Chapter 2

Manifolds

Intuitively, a manifold is a generalization of curves and surfaces to higher dimen-
sions. It is locally Euclidean in that every point has a neighborhood, called a chart,
homeomorphic to an open subset of R”. The coordinates on a chart allow one to
carry out computations as though in a Euclidean space, so that many concepts from
R", such as differentiability, point-derivations, tangent spaces, and differential forms,
carry over to a manifold.

Like most fundamental mathematical concepts,
the idea of a manifold did not originate with a sin-
gle person, but is rather the distillation of years of
collective activity. In his masterpiece Disquisitiones
generales circa superficies curvas (“General Inves-
tigations of Curved Surfaces”) published in 1827,
Carl Friedrich Gauss freely used local coordinates
on a surface, and so he already had the idea of
charts. Moreover, he appeared to be the first to con-
sider a surface as an abstract space existing in its
own right, independent of a particular embedding in
a Euclidean space. Bernhard Riemann’s inaugural
lecture Uber die Hypothesen, welche der Geometrie
zu Grunde liegen (“On the hypotheses that under-

Bernhard Riemann lie geometry”) in Gottingen in 1854 laid the foun-

(1826-1866) dations of higher-dimensional differential geometry.

Indeed, the word “manifold” is a direct translation of

the German word “Mannigfaltigkeit,” which Riemann used to describe the objects of

his inquiry. This was followed by the work of Henri Poincaré in the late nineteenth

century on homology, in which locally Euclidean spaces figured prominently. The

late nineteenth and early twentieth centuries were also a period of feverish develop-

ment in point-set topology. It was not until 1931 that one finds the modern definition
of a manifold based on point-set topology and a group of transition functions [37].
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In this chapter we give the basic definitions and properties of a smooth manifold
and of smooth maps between manifolds. Initially, the only way we have to verify
that a space is a manifold is to exhibit a collection of C* compatible charts covering
the space. In Section 7 we describe a set of sufficient conditions under which a
quotient topological space becomes a manifold, giving us a second way to construct
manifolds.

65 Manifolds

While there are many kinds of manifolds—for example, topological manifolds, C*-
manifolds, analytic manifolds, and complex manifolds—in this book we are con-
cerned mainly with smooth manifolds. Starting with topological manifolds, which
are Hausdorff, second countable, locally Euclidean spaces, we introduce the concept
of a maximal C* atlas, which makes a topological manifold into a smooth manifold.
This is illustrated with a few simple examples.

5.1 Topological Manifolds

We first recall a few definitions from point-set topology. For more details, see Ap-
pendix A. A topological space is second countable if it has a countable basis. A
neighborhood of a point p in a topological space M is any open set containing p. An
open cover of M is a collection {Ugy}gea of open sets in M whose union Uy Un
is M.

Definition 5.1. A topological space M is locally Euclidean of dimension n if every
point p in M has a neighborhood U such that there is a homeomorphism ¢ from U
onto an open subset of R". We call the pair (U,¢: U — R") a chart, U a coordinate
neighborhood or a coordinate open set, and ¢ a coordinate map or a coordinate
system on U. We say that a chart (U, ¢) is centered at p € U if ¢(p) = 0.

Definition 5.2. A topological manifold is a Hausdorff, second countable, locally
Euclidean space. It is said to be of dimension n if it is locally Euclidean of dimen-
sion n.

For the dimension of a topological manifold to be well defined, we need to know
that for n # m an open subset of R” is not homeomorphic to an open subset of R”.
This fact, called invariance of dimension, is indeed true, but is not easy to prove
directly. We will not pursue this point, since we are mainly interested in smooth
manifolds, for which the analogous result is easy to prove (Corollary 8.7). Of course,
if a topological manifold has several connected components, it is possible for each
component to have a different dimension.
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Example. The Euclidean space R" is covered by a single chart (R”, 1), where
Tgn: R" — R” is the identity map. It is the prime example of a topological manifold.
Every open subset of R” is also a topological manifold, with chart (U, 1y).

Recall that the Hausdorff condition and second countability are “hereditary prop-
erties”; that is, they are inherited by subspaces: a subspace of a Hausdorff space is
Hausdorff (Proposition A.19) and a subspace of a second-countable space is second
countable (Proposition A.14). So any subspace of R” is automatically Hausdorff and
second countable.

Example 5.3 (A cusp). The graph of y = 3 inR?isa topological manifold (Fig-
ure 5.1(a)). By virtue of being a subspace of R?, it is Hausdorff and second count-
able. It is locally Euclidean, because it is homeomorphic to R via (x,x%/3) — x.

(a) Cusp (b) Cross
Fig. 5.1.

Example 5.4 (A cross). Show that the cross in R? in Figure 5.1 with the subspace
topology is not locally Euclidean at the intersection p, and so cannot be a topological
manifold.

Solution. Suppose the cross is locally Euclidean of dimension 7 at the point p. Then
p has a neighborhood U homeomorphic to an open ball B := B(0,&) C R"” with
p mapping to 0. The homeomorphism U — B restricts to a homeomorphism U —
{p} = B—{0}. Now B— {0} is either connected if n > 2 or has two connected
components if n = 1. Since U — {p} has four connected components, there can be
no homeomorphism from U — {p} to B— {0}. This contradiction proves that the
cross is not locally Euclidean at p. O

5.2 Compatible Charts

Suppose (U,¢: U — R") and (V,y: V — R") are two charts of a topological man-
ifold. Since UNYV is openin U and ¢: U — R" is a homeomorphism onto an open
subset of R”, the image ¢(U NV) will also be an open subset of R". Similarly,
y(UNV) is an open subset of R”.

Definition 5.5. Two charts (U,¢: U — R"), (V,y: V — R") of a topological
manifold are C*-compatible if the two maps
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poy Liy(UNV)=o(UNV), wod l:op(UNV)=y(UNV)

are C~ (Figure 5.2). These two maps are called the transition functions between
the charts. If U NV is empty, then the two charts are automatically C*-compatible.
To simplify the notation, we will sometimes write Uy for Ug NUp and Ugyg,, for
Uoa NUg NUy.

o(unv) U 14

Fig. 5.2. The transition function y o ¢ ! is defined on ¢ (U NV).

Since we are interested only in C*-compatible charts, we often omit mention of
“C*=” and speak simply of compatible charts.

Definition 5.6. A C* atlas or simply an atlas on a locally Euclidean space M is a
collection U = {(Uq, 9o ) } of pairwise C*-compatible charts that cover M, i.e., such
that M == U(X Ua.

- 0 T 2r U, U
1

¢!1(U1)C + 0
= 91(A) =t ¢1(B) —

o ; o0 (V)
= ¢2(B) =t ¢2(A) —

Fig. 5.3. A C* atlas on a circle.

Example 5.7 (A C” atlas on a circle). The unit circle S !'in the complex plane C may
be described as the set of points {¢” € C |0 < <2rm}. Let U; and U, be the two
open subsets of S! (see Figure 5.3)

U={"eC|-rn<t<n},
Uy={e"cC|0<t<2n},
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and define ¢y : Uy — R for a = 1,2 by
o1(e"=t, —m<t<m,
92(e")

Both ¢; and ¢, are branches of the complex log function (1/i)logz and are home-
omorphisms onto their respective images. Thus, (U;,¢;) and (Uy, ¢,) are charts on
SL. The intersection U; N U, consists of two connected components,

t, 0<t<2m.

A={e"|—m<t<0},
B={"|0<1t<m},

with

01(UiNU2) = 1 (A Ll B) = ¢1(A) LI 4(B) = ]—m,0[ Ll 10,7,
02(UiNU2) = 2(A L B) = 4o(A) 11 o(B) = |, 2z 11 10, 71.

Here we use the notation A 1I B to indicate a union in which the two subsets A and
B are disjoint. The transition function ¢ o ¢, ': ¢;(A LI B) — ¢»(A LI B) is given
by
_ t+2n forte]—m0,
(9200, )(1) = {

t forr €10, n].

Similarly,
t—2m forr e |m2m|,
t fort €10, 7|

(01 o¢2‘)(t>={

Therefore, (Uy,¢;) and (Uy, ¢,) are C*-compatible charts and form a C* atlas on S'.

Although the C* compatibility of charts is clearly reflexive and symmetric, it is
not transitive. The reason is as follows. Suppose (U, ¢;) is C*-compatible with
(Uz, ¢n), and (U, ¢ ) is C*-compatible with (Us, ¢3). Note that the three coordinate
functions are simultaneously defined only on the triple intersection Uj,3. Thus, the
composite

G300 = (0300, 0 (dr00))

is C*, but only on ¢ (Uj»3), not necessarily on ¢ (U;3) (Figure 5.4). A priori we
know nothing about ¢3 o ¢, " on ¢1(U1s — Upz3) and so we cannot conclude that
(U1, ¢1) and (Us, ¢3) are C*-compatible.

