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Chapter 2
Verilog HDL for Design and Test

In Chapter 1, we discussed the basics of test and presented ways in which hardware description lan-
guages (HDLs) could be used to improve various aspects of digital system testing. The emphasis of 
this chapter is on Verilog that is a popular HDL for design. The purpose is to give an introduction of 
the language while elaborating on ways it can be used for improving methodologies related to digital 
system testing. After, the basic concepts of HDL modeling, the main aspects of describing combina-
tional and sequential circuits using different levels of abstraction, and the semantics of simulation in 
Verilog language are expressed. Then, we get into the testbench techniques and virtual tester develop-
ment, which are heavily utilized in the presentation of test techniques in the rest of this book. Finally, 
a brief introduction to the procedural language interface (PLI) of Verilog and the basics of implement-
ing test programs in PLI is given. The examples we present in this chapter for illustrating Verilog 
language and modeling features are used in the rest of this book as circuits that are to be tested. The 
HDL codes for such examples are presented here. Verilog coding techniques for gate-level compo-
nents that we use for describing our netlists in the chapters that follow are also shown here.

2.1 � Motivations of Using HDLs for Developing Test Methods

Generally speaking, tools and methodologies design and test engineers use are different, and there 
has always been a gap between design and test tools and methods. This gap results in inconsisten-
cies in the process of design and test, such as designs that are hard to test or the time needed to 
convert design to the format compatible for testing. On the other hand, we have seen in new design 
methodologies that incorporating test in design must start from the beginning of the design process 
[1, 2]. It is desirable to bring testing in the hands of designers, which certainly requires that testing 
is applied at the level and with the language of the designers. This way, designers will be able to 
combine design and test phases.

Using RT-level HDLs in test and DFT, helps advancing test methods to RTL, and at the same 
time alleviates the need for the use of software languages and reformatting designs for the evalu-
ation and application of test techniques. Furthermore, actual test data can be applied to post-
manufacturing model of a component, while keeping other component models at the design level, 
and still simulating in the same environment and keeping the same testbench. This also allows 
reuse of design test data, and migration of testbenches from the design stage to post-manufacturing 
test. In a mixed-level design, these advantages make it possible to test a single component 
described at the gate level while leaving others in RTL or even at the system level.

On the other hand, when we try to develop test methods in an HDL environment, we are con-
fronted with the limitations of HDL simulation tools. Such limitations include the overhead that test 
methods put on the simulation speed and the inability to describe complex data structures. PLI 
provides a library of C language functions that can directly access data within an instantiated 
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Fig. 2.1  Simulation in Verilog
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2 Verilog HDL for Design and Test

Verilog HDL data structure and overcomes the HDL limitations. With PLI, the advantages of doing 
testable hardware design in an HDL and having a software environment for the manipulation and 
evaluation of designs can be achieved at the same time. Therefore, not only the design core and its 
testbench can be developed in a uniform programing environment, but also all the facilities of soft-
ware programing (such as complex data structures and utilization of functions) are available. PLI 
provides the necessary accesses to the internal data structure of the compiled design, so test methods 
can be performed in such a mixed environment more easily and without having to mingle with the 
original design.

In this book, by means of the PLI interface, a mixed HDL/PLI test environment is proposed and 
the implementations of several test applications are exercised. In the sections that follow, a brief 
description of HDL coding and using testbench techniques combined with PLI utilities for developing 
test methods are given.

2.2 �Using Verilog in Design

For decades, HDLs have been used to model the hardware designs as an IEEE standard [3]. 
Using HDLs and their simulators, digital designers are capable of partitioning their designs into 
components that work concurrently and are able to communicate with each other. HDL simula-
tors can simulate the design in the presence of the real hardware delays and can imitate concur-
rency by switching between design parts in small time slots called “delta” delays [4]. In the 
following subsections, the basic features of Verilog HDL for simulation and synthesis are 
described.

2.2.1 � Using Verilog for Simulation

The basic structure of Verilog in which all hardware components and testbenches are described is 
called a module. Language constructs, in accordance to Verilog syntax and semantics form the 
inside of a module. These constructs are designed to facilitate the description of hardware compo-
nents for simulation, synthesis, and specification of testbenches to specify test data and monitor 
circuit responses. A module that encloses a design’s description can be described to test the module 
under design, in which case it is regarded as the testbench of the design. Figure 2.1 shows a simulation 
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Fig. 2.2  Synthesis of a Verilog design

2.2 Using Verilog in Design

model that consists of a design with a Verilog testbench. Verilog constructs (shown by dotted lines) 
of the Verilog model being tested are responsible for the description of its hardware, while language 
constructs used in a testbench are in charge of providing appropriate input data or applying data 
stored in a text file to the module being tested, and analysis or display of its outputs. Simulation 
output is generated in the form of a waveform for visual inspection or data files for record or for 
machine readability.

2.2.2 � Using Verilog for Synthesis

After a design passes basic the functional validations, it must be synthesized into a netlist of 
components of a target library. The target library is the specification of the hardware that the 
design is being synthesized to. Verilog constructs used in the Verilog description of a design 
for its verification or those for timing checks and timing specifications are not synthesizable. 
A Verilog design that is to be synthesized must use language constructs that have a clear hardware 
correspondence.

Figure 2.2 shows a block diagram specifying the synthesis process. Circuit being synthesized 
and specification of the target library are the inputs of a synthesis tool. The outputs of synthesis 
are a netlist of components of the target library, and timing specification and other physical 
details of the synthesized design. Often synthesis tools have an option to generate this netlist in 
Verilog.

2.2.2.1 � Postsynthesis Simulation

When the netlist is provided by the synthesis tool that uses Verilog for the description of the netlist 
components (Fig. 2.3), the same testbench prepared for the pre-synthesis simulation can be used 
with this gate-level description. This simulation, which is often regarded as post-synthesis simula-
tion, uses timing information generated by the synthesis tool and yields simulation results with 
detailed timing.

Since the same testbench of the high-level design is applied to the gate-level description, the 
resulted waveform or printed data must be the same. This can be seen when comparing Fig. 2.1 
with Fig. 2.3, while the only difference is that the post-synthesis simulation includes timing 
details.
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Fig. 2.3  Postsynthesis simulation in Verilog
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2 Verilog HDL for Design and Test

2.3 �Using Verilog in Test

As mentioned, HDL capabilities can be utilized to enhance exercising existing test methods and to 
develop new ones with little effort. The subsections that follow illustrate some possible usages of 
Verilog in the test of digital systems.

2.3.1 � Good Circuit Analysis

An important tool in testing is one that generates good circuit responses from a circuit’s golden model. 
This response is to be to compared with responses from faulty circuits. By applying testbench data to 
the golden model, it is possible to record the good behavior of the circuit for future use. The golden 
signatures can also be generated this way. A signature is the result of an accumulative compression on 
all the outputs of the golden model. Later, when checking if a circuit is faulty or not, the same input 
data and the same signature collection algorithm must be applied to the design under test. By compar-
ing the obtained signature with the recorded golden signature, the presence or absence of faults in the 
circuit can be verified. The precision of this fault detection depends on the compression algorithm that 
is used to collect the signature and on the number of test data that is applied to make this signature.

Another application of HDL simulation for testing is signature generation for various test sets or 
for different test procedures. Figure 2.4 depicts the good circuit analysis and its results.

2.3.2 � Fault List Compilation and Testability Analysis

Fault list compilation is also one of the basic utilities that is needed to perform other test applications. 
For this purpose, the design described at the gate level, which is normally resulted from synthesis of 
a behavioral model of the design, can be used. Having fault models available for the gate models used 
in the gate-level description of the design, possible faults for the entire design can be generated. 
The capability of exploring the netlist of the circuit under test is very useful in fault compilation. 
Using these capabilities, the fault list of the design under test can be generated and recorded in a text 
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Fig. 2.4  Good circuit analysis using Verilog
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Fig. 2.5  Fault list compilation and testability measurement using Verilog
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2.3 Using Verilog in Test

file as the fault list (Fig. 2.5). In order to reduce test time, fault collapsing, which is also implementable 
in the HDL environment, is performed.

