary, there is a sequence of homeomorphisms

RP2 ∼→ S2/∼ ∼→ H2/∼ ∼→ D2/∼

that identifies the real projective plane as the quotient of the closed disk D2 with the

antipodal points on its boundary identified. This may be the best way to picture RP2

(Figure 7.7).

b b

Fig. 7.7. The real projective plane as the quotient of a disk.

The real projective planeRP2 cannot be embedded as a submanifold of R3. How-

ever, if we allow self-intersection, then we can map RP2 into R3 as a cross-cap (Fig-

ure 7.8). This map is not one-to-one.
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Fig. 7.8. The real projective plane immersed as a cross-cap in R3.

Proposition 7.14. The equivalence relation∼ on Rn+1−{0} in the definition of RPn

is an open equivalence relation.

Proof. For an open set U ⊂ Rn+1−{0}, the image π(U) is open in RPn if and only

if π−1(π(U)) is open in Rn+1−{0}. But π−1(π(U)) consists of all nonzero scalar

multiples of points of U ; that is,

π−1(π(U)) =
⋃

t∈R×
tU =

⋃

t∈R×
{t p | p ∈U}.

Since multiplication by t ∈ R× is a homeomorphism of Rn+1−{0}, the set tU is

open for any t. Therefore, their union
⋃

t∈R× tU = π−1(π(U)) is also open. ⊓⊔

Corollary 7.15. The real projective space RPn is second countable.

Proof. Apply Corollary 7.10. ⊓⊔

Proposition 7.16. The real projective space RPn is Hausdorff.

Proof. Let S = Rn+1−{0} and consider the set

R = {(x,y) ∈ S× S | y = tx for some t ∈R×}.

If we write x and y as column vectors, then [x y] is an (n+ 1)× 2 matrix, and R may

be characterized as the set of matrices [x y] in S×S of rank ≤ 1. By a standard fact

from linear algebra, rk[x y] ≤ 1 is equivalent to the vanishing of all 2× 2 minors of

[x y] (see Problem B.1). As the zero set of finitely many polynomials, R is a closed

subset of S× S. Since ∼ is an open equivalence relation on S, and R is closed in

S×S, by Theorem 7.7 the quotient S/∼ ≃ RPn is Hausdorff. ⊓⊔

7.7 The Standard C∞ Atlas on a Real Projective Space

Let [a0, . . . ,an] be homogeneous coordinates on the projective space RPn. Although

a0 is not a well-defined function on RPn, the condition a0 6= 0 is independent of the

choice of a representative for [a0, . . . ,an]. Hence, the condition a0 6= 0 makes sense

on RPn, and we may define
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U0 := {[a0, . . . ,an] ∈RPn | a0 6= 0}.

Similarly, for each i = 1, . . . ,n, let

Ui := {[a0, . . . ,an] ∈RPn | ai 6= 0}.

Define

φ0 : U0→ Rn

by

[a0, . . . ,an] 7→
(

a1

a0
, . . . ,

an

a0

)
.

This map has a continuous inverse

(b1, . . . ,bn) 7→ [1,b1, . . . ,bn]

and is therefore a homeomorphism. Similarly, there are homeomorphisms for each

i = 1, . . . ,n:

φi : Ui→ Rn,

[a0, . . . ,an] 7→
(

a0

ai
, . . . ,

âi

ai
, . . . ,

an

ai

)
,

where the caret sign ̂ over ai/ai means that that entry is to be omitted. This proves

that RPn is locally Euclidean with the (Ui,φi) as charts.

On the intersection U0∩U1, we have a0 6= 0 and a1 6= 0, and there are two coor-

dinate systems

[a0,a1,a2, . . . ,an]

(
a0

a1
,

a2

a1
, . . . ,

an

a1

)
.

(
a1

a0
,

a2

a0
, . . . ,

an

a0

)

φ1φ0

We will refer to the coordinate functions on U0 as x1, . . . ,xn, and the coordinate

functions on U1 as y1, . . . ,yn. On U0,

xi =
ai

a0
, i = 1, . . . ,n,

and on U1,

y1 =
a0

a1
, y2 =

a2

a1
, . . . , yn =

an

a1
.