We say that a chart (V, y) is compatible with an atlas {(Uq, §¢ ) } if it is compat-
ible with all the charts (U, ¢ ) of the atlas.

Lemma 5.8. Let {(Ug, 9o )} be an atlas on a locally Euclidean space. If two charts
(V,w) and (W,0) are both compatible with the atlas {(Ugy, ¢o)}, then they are
compatible with each other.
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¢1(Ur23)

RN
N

(7

Fig. 5.4. The transition function ¢3 o ¢ Vis C on ¢ (U123).

v(p) do oy ! $a(p) Coog! a(p)

Fig. 5.5. Two charts (V, y), (W, 0) compatible with an atlas.

Proof. (See Figure 5.5.) Let p € VNW. We need to show that 6 o y~! is C at
y(p). Since {(Uq, 9o )} is an atlas for M, p € Uy for some o. Then p is in the triple
intersection VYW NUy.

By the remark above, 6o W' = (6005 "') o (Po o w1 is C* on w(VNWNUy),
hence at y(p). Since p was an arbitrary point of V \W, this proves that 6 o y~! is
C> on y(VNW). Similarly, ¥ o 6~ is C* on 6(V NW). O

Note that in an equality such as 6 o W~ = (60 95 ") o (¢¢ o W~ !) in the proof

above, the maps on the two sides of the equality sign have different domains. What
the equality means is that the two maps are equal on their common domain.

5.3 Smooth Manifolds

An atlas 901 on a locally Euclidean space is said to be maximal if it is not contained
in a larger atlas; in other words, if 4{ is any other atlas containing 91, then { = 9.
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Definition 5.9. A smooth or C* manifold is a topological manifold M together
with a maximal atlas. The maximal atlas is also called a differentiable structure
on M. A manifold is said to have dimension 7 if all of its connected components
have dimension n. A 1-dimensional manifold is also called a curve, a 2-dimensional
manifold a surface, and an n-dimensional manifold an n-manifold.

In Corollary 8.7 we will prove that if an open set U C R” is diffeomorphic to an
open set V. C R™, then n = m. As a consequence, the dimension of a manifold at a
point is well defined.

In practice, to check that a topological manifold M is a smooth manifold, it is
not necessary to exhibit a maximal atlas. The existence of any atlas on M will do,
because of the following proposition.

Proposition 5.10. Any atlas 4 = {(Ug,9¢)} on a locally Euclidean space is con-
tained in a unique maximal atlas.

Proof. Adjoin to the atlas [ all charts (V;, y;) that are compatible with 1. By Propo-
sition 5.8 the charts (V;, y;) are compatible with one another. So the enlarged collec-
tion of charts is an atlas. Any chart compatible with the new atlas must be compatible
with the original atlas 4( and so by construction belongs to the new atlas. This proves
that the new atlas is maximal.

Let 90 be the maximal atlas containing 4 that we have just constructed. If 9V is
another maximal atlas containing &{, then all the charts in 9 are compatible with [
and so by construction must belong to 91. This proves that D' C 9. Since both are
maximal, 9 = 9. Therefore, the maximal atlas containing ${ is unique. O

In summary, to show that a topological space M is a C* manifold, it suffices to
check that

(i) M is Hausdorff and second countable,
(i) M has a C* atlas (not necessarily maximal).

From now on, a “manifold” will mean a C** manifold. We use the terms “smooth”
and “C*” interchangeably. In the context of manifolds, we denote the standard coor-
dinates on R” by r!,...,7". If (U,¢: U — R") is a chart of a manifold, we let x' =
r' o ¢ be the ith component of ¢ and write ¢ = (x',...,x") and (U, ) = (U,x',...,x").
Thus, for p € U, (x'(p),...,x"(p)) is a point in R”. The functions x',...,x" are
called coordinates or local coordinates on U. By abuse of notation, we sometimes
omit the p. So the notation (x!,. .., x") stands alternately for local coordinates on the
open set U and for a point in R”. By a chart (U, ¢) about p in a manifold M, we will
mean a chart in the differentiable structure of M such that p € U.

5.4 Examples of Smooth Manifolds

Example 5.11 (Euclidean space). The Euclidean space R” is a smooth manifold with
a single chart (R”, r!, ..., "), where 7!, ..., 7" are the standard coordinates on R".
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Example 5.12 (Open subset of a manifold). Any open subset V of a manifold M is
also a manifold. If {(Ug,@q)} is an atlas for M, then {(Uy NV, ¢a|u, v} is an
atlas for V, where ¢q |y, nv: Ua NV — R" denotes the restriction of @, to the subset
UyNV.

Example 5.13 (Manifolds of dimension zero). In a manifold of dimension zero, every
singleton subset is homeomorphic to R? and so is open. Thus, a zero-dimensional
manifold is a discrete set. By second countability, this discrete set must be countable.

Example 5.14 (Graph of a smooth function). For a subset of A C R” and a function
f: A— R™, the graph of f is defined to be the subset (Figure 5.6)

L(f) ={(x,f(x)) e AxR"}.
If U is an open subset of R” and f: U — R" is C™, then the two maps
Rm
(x,f(x))

A~
[ ]
-

R}’l

f U |

Fig. 5.6. The graph of a smooth function f: R" DU — R".

¢:T(f)=U,  (xfx)—=x

and
(LA:U=T(),  xe(xf(x),

are continuous and inverse to each other, and so are homeomorphisms. The graph
I'(f) of a C* function f: U — R has an atlas with a single chart (I'(f),¢), and is
therefore a C* manifold. This shows that many of the familiar surfaces of calculus,
for example an elliptic paraboloid or a hyperbolic paraboloid, are manifolds.

Example 5.15 (General linear groups). For any two positive integers m and n let
R™ 7 be the vector space of all m x n matrices. Since R"*" is isomorphic to R™",
we give it the topology of R™". The general linear group GL(n,RR) is by definition

GL(n,R) := {A € R™" | det A # 0} = det”' (R —{0}).

Since the determinant function
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det: R™" - R

is continuous, GL(n,R) is an open subset of R"*" ~ R" and is therefore a manifold.

The complex general linear group GL(n,C) is defined to be the group of non-
singular n X n complex matrices. Since an n X n matrix A is nonsingular if and only
if detA £ 0, GL(n,C) is an open subset of C"*" ~ Rz”z, the vector space of n x n
complex matrices. By the same reasoning as in the real case, GL(n,C) is a manifold
of dimension 2n?.

U,

W o | 03

%)

Fig. 5.7. Charts on the unit circle.

Example 5.16 (Unit circle in the (x,y)-plane). In Example 5.7 we found a C* atlas
with two charts on the unit circle S' in the complex plane C. It follows that S' is
a manifold. We now view S! as the unit circle in the real plane R? with defining
equation X2+ y2 =1, and describe a C* atlas with four charts on it.

We can cover S! with four open sets: the upper and lower semicircles Uy, Us,
and the right and left semicircles U3, Uy (Figure 5.7). On U; and U,, the coordinate
function x is a homeomorphism onto the open interval |— 1, 1] on the x-axis. Thus,
¢i(x,y) = x for i = 1,2. Similarly, on Uz and Uy, y is a homeomorphism onto the
open interval |— 1, 1] on the y-axis, and so ¢;(x,y) =y fori =3,4.

Itis easy to check that on every nonempty pairwise intersection Uq NUg, @ o 0!
is C*. For example, on U; N U3,

(03297 1)(0) = 93 (xV1-22) = V12,
which is C*. On U, NUy,
(0295 1)() = 94 (x,—V1-2) = =V1 -2,
which is also C*. Thus, {(U;, (]),-)}?:1 is a C= atlas on S'.

Example 5.17 (Product manifold). If M and N are C* manifolds, then M x N with
its product topology is Hausdorff and second countable (Corollary A.21 and Propo-
sition A.22). To show that M x N is a manifold, it remains to exhibit an atlas on it.
Recall that the product of two set maps f: X — X' andg: ¥ — Y’ is

[xg X xY =X, (fxg)xy)=(f(x).8(r))-
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Proposition 5.18 (An atlas for a product manifold). If {(Uq, o)} and {(Vi,y;)}
are C* atlases for the manifolds M and N of dimensions m and n, respectively, then
the collection

{(Ug X Vi, 0 X Wi: Uy x Vi = R™ x R")}

of charts is a C™ atlas on M x N. Therefore, M X N is a C™ manifold of dimension
m-+n.

Proof. Problem 5.5. a

Example. Tt follows from Proposition 5.18 that the infinite cylinder S' x R and the
torus S x S! are manifolds (Figure 5.8).

— ~

~ -

Infinite cylinder. Torus.

Fig. 5.8.

Since M x N x P = (M x N) x P is the successive product of pairs of spaces, if
M, N, and P are manifolds, then so is M x N x P. Thus, the n-dimensional torus
St x - x S! (n times) is a manifold.