Certain test applications, such as test generation or testability hardware insertion methods, need 
measurements to estimate how testable their internal nodes are. Methods used for fault compilations 
can also be used for applications such as this.

2.3.3 � Fault Simulation

As mentioned, an HDL environment is able to generate a list of faults. This list can be used in 
an HDL simulation environment for fault simulation of the circuit under test. To complement the 
facilities that the HDL and its environment provide, we have developed Verilog PLI functions for 
producing fault models of a CUT for the purpose of fault simulation. The PLI functions inject faults 
in the good circuit model to create a faulty model of the CUT.

Assuming test data and the fault list and a mechanism for fault injection (FI) are available, fault 
simulation can be implemented in an HDL testbench. This testbench needs to instantiate golden and  
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Fig. 2.6  Fault simulation using Verilog
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2 Verilog HDL for Design and Test

faultable models of the circuit, and must be able to inject faults and remove them for creating vari-
ous faulty models (see Fig. 2.6).

An important application of fault simulation is the calculation of fault coverage, which is a mea-
sure of the number of faults detected versus those that are not. An HDL simulation tool, with a 
proper testbench that instantiates a CUT, can calculate fault coverage for a test vector or a test set 
of the CUT.

With fault simulation, it is possible to generate a faulty signature for every one of the CUT’s faults. 
A database containing tests, faults and their faulty signatures is called a fault dictionary that is 
another output that can be expected from an HDL simulation tool. When dealing with an actual faulty 
CUT, by performing fault simulation, collecting its signature, and comparing the resulted signature 
with the signatures saved in the fault dictionary, the CUT’s fault can be identified and located.

2.3.4 � Test Generation

Another application of Verilog PLI for test applications is test generation. The same netlist that was 
used for fault simulation is instantiated in the testbench of Fig. 2.7. This environment is able to 
inject a fault, generate some kind of random or pseudo random test data, and check if the test vector 
detects the injected fault. We can also find the number of undetected faults that a test vector detects. 
The result can be a collection of test vectors that detect a good number of circuit faults. This 
collection is a test set produced by HDL simulation of CUT.

2.3.5 � Testability Hardware Design

Efficient design of hardware that makes a design testable is possible in an HDL environment. By means 
of the testability measurements and other information provided by simulating a design, we can decide 
on the type and the place of the testability hardware that we intend to insert into the original design. After 
that, by applying test generation and fault simulation applications provided in this environment, a proper 
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Fig. 2.7  Test generation using Verilog
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Fig. 2.8  Testability hardware design using Verilog
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2.4 Basic Structures of Verilog

test set can be found for the new circuit, and the testbench can act as a virtual tester for the DFT-inserted 
circuit. In this case, various testability factors of the new circuit, such as new testability measurements, 
fault coverage, test time, and even power consumption estimation during test, can be obtained.

Along with this DFT evaluation, changing the configuration of the testability hardware is also 
possible. For this purpose, the important parameters of the DFT, such as the place for inserting test 
points, the length and the number of scan chains, and the number of clocks in the BIST circuit, can 
be changed until the best possible configuration is obtained (Fig. 2.8).

2.4 �Basic Structures of Verilog

As mentioned, all the design and test processes described in this book are implemented in Verilog. 
The following subsections cover the basics of this language and the rules of describing designs in 
various levels of abstraction. For more details on HDL modeling and testbenches, the reader is 
encouraged to refer to [5, 6].
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module module_iji (…)
…

endmodule

module module_ii (…)
…

endmodule

module module_ij (…)
…
module_iji  MIIJ (…);
...

endmodule

module module_i (…)
…
module_ii  MII (…);
module_ij  MIJ (…);

endmodule

module_i

module_ii module_ij

module_iji

Fig. 2.9  Module outline and hierarchy

Fig. 2.10  Port, wire, and variable declaration

module acircuit (input a, b, input[7:0] av, bv, output w, output[7:0] wv); 
   wire d, c; 
   wire [7:0] dv; 
   reg e; 
   reg [7:0] ev; 

   assign d = a & b; 
   assign dv = av & bv; 
   assign w [6:0] = av [7:1] & dv [7:1]; 
   assign cv[7] = d ^ bv[3]; 

   always @(av,bv,a,b) begin 
      ev = {av[3:0],bv[7:4]} 
      e = a | b; 
   end  

   assign wv = ev;  

endmodule

2 Verilog HDL for Design and Test

In the examples in this chapter, Verilog keywords and reserved words are shown in bold. Verilog is 
case sensitive. It allows letters, numbers, and special character “_” to be used for names. Names are 
used for modules, parameters, ports, variables, wires, signals, and instance of gates and modules.

2.4.1 � Modules, Ports, Wires, and Variables

The main structure used in Verilog for the description of hardware components and their testbenches is 
a module. A module can describe a hardware component as simple as a transistor or a network of com-
plex digital systems. As shown in Fig. 2.9, modules begin with the module keyword and end with end-
module. A complete design may consist of several modules. A design file describing a design takes 
the .v extension. For describing a system, it is usually best to include only one module in a design file.

A design may be described in a hierarchy of other modules. The top-level module is the complete 
design and modules lower in the hierarchy are the design’s components. Module instantiation is the 
construct used for bringing a lower level module into a higher level one. Figure 2.9 shows a hierarchy 
of several nested modules.

The first part of a module description that begins with the module keyword and ends with a 
semicolon is regarded as its header. As shown in Fig. 2.10, in addition to the module keyword, a 
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module header includes the module name and list of its ports. Port declarations specifying the mode 
of a port (i.e. input, output, etc.), and its length can be included in the header or as separate declara-
tions in the body of the module. Module declarations appear after the module header. A port may 
be input, output, or inout. The latter type is used for bidirectional input/output lines. The size of 
a multibit port comes in a pair of numbers separated by a colon and bracketed by square brackets. 
The number on the left of the colon is the index of the left most bit of the vector, and that on the 
right is the index of the right most bit of the vector.

In addition to ports not declared in the module header, this part can include declaration of signals 
used inside the module or temporary variables. Wires (that are called net in Verilog) are declared 
by their types, wire, wand, or wor; and variables are declared as reg. Wires are used for intercon-
nections and have properties of actual signals in a hardware component. Variables are used for 
behavioral descriptions and are similar to variables in software languages. Figure 2.10 shows several 
wire and variable declarations.

Wires represent simple interconnection wires, busses, and simple gate or complex logical expres-
sion outputs. When wires are used on the left-hand side of assign statements, they represent outputs 
of logical structures. Wires can be used in scalar or vector form. Multiple concurrent assignments 
to a net are allowed and the value that the wire receives is the resolution of all concurrent assign-
ments to the net. Figure 2.10 includes several examples of wires used on the right and left hand 
sides of assign statements.

In contrast to a net, a reg variable type does not represent an actual wire and is primarily used as 
variables are used in a software language. In Verilog, we use a reg type variable for temporary 
variables, intermediate values, and storage of data. A reg type variable can only be used in a proce-
dural body of Verilog. Multiple concurrent assignments to a reg should be avoided.

In the vector form, inputs, outputs, wires, and variables may be used as a complete vector, part of 
a vector, or a bit of the vector. The latter two are referred to as part-select and bit-select. Examples of 
part-select and bit-select on right and left hand sides of an assign statement are shown in Fig. 2.10. 
The statement that assigns the ev reg, besides part-select indexing, illustrates concatenation of 
av[3:0] and bv[7:4] and assigning the result to ev. This structure especially is useful to model swapping 
and shifting operations.

2.4.2 � Levels of Abstraction

Operation of a module can be described at the gate level, using Boolean expressions, at the behavioral 
level, or a mixture of various levels of abstraction. Figure 2.11 shows three ways the same operation 
can be described. Module simple_1a uses Verilog’s gate primitives, simple_1b uses concurrent 
statements, and simple_1c uses a procedural statement. Module simple_1a describes instantiation 
of three gate primitives of Verilog. In contrast, simple_1b uses Boolean expressions to describe the 
same functions for the outputs of the circuit. The third description, simple_1c, uses a conditional 
if statement inside a procedural statement to generate proper function on one output, and uses a 
procedural Boolean function for forming the other circuit output.