Then on U0∩U1,
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y1 =
1

x1
, y2 =

x2

x1
, y3 =

x3

x1
, . . . , yn =

xn

x1
,

so

(φ1 ◦ φ−1
0 )(x) =

(
1

x1
,

x2

x1
,

x3

x1
, . . . ,

xn

x1

)
.

This is a C∞ function because x1 6= 0 on φ0(U0 ∩U1). On any other Ui ∩Uj an

analogous formula holds. Therefore, the collection {(Ui,φi)}i=0,...,n is a C∞ atlas for

RPn, called the standard atlas. This concludes the proof that RPn is a C∞ manifold.

Problems

7.1. Image of the inverse image of a map

Let f : X → Y be a map of sets, and let B⊂ Y . Prove that f ( f−1(B)) = B∩ f (X). Therefore,

if f is surjective, then f ( f−1(B)) = B.

7.2. Real projective plane

Let H2 be the closed upper hemisphere in the unit sphere S2, and let i : H2 → S2 be the

inclusion map. In the notation of Example 7.13, prove that the induced map f : H2/∼→ S2/∼
is a homeomorphism. (Hint: Imitate Proposition 7.3.)

7.3. Closedness of the diagonal of a Hausdorff space

Deduce Theorem 7.7 from Corollary 7.8. (Hint: To prove that if S/∼ is Hausdorff, then the

graph R of ∼ is closed in S× S, use the continuity of the projection map π : S→ S/∼. To

prove the reverse implication, use the openness of π .)

7.4.* Quotient of a sphere with antipodal points identified

Let Sn be the unit sphere centered at the origin in Rn+1. Define an equivalence relation ∼ on

Sn by identifying antipodal points:

x∼ y ⇐⇒ x =±y, x,y ∈ Sn.

(a) Show that ∼ is an open equivalence relation.

(b) Apply Theorem 7.7 and Corollary 7.8 to prove that the quotient space Sn/∼ is Hausdorff,

without making use of the homeomorphism RPn ≃ Sn/∼.

7.5.* Orbit space of a continuous group action

Suppose a right action of a topological group G on a topological space S is continuous; this

simply means that the map S×G→ S describing the action is continuous. Define two points

x,y of S to be equivalent if they are in the same orbit; i.e., there is an element g ∈ G such that

y = xg. Let S/G be the quotient space; it is called the orbit space of the action. Prove that the

projection map π : S→ S/G is an open map. (This problem generalizes Proposition 7.14, in

which G = R× =R−{0} and S =Rn+1−{0}. Because R× is commutative, a left R×-action

becomes a right R×-action if scalar multiplication is written on the right.)

7.6. Quotient of R by 2πZ
Let the additive group 2πZ act on R on the right by x · 2πn = x+2πn, where n is an integer.

Show that the orbit space R/2πZ is a smooth manifold.
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7.7. The circle as a quotient space

(a) Let {(Uα ,φα )}2
α=1 be the atlas of the circle S1 in Example 5.7, and let φ̄α be the map φα

followed by the projection R→R/2πZ. On U1∩U2 = A ∐ B, since φ1 and φ2 differ by an

integer multiple of 2π , φ̄1 = φ̄2. Therefore, φ̄1 and φ̄2 piece together to give a well-defined

map φ̄ : S1→ R/2πZ. Prove that φ̄ is C∞.

(b) The complex exponential R→ S1, t 7→ eit , is constant on each orbit of the action of 2πZ
on R. Therefore, there is an induced map F : R/2πZ→ S1, F([t]) = eit . Prove that F

is C∞.

(c) Prove that F : R/2πZ→ S1 is a diffeomorphism.

7.8. The Grassmannian G(k,n)
The Grassmannian G(k,n) is the set of all k-planes through the origin in Rn. Such a k-plane

is a linear subspace of dimension k of Rn and has a basis consisting of k linearly independent

vectors a1, . . . ,ak in Rn. It is therefore completely specified by an n×k matrix A = [a1 · · · ak]
of rank k, where the rank of a matrix A, denoted by rkA, is defined to be the number of linearly

independent columns of A. This matrix is called a matrix representative of the k-plane. (For

properties of the rank, see the problems in Appendix B.)