Remark. Let S be the unit sphere
(X1)2 + (X2)2 N (xn+1)2 -1

in R"*!. Using Problem 5.3 as a guide, it is easy to write down a C* atlas on S",
showing that §" has a differentiable structure. The manifold $” with this differen-
tiable structure is called the standard n-sphere.

One of the most surprising achievements in topology was John Milnor’s dis-
covery [27] in 1956 of exotic 7-spheres, smooth manifolds homeomorphic but not
diffeomorphic to the standard 7-sphere. In 1963, Michel Kervaire and John Milnor
[24] determined that there are exactly 28 nondiffeomorphic differentiable structures
onS’.

It is known that in dimensions < 4 every topological manifold has a unique dif-
ferentiable structure and in dimensions > 4 every compact topological manifold has
a finite number of differentiable structures. Dimension 4 is a mystery. It is not known
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whether $* has a finite or infinite number of differentiable structures. The statement
that $* has a unique differentiable structure is called the smooth Poincaré conjecture.
As of this writing in 2010, the conjecture is still open.

There are topological manifolds with no differentiable structure. Michel Kervaire
was the first to construct an example [23].

Problems

5.1. The real line with two origins
Let A and B be two points not on the real line R. Consider the set S = (R — {0}) U{A, B} (see
Figure 5.9).

A

B

Fig. 5.9. Real line with two origins.

For any two positive real numbers ¢, d, define
IA(_Cvd) = ]—C,O[ U {A} U ]O/d[

and similarly for Ig(—c,d), with B instead of A. Define a topology on S as follows: On
(R —{0}), use the subspace topology inherited from R, with open intervals as a basis. A basis
of neighborhoods at A is the set {I4(—c,d) | ¢,d > 0}; similarly, a basis of neighborhoods at
Bis {Ig(—c,d) | c,d > 0}.

(a) Prove that the map h: Iy(—c,d) — ]— c¢,d| defined by

h(x)=x forxe]|—c,0[U]0,d],
h(A)=0

is a homeomorphism.

(b) Show that S is locally Euclidean and second countable, but not Hausdorff.

5.2. A sphere with a hair

A fundamental theorem of topology, the theorem on invariance of dimension, states that if two
nonempty open sets U C R" and V C R are homeomorphic, then n = m (for a proof, see [18,
p. 126]). Use the idea of Example 5.4 as well as the theorem on invariance of dimension to
prove that the sphere with a hair in R? (Figure 5.10) is not locally Euclidean at g. Hence it
cannot be a topological manifold.
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N

Fig. 5.10. A sphere with a hair.

5.3. Charts on a sphere
Let S be the unit sphere

Py 42 =1

in R3. Define in $? the six charts corresponding to the six hemispheres—the front, rear, right,

left, upper, and lower hemispheres (Figure 5.11):

Up ={(x,,2) € $* | x>0},

={(xy2) €S |x <0},

{(xy2) € 8%y >0},

{(vy.2) €8? |y <0},
(
(

U
Us
Uy
Us
Us

{(x,y.2) € $*| 2> 0},
{(x,y.2) € $* |2 <0},

¢1(x,3,2) = (v,2),
$2(x,y,2) = (,2),
$3(x,5,2) = (x,2),
P4 (x,y,2) = (x,2),
5 (x,,2) = (x,y),
P6(x,3,2) = (x,).

Describe the domain ¢4(Uy4) of ¢ o ¢4’1 and show that ¢ o ¢;1 is C* on ¢4(Uy4). Do the

same for ¢ o ¢;1.

Y Q0

Fig. 5.11. Charts on the unit sphere.

5.4.*% Existence of a coordinate neighborhood

Let {(Uq,9q)} be the maximal atlas on a manifold M. For any open set U in M and a point
p € U, prove the existence of a coordinate open set Uqy such that p € Uy C U.

5.5. An atlas for a product manifold
Prove Proposition 5.18.
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§6 Smooth Maps on a Manifold

Now that we have defined smooth manifolds, it is time to consider maps between
them. Using coordinate charts, one can transfer the notion of smooth maps from
Euclidean spaces to manifolds. By the C* compatibility of charts in an atlas, the
smoothness of a map turns out to be independent of the choice of charts and is there-
fore well defined. We give various criteria for the smoothness of a map as well as
examples of smooth maps.

Next we transfer the notion of partial derivatives from Euclidean space to a co-
ordinate chart on a manifold. Partial derivatives relative to coordinate charts allow
us to generalize the inverse function theorem to manifolds. Using the inverse func-
tion theorem, we formulate a criterion for a set of smooth functions to serve as local
coordinates near a point.

6.1 Smooth Functions on a Manifold

=

Fig. 6.1. Checking that a function f is C* at p by pulling back to R”.

Definition 6.1. Let M be a smooth manifold of dimension . A function f: M — R
is said to be C* or smooth at a point p in M if there is a chart (U, ¢) about p in M
such that f o ¢!, a function defined on the open subset ¢ (U) of R”, is C* at ¢(p)
(see Figure 6.1). The function f is said to be C* on M if it is C™ at every point of M.

Remark 6.2. The definition of the smoothness of a function f at a point is indepen-

dent of the chart (U, ¢), for if fo ¢! is C* at ¢(p) and (V,y) is any other chart
about p in M, then on w(UNV),

fow '=(fodp No(poy™),

which is C* at y(p) (see Figure 6.2).
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poy!

Fig. 6.2. Checking that a function f is C™ at p via two charts.

In Definition 6.1, f: M — R is not assumed to be continuous. However, if f is
C*atpeM,then fod~': ¢(U) — R, being a C* function at the point ¢(p) in an
open subset of R”, is continuous at ¢(p). As a composite of continuous functions,
f=(fo0"1) 0 ¢ is continuous at p. Since we are interested only in functions that
are smooth on an open set, there is no loss of generality in assuming at the outset that
f is continuous.

Proposition 6.3 (Smoothness of a real-valued function). Let M be a manifold of
dimension n, and f: M — R a real-valued function on M. The following are equiv-
alent:

(1) The function f: M — R is C~.
(ii) The manifold M has an atlas such that for every chart (U,9) in the atlas,
fop lR'"D9(U) = RisC™.
(iii) For every chart (V, ) on M, the function f o w1 : R" D y(V) — R is C*.

Proof. We will prove the proposition as a cyclic chain of implications.
(il) = (i): This follows directly from the definition of a C* function, since by (ii)
every point p € M has a coordinate neighborhood (U, ¢) such that f o ¢! is C* at
¢(p).
(i) = (iii): Let (V,y) be an arbitrary chart on M and let p € V. By Remark 6.2,
fow lisC*at w(p). Since p was an arbitrary point of V, f o y~!is C** on y(V).
(iii) = (ii): Obvious. O
The smoothness conditions of Proposition 6.3 will be a recurrent motif through-
out the book: to prove the smoothness of an object, it is sufficient that a smoothness
criterion hold on the charts of some atlas. Once the object is shown to be smooth, it
then follows that the same smoothness criterion holds on every chart on the manifold.

Definition 6.4. Let F: N — M be a map and 4 a function on M. The pullback of h
by F, denoted by F*h, is the composite function /2 o F'.

In this terminology, a function f on M is C* on a chart (U, ¢) if and only if its
pullback (¢~1)* f by ¢! is C* on the subset ¢ (U) of Euclidean space.
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6.2 Smooth Maps Between Manifolds

We emphasize again that unless otherwise specified, by a manifold we always mean
a C* manifold. We use the terms “C™” and “smooth” interchangeably. An atlas or a
chart on a smooth manifold means an atlas or a chart contained in the differentiable
structure of the smooth manifold. We generally denote a manifold by M and its
dimension by n. However, when speaking of two manifolds simultaneously, as in a
map f: N — M, we will let the dimension of N be n and that of M be m.

Definition 6.5. Let N and M be manifolds of dimension n and m, respectively. A
continuous map F: N — M is C* at a point p in N if there are charts (V, ) about
F(p) in M and (U,¢) about p in N such that the composition ¥ o F o ¢!, a map
from the open subset ¢(F~!(V)NU) of R" to R™, is C* at ¢(p) (see Figure 6.3).
The continuous map F': N — M is said to be C™ if it is C™ at every point of N.

Fig. 6.3. Checking that amap F: N — M is C* at p.

In Definition 6.5, we assume F : N — M continuous to ensure that F (V') is an
open set in N. Thus, C* maps between manifolds are by definition continuous.

Remark 6.6 (Smooth maps into R™). In case M = R™, we can take (R”, 1gm) as a
chart about F(p) in R™. According to Definition 6.5, F: N — R is C* at p € N if
and only if there is a chart (U, ¢) about p in N such that F o ¢ ~': ¢(U) — R™ is C*
at ¢(p). Letting m = 1, we recover the definition of a function being C* at a point.