2.4.3 � Logic Value System

Verilog uses a 4-value logic value system. Values in this system are 0, 1, Z, and X. Value 0 is for logi-
cal 0 which in most cases represents a path to ground (Gnd). Value 1 is logical 1 and it represents a 
path to supply (Vdd). Value Z is for float, and X is used for uninitialized, undefined, undriven, 
unknown, and value conflicts. Values Z and X are used for wired-logic, busses, initialization values, 
tristate structures, and switch-level logic.
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module simple_1a (input i1, i2, i3, output w1,w2);
 wire c1;
nor g1(c1, i1, i2);
and g2 (w1, c1, i3);
xor g3(w2, i1, i2, i3);

endmodule

module simple_1b (input i1, i2, i3, output w1, w2);, 
   assign w1 = i3 & ~ (i1 | i2);
   assign w2 = i1 ^ i2 ^ i3;
endmodule

module simple_1c (input i1, i2, i3, output w1, w2);
   reg w1, w2;
   always @ (i1, i2, i3) begin 
      if (i1 | i2) w1 = 0; else w1 = i3;
      w2 = i1 ^ i2 ^ i3;
   end
endmodule  

Fig. 2.11  Module definition alternatives

2 Verilog HDL for Design and Test

A gate input, or a variable or signal in an expression on the right-hand side of an assignment can 
take any of the four logic values. Output of a two-valued primitive gate can only take 0, 1, and X 
while output of a tristate gate or a transistor primitive can also take a Z value. A right-hand-side 
expression can evaluate to any of the four logic values and can thus assign 0, 1, Z, or X to its left-
hand-side net or reg.

2.5 �Combinational Circuits

A combinational circuit can be represented by its gate-level structure, its Boolean functionality, or 
description of its behavior. At the gate level, interconnection of its gates are shown; at the func-
tional level, Boolean expressions representing its outputs are written; and at the behavioral level a 
software-like procedural description represents its functionality. At the beginning of this section, 
implementation of a NAND gate using primitive transistors of Verilog as a glance to transistor-
level design is illustrated. Afterward, the implementation of a 2-to-1 multiplexer is described in 
various levels of abstraction to cover important concepts in combinational circuits. Examples for 
combining various forms of descriptions and instantiation of existing components are also 
shown.

2.5.1 � Transistor-level Description

Verilog has primitives for unidirectional and bidirectional MOS and CMOS structures [7]. As an 
example of instantiation of primitive transistors of Verilog, consider the two-input CMOS NAND 
gate shown in Fig. 2.12.

The Verilog code of Fig. 2.13 describes this CMOS NAND gate. Logically, nMOS transistors in 
a CMOS structure push 0 into the output of the gate. Therefore, in the Verilog code of the CMOS 
NAND, input to output direction of nMOS transistors are from Gnd toward y. Likewise, nMOS 
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Fig. 2.13  CMOS NAND Verilog description

module cmos_nand ( input a, b, output y );
   wire im1;
   supply1 vdd;
   supply0 gnd;

   pmos #(4, 5)
      g1 (y, vdd, a), 
      g2 (y, vdd, b); 
   nmos #(3, 4)
      g3 (im1, gnd, b), 
      g4 (w, im1, a); 
endmodule

y

a

b

g1 g2

g3

g4

im1

nand2_1d

Vdd

GND

Fig. 2.12  CMOS NAND gate

2.5 Combinational Circuits

transistors push a 1 value into y, and therefore, their inputs are considered the Vdd node and their 
outputs are connected to the y node. The im1 signal is an intermediate net and is explicitly 
declared.

2.5.2 � Gate-level Description

We use the multiplexer circuit of Fig. 2.14 to illustrate how primitive gates are used in a design. The 
description shown in Fig. 2.15 corresponds to this circuit. The module description has inputs and 
outputs according to the schematic of Fig. 2.14.

The statement that begins in Line 6 and ends in Line 8 instantiates two and primitives. The 
construct that follows the primitive name specifies 0-to-1 and 1-to-0 propagation delays for the 
instantiated primitive (trlh

 = 2, trhl
 = 4). This part is optional and if eliminated, 0 values are 

assumed trlh
 and trhl

 delays.
Line 7 shows inputs and outputs of one of the two instances of the and primitive. The output is 

im1 and inputs are module input ports a and b. The port list on Line 7 must be followed by a comma 
if other instances of the same primitive are to follow, otherwise a semicolon should be used, like the 
end of Line 9. Line 8 specifies input and output ports of the other instance of the and primitive. Line 
10 is for instantiation of the or primitive at the output of the majority gate. The output of this gate is 
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Fig. 2.15  Verilog code for the multiplexer circuit

module mux2to1 ( a, b, s, y );
input a, b, s;
output y;

not #(1,1) (s_bar, s);        //Line 05
and #(2,4)                    //Line 06

( im1, a, s_bar ),         //Line 07
( im2, b, s );             //Line 08

or  #(3,5) ( y, im1, im2);    //Line 09

endmodule

Fig. 2.14  2-to-1 multiplexer circuit

2 Verilog HDL for Design and Test

y that comes first in the port list, and is followed by inputs of the gate. In this example, intermediate 
signals for interconnection of gates are im1, im2, and s_bar. Scalar interconnecting wires need not 
be explicitly declared in Verilog. The two and instances could be written as two separate statements, 
like instantiation of the or primitive. If we were to specify different delay values for the two instances 
of the and primitive, we had to have two separate primitive instantiation statements.

2.5.3 � Equation-level Description

At a higher level than gates and transistors, a combinational circuit may be described by the use of 
Boolean, logical, and arithmetic expressions. For this purpose, the Verilog concurrent assign state-
ment is used. Table 2.1 shows Verilog operators that can be used with assign statements.

Figure 2.16 shows a 2-to-1 multiplexer using a conditional operator. The expression shown reads 
as follows: if s is 1, then y is i1 else it becomes i0.

If there is more than one assign statement, because of the concurrency property of Verilog, the 
order in which they appear in module is not important. These statements are sensitive to events on 
their right-hand sides. When a change of value occurs on any of the right-hand-side net or variables, 
the statement is evaluated and the resulting value is scheduled for the left-hand side net.

2.5.4 � Procedural Level Description

At a higher level of abstraction than describing hardware with gates and expressions, Verilog 
provides constructs for procedural description of hardware. Unlike gate instantiations and assign 



33

Table 2.1  Verilog operators

Bitwise operators & | ^ ~ ~^ ^~
Reduction operators & ~& | ~| ^ ~^ ^~
Arithmetic operators + – * / %
Logical operators && || !
Compare operators < > <= >= ++
Shift operators >> <<
Concatenation operators {} { {}}n

Conditional operators ?:

Fig. 2.16  A 2-to-1 Multiplexer using condition operator

module mux2_1 (input [3:0] i0, i1, input s, output [3:0]y ); 
assign y = s ? i1 : i0;

endmodule

2.5 Combinational Circuits

statements that correspond to concurrent substructures of a hardware component, procedural state-
ments describe the hardware by its behavior. Also, unlike concurrent statements that appear directly 
in a module body, procedural statements must be enclosed in procedural blocks before they can be 
put inside a module.

The main procedural block in Verilog is the always block. This is considered a concurrent statement 
that runs concurrent with all other statements in a module. Within this statement, procedural statements 
like if-else and case statements are used and are executed sequentially. If there are more than one 
procedural statement inside a procedural block, they must be bracketed by begin and end keywords.

Unlike assignments in concurrent bodies that model driving logic for left-hand-side wires, 
assignments in procedural blocks are assignments of values to variables that hold their assigned 
values until a different value is assigned to them. A variable used on the left hand side of a proce-
dural assignment must be declared as reg.

An event control statement is considered a procedural statement, and is used inside an always 
block. This statement begins with an at-sign, and in its simplest form, includes a list of variables in 
the set of parenthesis that follow the at-sign, e.g., @ (v1, v2,…).