Two bases a1, . . . ,ak and b1, . . . ,bk determine the same k-plane if there is a change-of-

basis matrix g = [gi j] ∈ GL(k,R) such that

b j = ∑
i

aigi j, 1≤ i, j ≤ k.

In matrix notation, B = Ag.

Let F(k,n) be the set of all n× k matrices of rank k, topologized as a subspace of Rn×k,

and ∼ the equivalence relation

A∼ B iff there is a matrix g ∈ GL(k,R) such that B = Ag.

In the notation of Problem B.3, F(k,n) is the set Dmax in Rn×k and is therefore an open

subset. There is a bijection between G(k,n) and the quotient space F(k,n)/∼. We give the

Grassmannian G(k,n) the quotient topology on F(k,n)/∼.

(a) Show that ∼ is an open equivalence relation. (Hint: Either mimic the proof of Proposi-

tion 7.14 or apply Problem 7.5.)

(b) Prove that the Grassmannian G(k,n) is second countable. (Hint: Apply Corollary 7.10.)

(c) Let S = F(k,n). Prove that the graph R in S× S of the equivalence relation ∼ is closed.

(Hint: Two matrices A= [a1 · · · ak] and B= [b1 · · · bk] in F(k,n) are equivalent if and only

if every column of B is a linear combination of the columns of A if and only if rk[A B]≤ k

if and only if all (k+1)× (k+1) minors of [A B] are zero.)

(d) Prove that the Grassmannian G(k,n) is Hausdorff. (Hint: Mimic the proof of Proposi-

tion 7.16.)

Next we want to find a C∞ atlas on the Grassmannian G(k,n). For simplicity, we specialize to

G(2,4). For any 4×2 matrix A, let Ai j be the 2×2 submatrix consisting of its ith row and jth

row. Define

Vi j = {A ∈ F(2,4) | Ai j is nonsingular}.
Because the complement of Vi j in F(2,4) is defined by the vanishing of det Ai j, we conclude

that Vi j is an open subset of F(2,4).

(e) Prove that if A ∈Vi j, then Ag ∈Vi j for any nonsingular matrix g ∈ GL(2,R).
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Define Ui j = Vi j/∼. Since ∼ is an open equivalence relation, Ui j = Vi j/∼ is an open subset

of G(2,4).
For A ∈V12,

A∼ AA−1
12 =




1 0

0 1

∗ ∗
∗ ∗


=

[
I

A34A−1
12

]
.

This shows that the matrix representatives of a 2-plane in U12 have a canonical form B in

which B12 is the identity matrix.

(f) Show that the map φ̃12 : V12→ R2×2,

φ̃12(A) = A34A−1
12 ,

induces a homeomorphism φ12 : U12→ R2×2.

(g) Define similarly homeomorphisms φi j : Ui j→R2×2. Compute φ12 ◦ φ−1
23 , and show that it

is C∞.

(h) Show that {Ui j | 1 ≤ i < j ≤ 4} is an open cover of G(2,4) and that G(2,4) is a smooth

manifold.

Similar consideration shows that F(k,n) has an open cover {VI}, where I is a strictly

ascending multi-index 1≤ i1 < · · ·< ik ≤ n. For A ∈ F(k,n), let AI be the k× k submatrix of

A consisting of i1th, . . . , ikth rows of A. Define

VI = {A ∈ G(k,n) | det AI 6= 0}.

Next define φ̃I : VI → R(n−k)×k by

φ̃I(A) = (AA−1
I )I′ ,

where ( )I′ denotes the (n− k)× k submatrix obtained from the complement I′ of the multi-

index I. Let UI = VI/∼. Then φ̃ induces a homeomorphism φ : UI → R(n−k)×k. It is not

difficult to show that {(UI ,φI)} is a C∞ atlas for G(k,n). Therefore the Grassmannian G(k,n)
is a C∞ manifold of dimension k(n−k).

7.9.* Compactness of real projective space

Show that the real projective space RPn is compact. (Hint: Use Exercise 7.11.)
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