We show now that the definition of the smoothness of a map F: N — M at a point
is independent of the choice of charts. This is analogous to how the smoothness of a
function N — R at p € N is independent of the choice of a chart on N about p.

Proposition 6.7. Suppose F: N — M is C* at p € N. If (U, ¢) is any chart about p
in N and (V,y) is any chart about F (p) in M, then W o F o ¢! is C* at ¢(p).

Proof. Since F is C* at p € N, there are charts (Ug, ¢o) about p in N and (Vg, wp)
about F(p) in M such that g o F o g Uis C* at ¢ (p). By the C* compatibility
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of charts in a differentiable structure, both ¢y o ¢! and v o Vs !"are C* on open
subsets of Euclidean spaces. Hence, the composite

YoF o ' =(yowy!)o(WpoFody')o(9aod)
isC*at¢(p). O

The next proposition gives a way to check smoothness of a map without specify-
ing a point in the domain.

Proposition 6.8 (Smoothness of a map in terms of charts). Let N and M be smooth
manifolds, and F : N — M a continuous map. The following are equivalent:

(i) The map F: N — M is C™.
(ii) There are atlases A for N and G for M such that for every chart (U, ¢) in i\ and
(V,v) in*G, the map

VoFod L g(UNFL(V)) = R™

is C*.
(iii) For every chart (U,9) on N and (V,y) on M, the map

VoFod L g(UNFL(V)) = R™
is C*.

Proof. (ii) = (i): Let p € N. Suppose (U, ¢) is a chart about p in $ and (V,y) is a
chart about F(p) in 0. By (ii), W o F o ¢! is C* at ¢(p). By the definition of a C*
map, F: N — M is C™ at p. Since p was an arbitrary point of N, the map F': N - M
is C”.

(i) = (iii): Suppose (U, ¢) and (V, y) are charts on N and M respectively such that
UNF~Y(V)#@.Let pe UNF~(V). Then (U, 9) is a chart about p and (V, y) is
a chart about F(p). By Proposition 6.7, w o F o ¢! is C* at ¢(p). Since ¢(p) was
an arbitrary point of ¢(UNF~1(V)), themap wo Fo ¢~ ': ¢(UNF~1(V)) = R™
is C”.

(iii) = (ii): Clear. 0

Proposition 6.9 (Composition of C* maps). If F: N — M and G: M — P are C*
maps of manifolds, then the composite Go F: N — P is C™.

Proof. Let (U,¢), (V,y), and (W, o) be charts on N, M, and P respectively. Then
Go(GoF)og ™' =(0oGoy o(yoFop™").
Since F and G are C*, by Proposition 6.8(i)=>(iii), 6 0o Go w ! and y o F o ¢! are

C™. As a composite of C* maps of open subsets of Euclidean spaces, 6 o (Go F) o
¢! is C*. By Proposition 6.8(iii)=(i), G o F is C*. a
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6.3 Diffeomorphisms

A diffeomorphism of manifolds is a bijective C** map F : N — M whose inverse F~!
is also C*. According to the next two propositions, coordinate maps are diffeomor-
phisms, and conversely, every diffeomorphism of an open subset of a manifold with
an open subset of a Euclidean space can serve as a coordinate map.

Proposition 6.10. If (U, ) is a chart on a manifold M of dimension n, then the
coordinate map ¢ : U — ¢(U) C R" is a diffeomorphism.

Proof. By definition, ¢ is a homeomorphism, so it suffices to check that both ¢
and ¢! are smooth. To test the smoothness of ¢: U — ¢(U), we use the atlas
{(U,9)} with a single chart on U and the atlas {(¢(U),14))} with a single chart
on ¢(U). Since Lypyo ¢ o 0~ 9(U) — o(U) is the 1dent1ty map, it is C*.
Proposition 6. 8(11):>(1) ¢ is C™.

To test the smoothness of ¢~!: ¢(U) — U, we use the same atlases as above.
Since ¢ 0 ¢! o Ly () = Lg(p): 9(U) = ¢(U), the map ¢~ is also C*. O

Proposition 6.11. Let U be an open subset of a manifold M of dimension n. If
F:U — F(U) C R" is a diffeomorphism onto an open subset of R", then (U,F)
is a chart in the differentiable structure of M.

Proof. For any chart (Uy, ¢¢) in the maximal atlas of M, both ¢q and ¢! are C*
by Proposition 6.10. As composites of C* maps, both F o ¢, ' and ¢¢ o F~! are C*.
Hence, (U, F) is compatible with the maximal atlas. By the maximality of the atlas,
the chart (U, F) is in the atlas. O

6.4 Smoothness in Terms of Components

In this subsection we derive a criterion that reduces the smoothness of a map to the
smoothness of real-valued functions on open sets.

Proposition 6.12 (Smoothness of a vector-valued function). Let N be a manifold
and F: N — R"™ a continuous map. The following are equivalent:

(i) The map F: N — R™ is C™.
(ii) The manifold N has an atlas such that for every chart (U, @) in the atlas, the
map F o ¢~ ': ¢(U) — R™ is C.
(iii) For every chart (U,¢) on N, themap F o ¢ '+ ¢(U) — R™ is C*.

Proof. (i1) = (i): In Proposition 6.8(ii), take *U to be the atlas with the single chart
(Rm, ]lRm) on M =R™,

(i) = (iii): In Proposition 6.8(iii), let (V, y) be the chart (R™, 1gn) on M = R™.
(iii) = (ii): Obvious. a

Proposition 6.13 (Smoothness in terms of components). Let N be a manifold. A
vector-valued function F: N — R is C* if and only if its component functions
F'....,F": N =R are all C*.
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Proof.
The map F: N - R"is C”

<= for every chart (U,¢) on N, the map F o ¢—': ¢(U) — R™ is C* (by Proposi-
tion 6.12)

<= for every chart (U,¢) on N, the functions F' o ¢~ ': ¢(U) — R are all C
(definition of smoothness for maps of Euclidean spaces)

<= the functions F': N — R are all C* (by Proposition 6.3). a

Exercise 6.14 (Smoothness of a map to a circle).* Prove that the map F: R — S!, F(r) =
(cost,sint) is C*.

Proposition 6.15 (Smoothness of a map in terms of vector-valued functions). Let
F: N — M be a continuous map between two manifolds of dimensions n and m
respectively. The following are equivalent:

(i) The map F: N — M is C™.
(ii) The manifold M has an atlas such that for every chart (V,w) = (V,y',...,y") in
the atlas, the vector-valued function W o F: F~1(V) — R™ is C*.
(iii) For every chart (V,w) = (V,y',...,y"™) on M, the vector-valued function y o F :
F7Y V) = R™is C*.

Proof. (ii) = (i): Let ¥ be the atlas for M in (ii), and let & = {(U,9)} be
an arbitrary atlas for N. For each chart (V,y) in the atlas U, the collection
{(UNF'(V),9lyrr-1(v))} is an atlas for F~'(V). Since y o F: F~'(V) — R”
is C, by Proposition 6.12(i)=>(iii),

VoFo¢ i p(UNFHV)) = R™

is C*. It then follows from Proposition 6.8(ii)=-(i) that F: N — M is C™.

(i) = (iii): Being a coordinate map, Y is C* (Proposition 6.10). As the composite of
two C* maps, Yo F is C”.

(iii) = (ii): Obvious. a

By Proposition 6.13, this smoothness criterion for a map translates into a smooth-
ness criterion in terms of the components of the map.

Proposition 6.16 (Smoothness of a map in terms of components). Let F: N — M
be a continuous map between two manifolds of dimensions n and m respectively. The
following are equivalent:

(i) The map F: N — M is C™.

(ii) The manifold M has an atlas such that for every chart (V,w) = (V,y!,....y") in
the atlas, the components y' o F: F~1(V) — R of F relative to the chart are all
c=.

(iii) For every chart (V,y) = (V,y',...,y") on M, the componentsy' o F: F~1(V) —
R of F relative to the chart are all C*™.
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6.5 Examples of Smooth Maps

We have seen that coordinate maps are smooth. In this subsection we look at a few
more examples of smooth maps.

Example 6.17 (Smoothness of a projection map). Let M and N be manifolds and
w: M xN— M, n(p,q) = p the projection to the first factor. Prove that 7 is a C*
map.

Solution. Let (p,q) be an arbitrary point of M x N. Suppose (U,¢) = (U,x',...,x")
and (V,y) = (V,y',...,y") are coordinate neighborhoods of p and ¢ in M and N
respectively. By Proposition 5.18, (U x V,¢ x w) = (U x V,x', ... ¥,y ... ,y") is
a coordinate neighborhood of (p,q). Then

(pomo (P x l[l)_l) (@',....a"b',....b") = (a',...,a"™),

which is a C* map from (¢ x y)(U x V) in R"*" to ¢(U) in R™, so w is C™ at (p, q).
Since (p,q) was an arbitrary point in M x N, 7 is C* on M X N.