When the flow of the program execution within an always block reaches an event-control state-
ment, the execution halts (suspends) until an event occurs on one of the variables in the enclosed 
list of variables. If an event-control statement appears at the beginning of an always block, the vari-
able list it contains is referred to as the sensitivity list of the always block. For combinational circuit 
modeling, all variables that are read inside a procedural block must appear on its sensitivity list.

2.5.4.1 � Multiplexer Example

As an example of a procedural block, consider the 2-to-1 multiplexer of Fig. 2.17. This example 
uses an if-else construct to set y to i0 or i1 depending on the value of s. As in the previous examples, 
all circuit variables that participate in the determination of value of y appear on the sensitivity list 
of the always block. Also since y appears on the left-hand side of a procedural assignment, it is 
declared as reg.

The if-else statement shown in Fig. 2.17 has a condition part that uses an equality operator. 
If the condition is true (i.e., s is 0), the block of statements that follow it will be taken, otherwise 
the block of statements after the else is taken. In both cases, the block of statements must be brack-
eted by begin and end keywords if there are more than one statement in a block.
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Fig. 2.17  Procedural multiplexer

module mux2_1 (input i0, i1, output reg s, y ); 
always @( i0, i1, s ) begin

if ( s==1'b0 ) 
         y = i0;

else
         y = i1;

end
endmodule

Fig. 2.18  Procedural ALU

module alu_4bit (input [3:0] a, b, input [1:0] f, output reg [3:0] y );
always @ ( a or b or f ) begin

case ( f )
         2'b00 : y = a + b; 
         2'b01 : y = a - b; 
         2'b10 : y = a & b; 
         2'b11 : y = a ^ b; 

default: y = 4'b0000; 
endcase

end
endmodule

2 Verilog HDL for Design and Test

2.5.4.2 � Procedural ALU Example

The if-else statement, used in the previous example, is easy to use, descriptive, and expandable. 
However, when many choices exist, a case statement which is more structured may be a better 
choice. The ALU description of Fig. 2.18 uses a case statement to describe an ALU with add, sub-
tract, AND, and XOR functions. The case statement shown in the always block uses f to select one 
of ALU functions in the case alternatives. The last alternative is the default alternative that is taken 
when f does not match any of the alternatives that appear before it. This is necessary to make sure 
that unspecified input values (here, those that contain X and/or Z) cause the assignment of the 
default value to the output and do not leave it unspecified.

2.5.5 � Instantiating Other Modules

We have shown how primitive gates can be instantiated in a module and wired with other parts of 
the module. The same applies to instantiating a module within another. For regular structures, 
Verilog provides repetition constructs for instantiating multiple copies of the same module, primi-
tive, or set of constructs. Examples in this section illustrate some of these capabilities.

2.5.5.1 � ALU Example Using Adder

The ALU of Fig. 2.18 starts from scratch and implements every function it needs inside the module. 
If we have a situation that we need to use a specific design from a given library, or we have a function 
that is too complex to be repeated everywhere it is used, we can make it into a module and instantiate 
it when we need to use it.
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Fig. 2.19  ALU Verilog code using instantiating an adder

module ALU_Adder (input [7:0] a,b, input addsub, // Line 01 
output gt, zero, co, output [7:0] r ); 

wire [7:0] b_bbar; 
add_8bit ADD (a, b_bbar, addsub, r, co);      // Line 04 
assign b_bbar = addsub ? ~b : b;              // Line 05 
assign gt = (a>b); 
assign zero = (r == 0); 

endmodule

2.5 Combinational Circuits

Figure 2.19 shows another version of the above ALU circuit. In this new version, addition is 
handled by instantiation of a predesigned adder (add_8bit). Instantiation of a component, such 
as add_8bit in the above example, starts with the component name, an instance name (ADD), 
and the port connection list. The latter part decides how local variables of a module are mapped 
to the ports of the component being instantiated. The above example uses an ordered list, in 
which a local variable, e.g., b_bbar, takes the same position as the port of the component it 
is connecting to, e.g., b. Alternatively, a named port connection such as that shown below can 
be used.

add_8bit ADD (.a(a),.b(b_bbar),.ci(addsub),.s(r),.co(co));

Using this format allows port connections to be made in any order. Each connection begins with 
a dot, followed by the name of the port of the instantiated component, e.g. b, and followed by a set of 
parenthesis enclosing the local variable that is connected to the instantiated component, e.g. b_bbar. 
This format is less error-prone than the ordered connection.

2.5.5.2 � Iterative Instantiation

Verilog uses the generate statement for describing regular structures that are composed of smaller 
sub-components. An example is a large memory array or a systolic array multiplier. In such cases, 
a cell unit of the array is described, and by means of several generate statements, it is repeated in 
several directions to cover the entire array of the hardware.

Here, we show the description of a parametric n-bit AND gate using this construct. Obviously, 
n-input gates can be easily obtained by using vector inputs and outputs for Verilog primitives. 
However, the example shown in Fig. 2.20 besides illustrating the iterative generate statement of 
Verilog, introduces the structure of components that are used in this book to describe gate-level 
circuits for test applications. This description is chosen due to the PLI requirements for implement-
ing test applications that are discussed later.

The code of Fig. 2.20 uses the parameter construct to prepare parametric size and delays for this 
AND gate. In the body of this module on Line 8, a variable for generating n instances of and primi-
tive is declared using the genvar declaration. The generate statement that begins on Line 10 loops 
n times to generate an instance of the and gate in every iteration. Together, the and_0 instance and 
the generate statement make enough and gates to AND together bits 0 to n-1 of input vector in. 
This is done by use of the intermediate wire, mwire. Since the resulted and_n must represent a 
bitwise function, mwire net is declared to accumulate bit-by-bit AND results. Line 9 shows the first 
two bits of the in input vector ANDed using the and primitive, and the result is collected in bit 0 of 
mwire. After that, each instanced and in the generate statement takes the next bit from in and ANDs 
it with the calculated bit of mwire to generate the next bit of mwire. The resulted hardware for this 
parametric and_n gate, is concatenation of 2-input and primitives that AND all bits of the in input 
vector.

The complete component library for test applications of this book can be found in Appendix B.
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Fig. 2.20  Using iterative instantiation for test primitive AND gate

module and_n
#(parameter n = 2, tphl = 1, tplh = 1)(out,in);

   input [n-1:0] in; 
   output out; 
   wire [n-2:0] mwire; 

genvar i;                                          //Line 08 
and and_0 (mwire [0], in [0], in [1]);             //Line 09

   generate //Line 10
for (i=1; i <= n-2; i=i+1) begin : AND_N        //Line 11 

and inst (mwire [i], mwire [i-1], in [i+1]); //Line 12 
end

endgenerate

bufif1 #(tplh, tphl) inst(out, mwire [n-2], 1'b1); //Line 16 

endmodule

2 Verilog HDL for Design and Test

2.6 �Sequential Circuits

As with any digital circuit, a sequential circuit can be described in Verilog by the use of gates, 
Boolean expressions, or behavioral constructs (e.g., the always statement). While gate-level 
descriptions enable a more detailed description of timing and delays because of complexity of 
clocking and register and flip-flop controls, these circuits are usually described by the use of proce-
dural always blocks. This section shows various ways sequential circuits are described in Verilog.

2.6.1 � Registers and Shift Registers

Figure 2.21 shows an 8-bit register with set and reset inputs that are synchronized with the clock. 
The set input puts all 1s in the register, and the reset input resets it to all 0s. The sensitivity list of 
the procedural statement shown includes posedge of clk. This always statement only wakes up 
when clk makes a 0 to 1 transition. When this statement does wake up, the value of d is put into q. 
Obviously, this behavior implements a rising-edge register. Instead of posedge, the use of negedge 
would implement a falling-edge register.

In order to provide procedural description for shift registers the concatenation construct can be 
used as shown in Fig. 2.22. This partial code, that can be used in the body of an always statement 
like that of Fig. 2.21, does a left-shift if shift_left is 1, and right shifts, otherwise.