Exercise 6.18 (Smoothness of a map to a Cartesian product).* Let M|, M;, and N be
manifolds of dimensions my, my, and n respectively. Prove that a map (f1, f2): N — M X M,
is C” if and only if f;: N — M;, i = 1,2, are both C*.

Example 6.19. In Examples 5.7 and 5.16 we showed that the unit circle S! defined by
x?+y? =1in R? is a C* manifold. Prove that a C** function f(x,y) on R? restricts
to a C* function on S'.

Solution. To avoid confusing functions with points, we will denote a point on §'
as p = (a,b) and use x, y to mean the standard coordinate functions on R2. Thus,
x(a,b) =aand y(a,b) = b. Suppose we can show that x and y restrict to C** functions
on S'. By Exercise 6.18, the inclusion map i: S' — R2, i(p) = (x(p),y(p)) is then
C=on S'. As the composition of C* maps, flgt = foiwillbe C* on S! (Proposition
6.9).

Consider first the function x. We use the atlas (U;, ¢;) from Example 5.16. Since
x is a coordinate function on U; and on U,, by Proposition 6.10 it is C* on U UU, =
S' —{(£1,0)}. To show that x is C* on Us, it suffices to check the smoothness of
Xo(]);li 03 (U3) — R:

(vo05") (0) =x(V1-2b) =1 -12
On Ui, we have b # +1, so that V1 — b2 is a C* function of b. Hence, x is C* on Us.

OnU4,
(xo 0,1 (b) :x(—\/l —b2,b) — 1=,

which is C* because b is not equal to +1. Since x is C* on the four open sets Uy, U,,
Us, and Uy, which cover S', x is C* on S'.
The proof that y is C* on S! is similar.
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Armed with the definition of a smooth map between manifolds, we can define a
Lie group.

Definition 6.20. A Lie group' is a C* manifold G having a group structure such
that the multiplication map
U:GxG—G

and the inverse map
1:G—=G, 1(x)=x",

are both C*.

Similarly, a topological group is a topological space having a group structure
such that the multiplication and inverse maps are both continuous. Note that a topo-
logical group is required to be a topological space, but not a topological manifold.

Examples.
(1) The Euclidean space R” is a Lie group under addition.
(i1) The set C* of nonzero complex numbers is a Lie group under multiplication.
(iii) The unit circle S' in C* is a Lie group under multiplication.
(iv) The Cartesian product G1 X G, of two Lie groups (G1, ) and (G3, L) is a Lie
group under coordinatewise multiplication t; X L.

Example 6.21 (General linear group). In Example 5.15 we defined the general linear
group

GL(n,R) = {A = [a;;] € R"*" | det A # 0}.
As an open subset of R"*”, it is a manifold. Since the (i, j)-entry of the product of
two matrices A and B in GL(n,R),

n

(AB)ij =Y auby;,
k=1

is a polynomial in the coordinates of A and B, matrix multiplication
u: GL(n,R) x GL(n,R) — GL(n,R)

is a C* map.

Recall that the (i, j)-minor of a matrix A is the determinant of the submatrix of
A obtained by deleting the ith row and the jth column of A. By Cramer’s rule from
linear algebra, the (i, j)-entry of A~! is

1

~ detA (_1)i+j((j7i)-minor of A),

(AN

which is a C* function of the a;;’s provided det A # 0. Therefore, the inverse map
1: GL(n,R) — GL(n,R) is also C*. This proves that GL(n,R) is a Lie group.

ILie groups and Lie algebras are named after the Norwegian mathematician Sophus Lie
(1842-1899). In this context, “Lie” is pronounced “lee,” not “lye.”
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In Section 15 we will study less obvious examples of Lie groups.

NOTATION. The notation for matrices presents a special challenge. An n X n matrix
A can represent a linear transformation y = Ax, with x,y € R”. In this case, y' =
Y, aix/, 50 A= [d}]. Annx n matrix can also represent a bilinear form (x,y) = x" Ay
with x,y € R”. In this case, (x,y) = ¥; jx'a;jy/, 50 A = [a;j]. In the absence of any
context, we will write a matrix as A = [q; j], using a lowercase letter a to denote an
entry of a matrix A and using a double subscript ( );; to denote the (i, j)-entry.

6.6 Partial Derivatives

On a manifold M of dimension n, let (U, ) be a chart and f a C* function As a
function into R”, ¢ has n components x',...,x". This means that if ' ..., 7" are
the standard coordinates on R”, then x' = 7’ o ¢. For p € U, we define the partial
derivative d f /dx' of f with respect to x' at p to be

8 o -1
O] = =2V 0 oy = 2,

) "o (p)

(foo ).

Since p = ¢~ (¢(p)), this equation may be rewritten in the form

8 o -1
3)]:,- (07 (0(p)) = (fgr? )(¢(p))-

Thus, as functions on ¢(U),
af oqu _ a(f°¢_1)
ox ort

The partial derivative d f/dx’ is C on U because its pullback (9 f/dx') o« ¢! is C
on ¢(U).

In the next proposition we see that partial derivatives on a manifold satisfy the
same duality property dr'/dr/ = §; as the coordinate functions r' on R”.

Proposition 6.22. Suppose (U,x',...,x") is a chart on a manifold. Then dx' | dx/ = 5;
Proof. Ata point p € U, by the definition of 9 /dx/|,,
ox! d(xop!) d(rrogoo) or ;

Definition 6.23. Let F: N — M be a smooth map, and let (U,¢) = (U,x!,...,x")
and (V,y) = (V,y',...,y™) be charts on N and M respectively such that F (U) C V.
Denote by

Fii=y oF=royoF:U—R
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the ith component of F in the chart (V,y). Then the matrix [dF/dx/] is called
the Jacobian matrix of F relative to the charts (U,¢) and (V,y). In case N and
M have the same dimension, the determinant det[dF'/dx’] is called the Jacobian

determinant of F relative to the two charts. The Jacobian determinant is also written
as A(F',... ,F")/d(x!,... .x").

When M and N are open subsets of Euclidean spaces and the charts are w,r!,
., P) and (V,r! ..., /"), the Jacobian matrix [0F'/dr/], where F' = r' o F, is the
usual Jacobian matrix from calculus.

Example 6.24 (Jacobian matrix of a transition map). Let (U, ¢) = (U,x',...,x") and
(V,w) = (V,y',...,y") be overlapping charts on a manifold M. The transition map
vod ' ¢(UNV) — w(UNV) is a diffeomorphism of open subsets of R”. Show
that its Jacobian matrix J(y o ¢ ~!) at ¢(p) is the matrix [dy'/dx/] of partial deriva-
tives at p.

Solution. By definition, J(y o ¢ ') = [d(y o ¢~)'/dr/], where

d o ~1)i 0 rio o -1 d U -1 i
W0 o =" ¥ oo = 2O (g = 2.

6.7 The Inverse Function Theorem

By Proposition 6.11, any diffeomorphism F: U — F(U) C R" of an open subset U
of a manifold may be thought of as a coordinate system on U. We say that a C*
map F': N — M is locally invertible or a local diffeomorphism at p € N if p has a
neighborhood U on which F|y: U — F(U) is a diffeomorphism.

Given n smooth functions F',...,F" in a neighborhood of a point p in a man-
ifold N of dimension n, one would like to know whether they form a coordinate
system, possibly on a smaller neighborhood of p. This is equivalent to whether
F = (F',...,F"): N — R" is a local diffeomorphism at p. The inverse function
theorem provides an answer.

Theorem 6.25 (Inverse function theorem for R"). Let F: W — R" be a C* map
defined on an open subset W of R". For any point p in W, the map F is locally
invertible at p if and only if the Jacobian determinant det[dF" /dr’ (p)] is not zero.

This theorem is usually proved in an undergraduate course on real analysis. See
Appendix B for a discussion of this and related theorems. Because the inverse func-
tion theorem for R” is a local result, it easily translates to manifolds.

Theorem 6.26 (Inverse function theorem for manifolds). Let F: N — M be a C*
map between two manifolds of the same dimension, and p € N. Suppose for some
charts (U,¢) = (U,x',...,x") about p in N and (V,y) = (V,y',...,y") about F(p)
inM, F(U)CV. Set F' =y o F. Then F is locally invertible at p if and only if its
Jacobian determinant det[dF'/dx'(p)] is nonzero.
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Fig. 6.4. The map F is locally invertible at p because W o F o ¢! is locally invertible at d(p).