2.6.2 � State Machine Coding

Along with simple sequential circuits, such as registers, shift registers, and counters, Verilog con-
structs enable the designer to model finite state machines of any type. State machines can be mod-
eled as Moore or Mealy machines. In both cases, based on the current state of the sequential circuit 
and its input, the next state is decided. The difference is in the determination of outputs. Unlike a 
Moore machine that has outputs that are only determined by the current state of the machine, in a 
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Fig. 2.21  An 8-bit register

module register (input [7:0] d, input clk, set, reset, output reg [7:0] q);
always @ ( posedge clk ) begin

if ( set ) 
         q <= 8'b1; 

else if ( reset ) 
         q <= 8'b0; 

else
         q <= d; 

end
endmodule

Fig. 2.22  Concatenation for a 8-bit shift register

if ( shift_left ) 
q <= {q[6:0], s_in}; 

else
q <= {s_in, q[7:1]}; 

2.6 Sequential Circuits

Mealy machine, the outputs are declared regarding the state the machine is in as well as the inputs 
of the circuit. This makes Mealy outputs not fully synchronized with the circuit clock.

This section shows coding for state machines and introduces the Huffman coding style. The 
example we use is a Residue-5 divider. The coding styles used here apply to such controllers and 
are used in later sections of this chapter to describe the controller of a simple adding machine. 
It must be mentioned that the Residue-5 example presented here is one of the test cases for the 
application of test methods in this book. Simpler and more detailed examples can be found in [6].

2.6.2.1 � Residue-5 Divider

The Residue-5 divider is a circuit that performs the integral division modulo-5 on the sequences 
coming on its input. For this purpose, the circuit divides the first received input by five and stores 
the remainder. For the next data on the input port, the circuit adds the new value to the stored 
remainder, divides the result by 5, and stores the new remainder. This circuit can be modeled using 
a finite state machine. The remainder stored in this circuit shows its internal state and its output. 
State diagram for the Residue-5 divider using 2-bit input x is depicted in Figs. 2.23 and 2.24. For 
the sake of readability, Fig. 2.23 just includes arcs related to two states.

The machine has five states that are labeled, Zero, One, Two, Three, and Four; each of which 
shows the resulted Residue-5 remainder. In the Moore state machine modeling, the output depends 
just on the current state, so in Fig. 2.23 the output is defined for each state. In addition to the x input, 
the machine has a reset input that forces the machine into its Zero state. The resetting of the machine 
is synchronized with the circuit clock.

2.6.2.2 � The Moore Implementation of Residue-5 in Verilog

The Verilog code of the Moore machine of Fig. 2.24 is shown in Fig. 2.25. After the declaration of 
inputs and outputs of this module, parameter declaration declares five states of the machine as 3-bit 
parameters. The square-brackets following the parameter keyword specify the size of parameters 
being declared. Following parameter declarations in the code of Fig. 2.25, the 3-bit current reg type 
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variable is declared. This variable holds the current state of the state machine. The body of the code 
of this circuit has an always block and an assign statement.

The assign statement shown in Fig. 2.25 puts the proper value on the output regarding the current 
state. This statement is concurrent with the always block that is responsible for making the state 
transitions. The always block used in the module of Fig. 2.25 describes state transitions of the state 
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Fig. 2.25  Moore machine Verilog code

module residue5(input clk, reset, input[1:0] x, output[2:0] out);
reg[2:0] current; 
parameter Zero = 3'b000, One = 3'b001, Two = 3'b010,
          Three = 3'b011, Four = 3'b100; 

always @(posedge clk) begin
      if(reset == 1) 
         current <= Zero; 
      else

case(current)
            Zero: case(x)
                    2'b00:  current <= Zero; 
                    2'b01:  current <= One; 
                    2'b10:  current <= Two; 
                    2'b11:  current <= Three; 

endcase
            One: case(x)
                    2'b00:  current <= One; 
                    2'b01:  current <= Two; 
                    2'b10:  current <= Three; 
                    2'b11:  current <= Four; 

endcase
            Two: case(x)
                    2'b00:  current <= Two; 
                    2'b01:  current <= Three; 
                    2'b10:  current <= Four; 
                    2'b11:  current <= Zero; 

endcase
            Three: case(x)
                     2'b00:  current <= Three; 
                     2'b01:  current <= Four; 
                     2'b10:  current <= Zero; 
                     2'b11:  current <= One; 

endcase
            Four: case(x)
                    2'b00:  current <= Four; 
                    2'b01:  current <= Zero; 
                    2'b10:  current <= One; 
                    2'b11:  current <= Two; 

endcase
default: current <= Zero;

endcase
end
assign out = current;

endmodule

2.6 Sequential Circuits

diagram of Fig. 2.24. The main task of this procedural block is to inspect input conditions (values 
on reset and x) during the present state of the machine defined by current and set values into current 
for the next state of the machine.

The flow into the always block begins with the positive edge of clk. Since all activities of this 
machine are synchronized with the clock, only clk appears on the sensitivity list of the always 
block. Upon entry into this block, the reset input is checked and if it is active, current is set to Zero 
(Zero is a declared parameter and its value is 0). The value put into current in this pass through 
the always block gets checked in the next pass with the next edge of the clock. Therefore, assign-
ments to current are regarded as the next-state assignment. When such an assignment is made, the 
case statement skips the rest of the code of the always block, and this always block will next be 
entered with the next positive edge of clk. Upon entry into the always block, if reset is not 1, pro-
gram flow reaches the case statement that checks the value of current against the five states of the 
machine.
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Figure 2.26 shows the Verilog code of the Two state and its diagram from the state diagram of 
Fig. 2.24. As shown, the case alternative that corresponds to the Two state specifies the next values 
for that state. Determination of the next state is based on the value of x. If x is 1, the next state 
becomes Three, and if x is 2, the next state becomes Four, and so on. As shown in the assign state-
ment in Fig. 2.25, the output bits of this circuit are taken directly from the current register.

This same machine can be described in Verilog in several different forms. A finite state machine 
can also be described as a Mealy machine. As mentioned, in this case the output depends not only 
on the current state, but also on the input of the circuit. In Mealy machines, the output becomes 
available one cycle sooner than that of a Moore machine, causing fewer states than Moore.

2.6.2.3 � Huffman Coding Style

The Huffman model for a digital system characterizes it as a combinational block with feedbacks 
through an array of registers. Verilog coding of digital systems, according to the Huffman model, 
uses an always statement for describing the register part and another concurrent statement for 
describing the combinational part. This model of representing a digital component is very useful for 
test purposes, as we see in the chapters that follow.

We describe the state machine of Fig. 2.24 to illustrate this style of coding. Figure 2.27 
shows the combinational and register part partitioning that we use for describing this machine. 
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Fig. 2.28  Verilog Huffman coding style

case(p_state)
         Zero:…n_state = … 
         One:… n_state = … 
         Two:… n_state = … 
         Three:… n_state = … 
         Four:… n_state = … 

default:…
endcase

end// Combinational part 
   always@(posedge clk, posedge rst) begin
     if(rst)
        p_state = Zero; 
     else
        p_state = n_state;

end// Register part

assign out = p_state;
endmodule
 

module residue5_huffman(input clk, rst, input[1:0] x, output[2:0] out); 
reg[2:0] n_state, p_state; 
parameter Zero = 3'b000, One = 3'b001, Two = 3'b010,

Three = 3'b011, Four = 3'b100;
always@(p_state, x) begin 

n_state = Zero;

2.6 Sequential Circuits

The combinational block uses x and p_state as input and generates out and n_state. The register 
block clocks n_state into p_state, and resets p_state when rst is active.

Figure 2.28 shows the Verilog code of Fig. 2.24 according to the partitioning of Fig. 2.27. As 
shown, parameter declaration declares the states of the machine. Following this declaration, n_state 
and p_state variables are declared as 3-bit regs that hold values corresponding to the five states of 
the Moore Residue-5 divider. The combinational always block follows this reg declaration. Since 
this is purely a combinational block, it is sensitive to all its inputs, namely, x and p_state. 
Immediately following the block heading, n_state is set to its inactive or reset value. This is done 
so that this variable is always reset with the clock to make sure it does not retain its old value. Note 
that retaining old values implies latches, which is not what we want in our combinational block.

The body of the combinational always block of Fig. 2.28 contains a case statement that uses the 
p_state input of the always block for its case expression. This expression is checked against the 
states of the Moore machine. As in the other styles discussed before, this case statement has case 
alternatives for all of the states. For brevity, the statements in the case alternatives are not shown. 
These statements set the n_state variable using the same procedure as setting the current variable in 
Fig. 2.25. In a block corresponding to a case alternative, based on input values, n_state is assigned 
values. Unlike the other style where current is used both for the present and next states, here we use 
two different variables, p_state and n_state.

The next procedural block shown in Fig. 2.28 handles the register part of the Huffman model 
of Fig. 2.27. In this part, n_state is treated as the register input and p_state as its output. On the 
positive edge of the clock, p_state is either set to the Zero state (000) or is loaded with contents of 
n_state. Together, combinational and register blocks describe our state machine in a very modular 
fashion.

As with the other style we presented, a separate assign statement (or any other concurrent statement) 
is used for the assignment of values to the output. The advantage of this style of coding is in its modu-
larity and defined tasks of each block. State transitions are handled by the combinational block and 
clocking is done by the register block. Changes in clocking, resetting, enabling, or presetting the machine 
only affect the coding of the register block. In this code, the a synchronous resetting is applied.
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Fig. 2.29  Control/data partitioning 
for Adding Machine

2 Verilog HDL for Design and Test

2.7 �A Complete Example (Adding Machine)

In this section, the complete RTL design of a simple CPU is described. Although this design has the 
structure of a simple CPU, since its ALU actually just performs adding operation, we refer to it as 
Adding Machine. In this part, almost all Verilog constructs explained in this chapter are exercised. 
Furthermore, the basics of RTL design and datapath and controller partitioning are introduced. Later, 
this Adding Machine is used as one of the test cases in this book for demonstrating test methods.

2.7.1 � Control/Data Partitioning

The first step in an RT-level design is the partitioning of the design into a data part and a control 
part. The data part consists of data components and the bussing structure of the design, and the 
control part is usually a state machine generating control signals that control the flow of data in the 
data part [8].

Figure 2.29 shows a general sketch of an RT-level design that is partitioned into its data and 
control parts. As shown in this figure, a processor is divided into datapath and controller parts. The 
datapath has storage elements (registers) to store intermediate data, handles transfer of data between 
its storage components, and performs arithmetic or logical operations on data that it stores. The 
datapath also has communication lines for transfer of data; these lines are referred to as busses. 
Activities in the datapath include reading from and writing into data registers, bus communications, 
and distributing control signals generated by the controller to the individual data components.

The controller commands the datapath to perform proper operation(s) according to the instruc-
tion it is executing. Control signals carry these commands from the controller to the datapath. 
Control signals are generated by the controller state machine that, at all times, knows the status of 
the task that is being executed and the sort of the information that is stored in datapath registers. 
Controller is the thinking part of a design.

2.7.2 � Adding Machine Specification

The design of Adding Machine begins with the specification of the design, including the number 
of general purpose registers and the instruction format. The machine has two 8-bit external data 
buses (input bus and output bus) and a 6-bit address bus. The address bus connects to the memory 
in order to address locations that are being read from or written into. Data read from the memory 
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Table 2.2  Adding machine instruction set

Opcode Instruction Instruction class Description

00 add immd Arithmetic AC ¬ AC + immd
01 lda adr Data-transfer AC ¬ Mem [adr]
10 sta adr Data-transfer Mem [adr] ¬ AC
11 jmp adr Control-flow PC ¬ adr

2.7 A Complete Example (Adding Machine)

are instructions and instruction operands, and data written into the memory are instruction results 
and temporary information. Adding Machine also communicates with its IO devices through its 
external busses. The address bus addresses a specific device or a device register while the data bus 
contains data that is to be written or read from the device.

Each instruction of Adding Machine is 8 bits wide, and occupies a memory word. The instruction 
format of the machine has an explicit operand (immediate data or memory location the address of 
which is specified in the instruction) and an implicit operand. Adding Machine has four instructions, 
divided into three classes of arithmetic (add), data transfer (lda, sta), and control-flow instructions 
( jmp).

Adding Machine instructions are described below. A tabular list and summary of this instruction 
set is shown in Table 2.2.

·· add immd: adds the immd data with an 8-bit register named accumulator (AC) and stores the 
result back in AC.

·· lda adr: reads the content of the memory location addressed by adr and writes it into AC.
·· sta adr: writes the content of AC into the memory location addressed by adr.
·· jmp adr: jump to the memory location addressed by adr.

2.7.3 � CPU Implementation

In the following subsections, the Verilog implementation of the Adding Machine in register transfer 
level of abstraction is described.

2.7.3.1 � Datapath Design

As mentioned, Adding Machine has an 8-bit register called accumulator (AC). All data transfers and 
arithmetic instructions use AC as an operand. In a real CPU, there may be multiple accumulators or 
an array of registers that is referred to as a register file.

To store the instruction that is read from the memory, a register is used at the output of the 
memory unit called instruction register (IR). The program counter (PC) is implemented as a 
counter that is incremented for program sequencing. Using these registers, the implementation 
of datapath is shown in Fig. 2.30. The input data bus connects to the input of IR in order to bring 
the instruction read from the memory into this register. Similarly, this bus connects to AC to 
bring data read from the memory into the AC register. The control signal for loading IR and AC 
are ld_ir and ld_ac, respectively. PC has three control signals ld_pc, inc_pc, and clr_pc to load, 
increment, and clear it, respectively. The right most 6 bits of IR connect to the input of PC 
for the execution of the jmp instruction. When a bus has more than one source driving it, e.g., 
IR and PC driving adr_bus, a multiplexer and control signals from the controller select the 
source.
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2.7.3.2 � Controller Design

After the design of the datapath and figuring control signals and their role in activities in the data-
path, the design of the controller becomes a simple matter. The block diagram of this part is shown 
in Fig. 2.31.

The controller of our Adding Machine has four states, Reset, Fetch, Decode, and Execute. As the 
machine cycles through these states, various control signals are issued. In state Reset, for example, 
the clr_pc control signal is issued. State Fetch issues pc_on_adr, rd_mem, ld_ir, and inc_pc to read 
memory from the present PC location, route it to IR, load it into IR, and increment PC for the next 
memory fetch. Depending on op_code bits, that are the controller inputs, the Execute state of the 
controller issues control signals for the execution of lda, sta, add, and jmp instructions. The 
Decode state is a simple wait state.

The next section discusses details of the controller signals and their role in execution of these 
instructions. As before, our processor description has a datapath and a control component. The 
controller is described using a state machine coding style. At the end, the description of our small 
example is completed by wiring datapath and controller in a top-level Verilog module.

2.7.3.3 � Datapath HDL Description

Datapath components of Adding Machine are described by always and assign statements according 
to their functionalities described above. Afterward, these modules are instantiated into the datapath 
module. Figure 2.32 shows the Verilog code of the datapath. Structure and signal names in this 
description are according to those shown in Fig. 2.30.

2.7.3.4 � Controller HDL Description

The controller code for our Adding Machine example is shown in Fig. 2.33. This code corresponds 
to the right-hand side control block in Fig. 2.29 which is shown in more details in Fig.  2.31.  
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Fig. 2.31  Simple CPU Adding Machine multicycle controller

Fig. 2.32  Datapath HDL description

module DataPath ( clk, ir_on_adr, pc_on_adr, ld_ir, ld_ac, ld_pc, inc_pc,
clr_pc, pass_add, adr_bus, op_code, data_bus_in, data_bus_out); 

input clk, ir_on_adr, pc_on_adr, ld_ir, ld_ac, ld_pc, inc_pc, clr_pc,
 pass_add; 
output [5:0] adr_bus; 
output [1:0] op_code; 
input [7:0] data_bus_in; 
output [7:0] data_bus_out; 

wire [7:0] ir_out; 
wire [5:0] pc_out; 
wire [7:0] a_side;

   IR ir( data_bus_in, ld_ir, clk, ir_out ); 
   PC pc( ir_out[5:0], ld_pc, inc_pc, clr_pc, clk, pc_out ); 
   AC ac( data_bus_in, ld_ac, clk, a_side );
   ALU alu( a_side, {2'b00,ir_out[5:0]}, pass_add, data_bus_out ); 

assign adr_bus = ir_on_adr ? ir_out[5:0] : pc_on_adr ? pc_out : 6'b0; 
assign op_code = ir_out[7:6]; 

endmodule

2.7 A Complete Example (Adding Machine)

In addition to clk and reset, the controller has the op_code input that is driven by IR and comes to 
the controller from the DataPath module (see Fig. 2.30).