Proof. Since F! =y' o F = r' o y o F, the Jacobian matrix of F relative to the charts
(U,9) and (V,y) is

)] =[] < [P D ).

which is precisely the Jacobian matrix at ¢ (p) of the map
VoFod LR"D9(U) — w(V) CR"
between two open subsets of R”. By the inverse function theorem for R”,

i rio o ) -1
det{gii(p)}:det{& ("’a: ¢ )(¢(p)) #0

if and only if ¥ o F o ¢! is locally invertible at ¢(p). Since ¥ and ¢ are diffeomor-
phisms (Proposition 6.10), this last statement is equivalent to the local invertibility
of F at p (see Figure 6.4). a

We usually apply the inverse function theorem in the following form.

Corollary 6.27. Let N be a manifold of dimension n. A set of n smooth func-
tions F',... F" defined on a coordinate neighborhood (U,xl,...,x”) of a point
p € N forms a coordinate system about p if and only if the Jacobian determinant
det[dF"/dx/ (p)] is nonzero.

Proof. Let F = (F',...,F"): U — R". Then

det[dF'/dx/ (p)] #0

<= F: U — R"is locally invertible at p (by the inverse function theorem)

<= there is a neighborhood W of p in N such that F: W — F(W) is a diffeomor-
phism (by the definition of local invertibility)
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<~ (W,F ' ... F ") is a coordinate chart about p in the differentiable structure of
N (by Proposition 6.11). O

Example. Find all points in R? in a neighborhood of which the functions x> +y> — 1,y
can serve as a local coordinate system.

Solution. Define F: R? — R? by
F(x7y) = (x2+y2_ 10’) .

The map F can serve as a coordinate map in a neighborhood of p if and only if it is
a local diffeomorphism at p. The Jacobian determinant of F is

J (F17F2) 2x 2y
s 93] =2

By the inverse function theorem, F is a local diffeomorphism at p = (x,y) if and only
if x #£ 0. Thus, F can serve as a coordinate system at any point p not on the y-axis.

Problems

6.1. Differentiable structures on R

Let R be the real line with the differentiable structure given by the maximal atlas of the chart
(R, =1: R — R), and let R’ be the real line with the differentiable structure given by the
maximal atlas of the chart (R, y: R — R), where w(x) = x!/3.

(a) Show that these two differentiable structures are distinct.
(b) Show that there is a diffeomorphism between R and R’. (Hint: The identity map R — R
is not the desired diffeomorphism; in fact, this map is not smooth.)

6.2. The smoothness of an inclusion map
Let M and N be manifolds and let go be a point in N. Prove that the inclusion map iy, : M —

M x N, ig(p) = (p,q0),1s C~.

6.3.* Group of automorphisms of a vector space

Let V be a finite-dimensional vector space over R, and GL(V) the group of all linear auto-
morphisms of V. Relative to an ordered basis e = (ey,...,e,) for V, a linear automorphism
L € GL(V) is represented by a matrix [aj-] defined by

L(ej) = Zaﬂ-ei.
1
The map
¢.: GL(V) — GL(n,R),
L+ [a;}.,
is a bijection with an open subset of R"*" that makes GL(V) into a C* manifold, which we

denote temporarily by GL(V),. If GL(V), is the manifold structure induced from another
ordered basis u = (uy,...,uy) for V, show that GL(V), is the same as GL(V),,.

6.4. Local coordinate systems
Find all points in R3ina neighborhood of which the functions x, 2+ y2 +72— 1, z can serve
as a local coordinate system.
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67 Quotients

Gluing the edges of a malleable square is one way to create new surfaces. For ex-
ample, gluing together the top and bottom edges of a square gives a cylinder; gluing
together the boundaries of the cylinder with matching orientations gives a torus (Fig-
ure 7.1). This gluing process is called an identification or a quotient construction.

WW®W@

Fig. 7.1. Gluing the edges of a malleable square.

The quotient construction is a process of simplification. Starting with an equiv-
alence relation on a set, we identify each equivalence class to a point. Mathematics
abounds in quotient constructions, for example, the quotient group, quotient ring,
or quotient vector space in algebra. If the original set is a topological space, it is
always possible to give the quotient set a topology so that the natural projection map
becomes continuous. However, even if the original space is a manifold, a quotient
space is often not a manifold. The main results of this section give conditions under
which a quotient space remains second countable and Hausdorff. We then study real
projective space as an example of a quotient manifold.

Real projective space can be interpreted as a quotient of a sphere with antipodal
points identified, or as the set of lines through the origin in a vector space. These
two interpretations give rise to two distinct generalizations—covering maps on the
one hand and Grassmannians of k-dimensional subspaces of a vector space on the
other. In one of the exercises, we carry out an extensive investigation of G(2,4), the
Grassmannian of 2-dimensional subspaces of R*.

7.1 The Quotient Topology

Recall that an equivalence relation on a set S is a reflexive, symmetric, and transitive
relation. The equivalence class [x] of x € S is the set of all elements in S equivalent
to x. An equivalence relation on S partitions S into disjoint equivalence classes. We
denote the set of equivalence classes by S/~ and call this set the quotient of S by
the equivalence relation ~. There is a natural projection map m: S — S/~ that sends
x € S to its equivalence class [x].

Assume now that S is a topological space. We define a topology on S/~ by
declaring a set U in S/~ to be open if and only if 7~!(U) is open in S. Clearly, both
the empty set & and the entire quotient S/~ are open. Further, since
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n! (UUoc> = U”_I(Ua)
a a
and
77.771 <ﬂU,> = (]77]71(U,’)7

the collection of open sets in S/~ is closed under arbitrary unions and finite inter-
sections, and is therefore a topology. It is called the quotient topology on S/~. With
this topology, S/~ is called the quotient space of S by the equivalence relation ~.
With the quotient topology on S/~, the projection map : S — S/~ is automatically
continuous, because the inverse image of an open set in S/~ is by definition open
inS.

7.2 Continuity of a Map on a Quotient

Let ~ be an equivalence relation on the topological space S and give S/~ the quotient
topology. Suppose a function f: § — Y from S to another topological space Y is
constant on each equivalence class. Then it induces amap f: S/~ — Y by

F(p)=f(p) forpes.

In other words, there is a commutative diagram

S / >Y.

T /
v S

S/~

Proposition 7.1. The induced map f: S/~ — Y is continuous if and only if the map
f: S —Y is continuous.

Proof.
(=) If f is continuous, then as the composite f o 7 of continuous functions, f is also
continuous.

(<=) Suppose f is continuous. Let V be openin Y. Then f~1(V) = =1 (f~1(V)) is
open in S. By the definition of quotient topology, f~Y(V) is open in §/~. Since V
was arbitrary, f: S/~ — Y is continuous. O

This proposition gives a useful criterion for checking whether a function f on a
quotient space S/~ is continuous: simply lift the function f to f := f o 7 on S and
check the continuity of the lifted map f on S. For examples of this, see Example 7.2
and Proposition 7.3.
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7.3 Identification of a Subset to a Point

If A is a subspace of a topological space S, we can define a relation ~ on S by
declaring
x~x forallxeS$

(so the relation is reflexive) and
x~y forallx,yecA.

This is an equivalence relation on S. We say that the quotient space S/~ is obtained
from S by identifying A to a point.

Example 7.2. Let I be the unit interval [0, 1] and / /~ the quotient space obtained from
I by identifying the two points {0, 1} to a point. Denote by S' the unit circle in the
complex plane. The function f: I — S', f(x) = exp(27ix), assumes the same value
at 0 and 1 (Figure 7.2), and so induces a function f: I/~ — S'.

Fig. 7.2. The unit circle as a quotient space of the unit interval.

Proposition 7.3. The function f: I/~ — S' is a homeomorphism.

Proof. Since f is continuous, f is also continuous by Proposition 7.1. Clearly, f is a
bijection. As the continuous image of the compact set /, the quotient / /~ is compact.
Thus, f is a continuous bijection from the compact space I /~ to the Hausdorff space
S'. By Corollary A.36, f is a homeomorphism. |

7.4 A Necessary Condition for a Hausdorff Quotient

The quotient construction does not in general preserve the Hausdorff property or
second countability. Indeed, since every singleton set in a Hausdorff space is closed,
if #: S — S/~ is the projection and the quotient S/~ is Hausdorff, then for any
p €8, its image {7 (p)} is closed in §/~. By the continuity of 7, the inverse image
7~ '({n(p)}) = [p] is closed in S. This gives a necessary condition for a quotient
space to be Hausdorff.

Proposition 7.4. If the quotient space S/~ is Hausdorff, then the equivalence class
[p] of any point p in S is closed in S.
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Example. Define an equivalence relation ~ on R by identifying the open interval
]0,9[ to a point. Then the quotient space R /~ is not Hausdorff because the equiva-
lence class ]0,o0[ of ~ in R corresponding to the point ]0,e[ in R/~ is not a closed
subset of R.

7.5 Open Equivalence Relations

In this section we follow the treatment of Boothby [3] and derive conditions under
which a quotient space is Hausdorff or second countable. Recall thatamap f: X =Y
of topological spaces is open if the image of any open set under f is open.