The sequencing of control states is implemented by a Huffman style Verilog code. In this style, 
an always block (registering) handles the assignment of values to present_state, and another always 



46

Fig. 2.33  Controller HDL description

`define Reset 2'b00
`define Fetch 2'b01
`define Decode 2'b10
`define Execute 2'b11

module Controller (reset, clk, op_code, rd_mem, wr_mem, ir_on_adr,   
 pc_on_adr, ld_ir, ld_ac, ld_pc, inc_pc, clr_pc,    

pass_add ); 

input reset, clk; 
input [1:0]op_code;
output rd_mem, wr_mem, ir_on_adr, pc_on_adr, ld_ir, ld_ac, ld_pc; 
output inc_pc, clr_pc, pass_add;
reg rd_mem, wr_mem, ir_on_adr, pc_on_adr, ld_ir, ld_ac;
reg ld_pc, inc_pc, clr_pc, pass_add; 
reg [1:0] present_state, next_state; 

always @( posedge clk )begin : registering
if (reset ) 

         present_state <= `Reset; 
else

         present_state <= next_state; 
end
always @(present_state) begin : combinational

         rd_mem=1'b0; wr_mem=1'b0; ir_on_adr=1'b0; pc_on_adr=1'b0;
         ld_ir=1'b0; ld_ac=1'b0;
         ld_pc=1'b0; inc_pc=1'b0; clr_pc=1'b0; pass_add=1'b0;

case( present_state ) 
         `Reset : begin
            next_state = `Fetch; clr_pc = 1'b1; 

end
         `Fetch : begin
            next_state = Decode ; pc_on_adr=1'b1; rd_mem=1'b1;
            ld_ir=1'b1; inc_pc=1; 

end
         Decode : begin
            next_state = `Execute; 

end
         `Execute: begin
            next_state = `Fetch; 

case( op_code ) 
               2'b00: begin // lda
                  ir_on_adr=1'b1; rd_mem=1'b1; ld_ac=1'b1; 

end
               2'b01: begin // sta
                  ir_on_adr=1'b1; pass_add = 1'b0;
                  wr_mem=1'b1; 

end
               2'b10: ld_pc=1'b1; // jmp 
               2'b11: begin // add
                  pass_add=1'b1; ld_ac=1'b1; 

end
endcase

end
endcase

end
endmodule

2 Verilog HDL for Design and Test



47

Fig. 2.34  Adding Machine top-level module

module CPU( reset,clk,adr_bus,rd_mem,wr_mem,data_bus_in,data_bus_out ); 
input reset;
input clk;
input [7:0]data_bus_in;
output [5:0]adr_bus; 
output rd_mem; 
output wr_mem; 
output[7:0]data_bus_out; 
wire ir_on_adr, pc_on_adr, ld_ir, ld_ac, ld_pc, inc_pc, clr_pc, pass_add;
wire [1:0] op_code;

Controller cu ( reset, clk, op_code, rd_mem, wr_mem, ir_on_adr, pc_on_adr, 
      ld_ir, ld_ac, ld_pc, inc_pc, clr_pc,  pass_add ); 

DataPath dp ( clk, ir_on_adr, pc_on_adr, ld_ir, ld_ac, ld_pc, inc_pc,  
   clr_pc, pass_add, adr_bus, op_code, data_bus_in, data_bus_out ); 

endmodule 

2.7 A Complete Example (Adding Machine)

statement (combinational) uses this register output as the input of a combinational logic determining 
next_state. This combinational block also sets values to control signals that are outputs of the 
controller.

In the body of the combinational always block, a case statement checks present_state against the 
states of the machine (Reset, Fetch, Decode, and Execute), and activates the proper control signals.

The Reset state activates clr_pc to clear PC and sets Fetch as the next state of the machine. In 
the Fetch state, pc_on_adr, rd_mem, ld_ir, and inc_pc become active, and Decode is set to 
become the next state of the machine. By activating pc_on_adr and rd_mem, the PC output goes 
on the memory address and a read operation is issued. Assuming the memory responds in the 
same clock, contents of memory at the PC address will be put on data_bus_in. This bus is 
connected to the input of IR and issuance of ld_ir loads its contents into this register. The next 
state of the controller is Decode that makes the new contents of IR available for the controller. 
In the Execute state, a newly fetched instruction in IR decides on control signals to issue to execute 
the instruction.

In the Execute state, op_code is used in a case expression to decide on control signals to issue 
depending on the opcode of the fetched instruction. The case alternatives in this statement are four 
op_code values of 00, 01, 10, and 11 that correspond to lda, sta, jmp, and add instructions.

For lda, ir_on_adr, rd_mem, and ld_ac are issued. These control signals cause the address from 
IR to be placed on the adr_bus address bus, memory read to take place and data from memory to 
be loaded into AC.

The controller executes the sta instruction by issuing pass_add, ir_on_adr, and wr_mem. As 
shown in Fig. 2.33, these signals take contents of AC to the input bus of the memory (i.e., data_bus_
out), and wr_mem causes the writing into the memory to take place. Note that pass_add causes AC 
to pass through ALU unchanged. The jmp instruction is executed by enabling PC load input, which 
takes the jump address from IR (see Fig. 2.33).

The last instruction of this machine is add, for execution of which, pass_add and ld_ac are 
issued. This instruction adds data in the upper 6 bits of IR with AC and loads the result into AC.

2.7.3.5 � The Complete HDL Design

The top-level module for our Adding Machine example is shown in Fig. 2.34. In the CPU module 
shown, DataPath and Controller modules are instantiated. Port connections of the Controller 
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include its output control signals, the op_code input from DataPath and the reset external input. Port 
connections of DataPath consist of adr_bus and data_bus_in and data_bus_out external busses, 
op_code output, and control signal inputs.

2.8 �Testbench Techniques

The previous sections described Verilog for designing combinational and sequential circuits, as 
well as complete systems. This section discusses about testbenches and their role in simulation. 
However, the primary intention of this part is to show how testbench techniques could help us to 
develop test environments and virtual testers for digital circuit testing. This section shows how 
Verilog language constructs can be used for the application of data to a module under test, and 
how module responses can be displayed and checked.

A Verilog testbench is a Verilog module that instantiates a module under test (MUT), applies data 
to it and monitors its output. Because a testbench is in Verilog, it can go from one simulation envi-
ronment to another. A module and its corresponding testbench form a simulation model in which 
MUT is tested regardless of what simulation environment is used.

Based on these considerations, testbenches could play a very important role in the development 
of test applications in HDL environments. Therefore, a test designer must understand testbenches 
and language constructs that are used for testing a design module. The basics of testbench tech-
niques in Verilog HDL are discussed in this section, and more complete testbenches to develop test 
applications are illustrated in the next chapters.

2.8.1 � Testbench Techniques

All that a testbench covers can be categorized in instantiating a module, applying generated or existing 
data to the inputs of the MUT, delay management, and then collecting the responses of the circuit 
and, if required, comparing them with the expected responses. Therefore, testbench techniques 
can be categorized in order to answer the following questions: 1) How is the data generated or 
provided, 2) How are the circuit responses getting reported, 3) What are data generation and 
response collection sensitive, and 4) What language constructs are to be used to manage the termi-
nation of a testbench?

Answers to the above questions are discussed in the rest of this section, and for preparing for the 
materials that follow Short answer for the above questions are given in the following.

1.	 The methods to provide data include deterministic – assigning a specific data to inputs, arithmetic – 
for example, using a counter to provide new data, periodic – toggling the value of a signal in 
certain periods, random – for example, using $random task function of Verilog, and Text IO – 
reading data from a stored text file, e.g. using $fscanf or $fread.