Definition 7.5. An equivalence relation ~ on a topological space S is said to be
open if the projection map 7: S — S/~ is open.
In other words, the equivalence relation ~ on § is open if and only if for every
open set U in §, the set
n ! (m(U) = J R
xeU

of all points equivalent to some point of U is open.

Example 7.6. The projection map to a quotient space is in general not open. For
example, let ~ be the equivalence relation on the real line R that identifies the two
points 1 and —1, and w: R — R/~ the projection map.

:
L ° ) ° 5 5
T ® 7 ®
-2 -1 0 1

Fig. 7.3. A projection map that is not open.

The map 7 is open if and only if for every open set V in R, its image 7(V) is open
in R/~, which by the definition of the quotient topology means that 7~ !(7(V)) is
open in R. Now let V be the open interval |—2,0[ in R. Then

7\ (@(V)) =1-2,0[ U {1},

which is not open in R (Figure 7.3). Therefore, the projection map 7: R — R/~ is
not an open map.

Given an equivalence relation ~ on S, let R be the subset of S x S that defines the
relation
R={(x,y) €SxS|x~y}.

We call R the graph of the equivalence relation ~.
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Fig. 7.4. The graph R of an equivalence relation and an open set U x V disjoint from R.

Theorem 7.7. Suppose ~ is an open equivalence relation on a topological space S.
Then the quotient space S/~ is Hausdorf{f if and only if the graph R of ~ is closed in
S xS.

Proof. There is a sequence of equivalent statements:

Risclosedin S x §

<= (§xS)—RisopeninS xS

<= for every (x,y) € S x S — R, there is a basic open set U X V containing (x,y)
such that (U x V) NR = & (Figure 7.4)

<= for every pair x ~ y in S, there exist neighborhoods U of x and V of y in S such
that no element of U is equivalent to an element of V

<= for any two points [x] # [y] in S/~, there exist neighborhoods U of x and V' of
yin Ssuchthat z7(U)N7w(V) = inS/~. (%)

We now show that this last statement () is equivalent to S/~ being Hausdorff.
First assume (). Since ~ is an open equivalence relation, £(U) and 7t(V') are disjoint
open sets in S/~ containing [x] and [y] respectively. Therefore, S/~ is Hausdorff.

Conversely, suppose S/~ is Hausdorff. Let [x] # [y] in S/~. Then there exist
disjoint open sets A and B in S/~ such that [x] € A and [y] € B. By the surjectivity of
7, we have A = m(n~'A) and B = n(n~'B) (see Problem 7.1). Let U = 7~ 'A and
V=n"!'B. ThenxcU,y€V,and A= n(U) and B = nt(V) are disjoint open sets in
S/~. O

If the equivalence relation ~ is equality, then the quotient space S/~ is § itself
and the graph R of ~ is simply the diagonal

A={(x,x) € SxS}.

In this case, Theorem 7.7 becomes the following well-known characterization of a
Hausdorff space by its diagonal (cf. Problem A.6).

Corollary 7.8. A topological space S is Hausdorff if and only if the diagonal A in
S x S is closed.
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Theorem 7.9. Let ~ be an open equivalence relation on a topological space S with
projection w: S — S/~. If B = {Bq} is a basis for S, then its image {n(By)} under
Tt is a basis for S/~.

Proof. Since 7 is an open map, {7 (Bg)} is a collection of open sets in S/~. Let W
be an open set in S/~ and [x] € W, x € S. Then x € 7~ (W). Since £~ (W) is open,
there is a basic open set B € B such that

xeBcCa '(W).
Then
[x] =n(x) € m(B) C W,
which proves that {m(Bg)} is a basis for §/~. O

Corollary 7.10. If ~ is an open equivalence relation on a second-countable space
S, then the quotient space S/~ is second countable.

7.6 Real Projective Space
Define an equivalence relation on R**! — {0} by
x~y <= y=txfor some nonzero real number 7,

where x, y € R**! —{0}. The real projective space RP" is the quotient space of
R"*! — {0} by this equivalence relation. We denote the equivalence class of a point
(d,...,a") e R"*1 - {0} by [a°,...,a"] and let w: R"*! — {0} — RP" be the pro-
jection. We call [a°,...,a"] homogeneous coordinates on RP".

Geometrically, two nonzero points in R"*! are equivalent if and only if they lie
on the same line through the origin, so RP" can be interpreted as the set of all lines
through the origin in R"*!. Each line through the origin in R"*! meets the unit

Fig. 7.5. A line through 0 in R3 corresponds to a pair of antipodal points on S2.

sphere S” in a pair of antipodal points, and conversely, a pair of antipodal points on
S" determines a unique line through the origin (Figure 7.5). This suggests that we
define an equivalence relation ~ on $” by identifying antipodal points:
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X~y < x==4y, x,yeS".

We then have a bijection RP" < §" /~.

Exercise 7.11 (Real projective space as a quotient of a sphere).* Forx= (x',..., X eR",

let ||x|| = /¥;(x')2 be the modulus of x. Prove that the map f: R"+! — {0} — §" given by

X

)

I

induces a homeomorphism f: RP" — S" /~. (Hint: Find an inverse map
g: 5"~ —=RP"

and show that both f and g are continuous.)

Example 7.12 (The real projective line RP").

Fig. 7.6. The real projective line RP! as the set of lines through 0 in R2.

Each line through the origin in R? meets the unit circle in a pair of antipodal
points. By Exercise 7.11, RP! is homeomorphic to the quotient S' /~, which is in
turn homeomorphic to the closed upper semicircle with the two endpoints identified
(Figure 7.6). Thus, RP' is homeomorphic to S'.

Example 7.13 (The real projective plane RP?). By Exercise 7.11, there is a homeo-
morphism
RP? ~ §? /{antipodal points} = §% /~ .

For points not on the equator, each pair of antipodal points contains a unique point
in the upper hemisphere. Thus, there is a bijection between S? /~ and the quotient of
the closed upper hemisphere in which each pair of antipodal points on the equator
is identified. It is not difficult to show that this bijection is a homeomorphism (see
Problem 7.2).

Let H? be the closed upper hemisphere

H? ={(x,5,2) eR’ [P +y*+7=1,2>0}

and let D? be the closed unit disk
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D? ={(x,y) e R? |2 +y* < 1}.
These two spaces are homeomorphic to each other via the continuous map
¢: H> = D,
¢(x,3,2) = (x,3),

and its inverse

v: D* — H?,

y(x,y) = (x,y, V-2 —yz) :
On H?, define an equivalence relation ~ by identifying the antipodal points on the

equator:
(.X,y,O) ~ (—X, _y70)7 x2+y2 =1

On D?, define an equivalence relation ~ by identifying the antipodal points on the
boundary circle:

(X)) ~ (=x,=y), P4y =1.
Then ¢ and y induce homeomorphisms
¢: H?j~ = D*/~, :D*/~—H*/~.
In summary, there is a sequence of homeomorphisms

RP* % 82/~ 3 H? o 5 D? )~
that identifies the real projective plane as the quotient of the closed disk D* with the
antipodal points on its boundary identified. This may be the best way to picture RP?
(Figure 7.7).

Fig. 7.7. The real projective plane as the quotient of a disk.

The real projective plane RP? cannot be embedded as a submanifold of R3. How-
ever, if we allow self-intersection, then we can map RP? into R? as a cross-cap (Fig-
ure 7.8). This map is not one-to-one.
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D B B=D
D B
A v 4 5
D B ’ !
\ e
N_— N_— N_—
Fig. 7.8. The real projective plane immersed as a cross-cap in R>.

Proposition 7.14. The equivalence relation ~ on R" 1 — {0} in the definition of RP"
is an open equivalence relation.

Proof. For an open set U C R"*! — {0}, the image (U) is open in RP" if and only
if z=!(z(U)) is open in R**! — {0}. But 7! (7(U)) consists of all nonzero scalar
multiples of points of U; that is,

rl(nU)=Jtw=J{tr|peU}.

teR* teR*

Since multiplication by € R* is a homeomorphism of R"*! — {0}, the set tU is
open for any t. Therefore, their union |J,cg~ tU = = (x(U)) is also open. O

Corollary 7.15. The real projective space RP" is second countable.
Proof. Apply Corollary 7.10. O
Proposition 7.16. The real projective space RP" is Hausdorff.
Proof. Let S = R""! — {0} and consider the set
R={(x,y) €SxS|y=txforsomerecR*}.

If we write x and y as column vectors, then [x y] is an (n+ 1) X 2 matrix, and R may
be characterized as the set of matrices [x y] in S x S of rank < 1. By a standard fact
from linear algebra, rk[x y] < 1 is equivalent to the vanishing of all 2 x 2 minors of
[x y] (see Problem B.1). As the zero set of finitely many polynomials, R is a closed
subset of § x S. Since ~ is an open equivalence relation on S, and R is closed in
S x S, by Theorem 7.7 the quotient S/~ ~ RP" is Hausdorff. a

7.7 The Standard C~ Atlas on a Real Projective Space

Let [ao, ...,a"] be homogeneous coordinates on the projective space RP". Although
a’ is not a well-defined function on RP", the condition a® # 0 is independent of the
choice of a representative for [@°,...,a"]. Hence, the condition a’ # 0 makes sense

on RP", and we may define
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Up:={[d’,...,d" e RP" | a° # 0}.
Similarly, foreachi=1,...,n, let

Ui :={[d...,a"]| €RP" | a' # 0}.

Define
(P(): Uy — R"

1 n
a a
[d,...,d"] — (a07“"a0>'

This map has a continuous inverse

by

(b',...,b") = [1,b',...,b"]

and is therefore a homeomorphism. Similarly, there are homeomorphisms for each
i=1,....n

(1),': U,'—>Rn7

where the caret sign ~ over a’/a’ means that that entry is to be omitted. This proves
that RP" is locally Euclidean with the (U;, ¢;) as charts.

On the intersection Uy N U, we have a’ = 0 and al # 0, and there are two coor-
dinate systems

Cl(l(l

/\

0 a'
ao’ao7 aO al al’m’al '

We will refer to the coordinate functions on Uy as x',...,x", and the coordinate
functions on U as y',...,y". On U,
ai
x L0 = L,...,n,
and on U,

1 a® 2 a? , a

y = 1 y = 17 , Y = 1

a a a

Then on UyNUj,
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2 3
11 2_ X 3_ X n_ X
y_ 1 y_ 1° )’— 1° ] y_xlv

) .
1 x° x x"

1 o
(¢1 °¢O )(x) - (x17x17x17"'ax1> .
This is a C* function because x' # 0 on ¢y(Up N U;). On any other U; NU; an
analogous formula holds. Therefore, the collection {(U;, ¢;) }i—o.... » is a C* atlas for
RP", called the standard atlas. This concludes the proof that RP" is a C* manifold.

Problems

7.1. Image of the inverse image of a map
Let f: X — Y be a map of sets, and let B C Y. Prove that f(f~!(B)) = BN f(X). Therefore,
if f is surjective, then f(f~'(B)) = B.

7.2. Real projective plane

Let H? be the closed upper hemisphere in the unit sphere $2, and let i: H> — S be the
inclusion map. In the notation of Example 7.13, prove that the induced map f: H 2 J~— 52 J~
is a homeomorphism. (Hint: Imitate Proposition 7.3.)

7.3. Closedness of the diagonal of a Hausdorff space

Deduce Theorem 7.7 from Corollary 7.8. (Hint: To prove that if S/~ is Hausdorff, then the
graph R of ~ is closed in S x S, use the continuity of the projection map 7w: § — S/~. To
prove the reverse implication, use the openness of 7.)

7.4.% Quotient of a sphere with antipodal points identified
Let 8" be the unit sphere centered at the origin in R"*!. Define an equivalence relation ~ on
S" by identifying antipodal points:

X~y < x==4y, x,yeS.

(a) Show that ~ is an open equivalence relation.
(b) Apply Theorem 7.7 and Corollary 7.8 to prove that the quotient space S” /~ is Hausdorff,
without making use of the homeomorphism RP" ~ §" /~.

7.5.% Orbit space of a continuous group action

Suppose a right action of a topological group G on a topological space S is continuous; this
simply means that the map S X G — S describing the action is continuous. Define two points
x,y of S to be equivalent if they are in the same orbit; i.e., there is an element g € G such that
y =xg. Let S/G be the quotient space; it is called the orbit space of the action. Prove that the
projection map 7: S — S/G is an open map. (This problem generalizes Proposition 7.14, in
which G =R* =R —{0} and § = R"*! — {0}. Because R* is commutative, a left R*-action
becomes a right R*-action if scalar multiplication is written on the right.)

7.6. Quotient of R by 277
Let the additive group 277 act on R on the right by x-27n = x+ 27n, where n is an integer.
Show that the orbit space R/277Z is a smooth manifold.
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7.7. The circle as a quotient space

(a) Let {(Ug, ¢a) (21:1 be the atlas of the circle S! in Example 5.7, and let ¢ be the map ¢y
followed by the projection R — R /277Z. On Uy NU, = A 11 B, since ¢ and ¢, differ by an
integer multiple of 27, ¢; = ¢,. Therefore, ¢; and ¢, piece together to give a well-defined
map ¢: S' — R/2xZ. Prove that ¢ is C*.

(b) The complex exponential R — § 1t e is constant on each orbit of the action of 277
on R. Therefore, there is an induced map F: R/27Z — S', F([t]) = e. Prove that F
is C~.

(c) Prove that F: R/217Z — S lisa diffeomorphism.

7.8. The Grassmannian G(k,n)
The Grassmannian G(k,n) is the set of all k-planes through the origin in R”. Such a k-plane
is a linear subspace of dimension k of R” and has a basis consisting of & linearly independent
vectors aj,...,a; in R, It is therefore completely specified by an n x k matrix A = [a; --- ay]
of rank k, where the rank of a matrix A, denoted by rk A, is defined to be the number of linearly
independent columns of A. This matrix is called a matrix representative of the k-plane. (For
properties of the rank, see the problems in Appendix B.)

Two bases ay,...,a; and by,...,b; determine the same k-plane if there is a change-of-
basis matrix g = [g;;] € GL(k,RR) such that

bj=Y aigij, 1<ij<k.
i

In matrix notation, B = Ag.
Let F(k,n) be the set of all n x k matrices of rank k, topologized as a subspace of R™*¥,
and ~ the equivalence relation

A~ B iff thereisamatrix g € GL(k,R) such that B = Ag.

In the notation of Problem B.3, F(k,n) is the set Dmax in R"*k and is therefore an open
subset. There is a bijection between G(k,n) and the quotient space F(k,n)/~. We give the
Grassmannian G(k,n) the quotient topology on F (k,n)/~.

(a) Show that ~ is an open equivalence relation. (Hint: Either mimic the proof of Proposi-
tion 7.14 or apply Problem 7.5.)

(b) Prove that the Grassmannian G(k,n) is second countable. (Hinz: Apply Corollary 7.10.)

(c) Let S = F(k,n). Prove that the graph R in S x S of the equivalence relation ~ is closed.
(Hint: Two matrices A = [a] --- ai| and B= [by --- D] in F (k,n) are equivalent if and only
if every column of B is a linear combination of the columns of A if and only if rk[A B] <k
if and only if all (k+ 1) x (k+ 1) minors of [A B] are zero.)

(d) Prove that the Grassmannian G(k,n) is Hausdorff. (Hint: Mimic the proof of Proposi-
tion 7.16.)

Next we want to find a C* atlas on the Grassmannian G(k,n). For simplicity, we specialize to
G(2,4). For any 4 x 2 matrix A, let A;; be the 2 X 2 submatrix consisting of its ith row and jth
row. Define

Vij={A € F(2,4) | A;; is nonsingular}.

Because the complement of V;; in F(2,4) is defined by the vanishing of det A;;, we conclude
that V;; is an open subset of F(2,4).

(e) Prove that if A € Vj;, then Ag € V;; for any nonsingular matrix g € GL(2,R).
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Define U;; = V;j/~. Since ~ is an open equivalence relation, U;; = V;;/~ is an open subset

of G(2,4).
For A € Vi,
10
ot [ 1
At =1, 7{A34Ale}'
* %

This shows that the matrix representatives of a 2-plane in U, have a canonical form B in
which By, is the identity matrix.

(f) Show that the map @12 : Vi» — R2*2,
P12(4) = AzAy),

induces a homeomorphism ¢;5: Ujy — R2*2,

(g) Define similarly homeomorphisms ¢;;: U;; — R2%2, Compute @3 o ¢231, and show that it
is C~.

(h) Show that {U;; | 1 <i < j <4} is an open cover of G(2,4) and that G(2,4) is a smooth
manifold.

Similar consideration shows that F(k,n) has an open cover {V;}, where I is a strictly
ascending multi-index 1 < iy < --- < i <n. For A € F(k,n), let A; be the k x k submatrix of
A consisting of ijth, ..., iyth rows of A. Define

Vi ={A € G(k,n) | det A; # 0}.
Next define ¢y : V; — R(—K)xk by
d1(A) = (AA] )y,

where ( )y denotes the (n — k) x k submatrix obtained from the complement I’ of the multi-
index I. Let Uy = V;/~. Then ¢ induces a homeomorphism ¢: Uy — R(=K)>k It is not
difficult to show that {(Ur, ¢r)} is a C* atlas for G(k,n). Therefore the Grassmannian G(k,n)
is a C* manifold of dimension k(n — k).

7.9.% Compactness of real projective space
Show that the real projective space RP" is compact. (Hint: Use Exercise 7.11.)
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