2.	 To report the circuit responses, Verilog display utilities such, as $display or $monitor can 
be used. These tasks, show the results in the simulator’s console. Another way is to use Text 
IO to record the responses in text files for future references, e.g., using $fdisplay or 
$fwrite.

3.	 It is important to decide on the conditions that test data are applied to a design under test, and 
conditions for collection of its responses. Various choices for such conditions are: a) End of a 
delay, which can abe based on different time slots, equal time slots, or random amount of 
delay, and b) Change of a signal which is appropriate to make handshaking and synchroniza-
tion between the testbench and the design under test.
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Fig. 2.35  alu_4bit module declaration

module alu_4bit (input [3:0] a, b, input [1:0] f, output reg [3:0] y ); 

//…

endmodule

Fig. 2.36  Testbench for alu_4bit

module  test_alu_4bit; 
reg  [3:0] a=4'b1011, b=4'b0110; 
reg  [1:0] f=2'b00; 
wire  [3:0] y; 

   alu_4bit MUT( a, b, f, y); 

initial begin 
 #20 b=4'b1011; 
 #20 b=4'b1110; 
 #20 b=4'b1110; 
 #20 $finish;
end
always #23 f = f + 1; 

endmodule

2.8 Testbench Techniques

4.	 While applying data and collecting responses, the duration of running a testbench must also be 
specified. The methods to manage the end time of a testbench include $stop, $finish or managing  
iterations using repeat or for construct.

Examples of the above items will be seen in the testbenches that are discussed in the following sec-
tions for testing combinational and sequential circuits.

2.8.2 � A Simple Combinational Testbench

Developing a testbench for a combinational circuit is straightforward; however, selection of data and 
how much testing should be done depends on the MUT and its functionality. Previously, a simple ALU 
was described (Fig. 2.18) that we use here to test, and its header is repeated in Fig. 2.35 for reference. 
The alu_4bit module is a four function ALU. Data inputs are a and b, and its function input is f.

A testbench for alu_4bit is shown in Fig. 2.36. Variables corresponding to inputs and outputs of 
the MUT are declared in the testbench. Variables connecting to the inputs are declared as reg and 
outputs as wire. Instantiation of alu_4bit, shown in the testbench, associates local regs and wires 
with the ports of this module.

Variables that are associated with the inputs of alu_4bit have been given initial values when 
declared. Application of data to the b input is done in an initial statement. For the first 60 ns and 
every 20 ns, a new value is assigned to b, and after 20 ns the testbench finishes the simulation. This 
last 20 ns wait, allows effects of the last input change to be shown in the simulation run results.

Application of data to the f input of alu_4bit is done in an always statement. Starting with the 
initial value of 0, f is incremented by 1 every 23 ns. The $finish statement in the initial block is 
reached at 80 ns. At this time, all active procedural blocks stop and simulation terminates. Simulation 
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Fig. 2.38  A testbench for the residue5 module

module test_residue5; 
reg clk, rst; 
reg [1:0] d_in; 
wire [2:0] d_out; 

   residue5 MUT ( clk, rst, d_in, d_out );

   initial begin 
      clk=1'b0 
   end 

initial begin 
   #13 rst=1'b1; 
   #19 d_in = 2’b01; 
   #31 rst=0'b0; 
   #330 $finish;
end

   always #37 d_in = d_in+1; 
always #11 clk = ~clk; 

endmodule

Fig. 2.37 Residue-5 sequential circuit

module residue5(input clk, reset, input[1:0] x, output[2:0] out); 
reg[2:0] current; 

//…
endmodule

2 Verilog HDL for Design and Test

control tasks are $stop and $finish. The first time the flow of a procedural block reaches such a task, 
simulation stops or finishes. A stopped simulation can be resumed, but a finished one cannot. In this 
example, the data generation for b is deterministic, and its data application condition is based on dif-
ferent time slots (we used 20 ns intervals). For the f input, data generation is arithmetic, and data 
application is based on equal time slots (periodic 23 ns).

2.8.3 � A Simple Sequential Testbench

Test of sequential circuits involves synchronization of clock with other data inputs. We use the 
residue5 module as an example here. As shown in the header of this circuit, repeated in Fig. 2.37 
for reference, it has a clock input, a reset, data input, and output.

Figure 2.38 shows a testbench for the Residue-5 circuit. As before, variables corresponding to 
the ports of MUT are declared in the testbench. When the residue5 module is instantiated, these 
variables are connected to its actual ports.

The initial block of this testbench generates a positive pulse on rst that begins at 13 ns and ends 
at 63 ns. The timing is so chosen to cover at least one positive clock edge so that the synchronous 
rst input can initialize the states of the Residue-5 circuit. The d_in data input begins with value X 
and is initialized to 2’b01 while rst is 1.

In addition to the initial block, test_residue5 module includes two always blocks that generate 
data on d_in and clk. Clock is given a periodic signal that toggles every 11 ns. The Residue-5 d_in 
input is assigned a new value every 37 ns. In order to reduce the chance of changing several inputs 
at the same time, we usually use prime numbers for the timing of sequential circuit inputs.
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Fig. 2.39  Testbench using repeat to limit data sets

module test_residue5;
reg  reset=1, clock=0;
reg [1:0] x;
wire [2:0] z;

   residue5 MUT (clock, reset, x, z); 

initial #24 reset=1'b0; 
initial repeat(13) #5 clock=~clock; 
initial repeat(10) #7 x=$random;

endmodule

2.8 Testbench Techniques

Instead of initializing reg variables when they are declared, we have used an initial block for this 
purpose. It is important to initialize variables, like the clk clock, for which their old values are used 
for determining their new values. If not done so, clk would start with value X and complementing 
it would never change its value. The always block shown generates a periodic signal with a period 
of 22 ns to provide a free running clock.

The waveform generated on d_in may or may not be able to test the whole functionality of this 
state machine. However, periods of clk and d_in, and the testbench duration can be changed to make 
this happen.

2.8.4 � Limiting Data Sets

Instead of setting a simulation time limit, a testbench can put a limit on the number of data put on 
inputs of a MUT. This will also be able to stop simulation from running forever.

Figure 2.39 shows a testbench for our MUT that uses $random to generate random data on the 
x input of the circuit. The repeat statements in the initial blocks shown cause clock to toggle 13 
times every 5 ns, and x to receive a random data 10 times every 7 ns. Instead of a deterministic set 
of data to guarantee a deterministic test state, random data are used here. This strategy makes it 
easier to generate data, but due to unpredictable inputs, makes the analysis of circuit responses more 
difficult. In large circuits, using random data is more useful, and is usually more appropriate to set 
data inputs and not control signals. The testbench of Fig. 2.39 stops at 70 ns.

2.8.5 � Synchronized Data and Response Handling

The previous examples of testbenches for MUT used independent timings for the clock and data. 
Where several sets of data are to be applied, synchronization of data with the system clock becomes 
difficult. Furthermore, changing the clock frequency would require changing the timing of all data 
inputs of the module being tested.

The testbench of Fig. 2.40 uses an event control statement to synchronize data applied to x with 
the clock that is generated in the testbench. The clock signal is generated in an initial statement 
using the repeat construct. An always statement is used for generation of random data on x. This 
loop waits for the positive edge of clock and 3 ns after the clock edge, and a new random data is 
generated for x. The stable data after the positive edge of the clock will be used by residue5 on the 
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Fig. 2.40  Synchronizing data with clock

module test_residue5;
reg  reset=1, clock=0;
reg [1:0] x;
wire [2:0] z;

   residue5 MUT ( clock, reset, x, z ); 

initial #24 reset=0;
initial repeat(13) #5 clock=~clock; 
always @(posedge clock) #3 x=$random;
initial forever @(posedge clock) #1 $displayb(z);

   always @(z) $display("Output changes at %t to %b", $time, z); 
initial $monitor("New state is %d and occurs at %t", MUT.current, $time);

endmodule
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next leading edge of the clock. This technique of data application guarantees that changing of data 
and clock do not coincide.

In this testbench, 1 ns after the positive edge of the clock, that is when the circuit output is 
supposed to have its new stable value, the z output is displayed using the $display task. This method 
is appropriate for behavioral simulation, but when dealing with synthesized circuit which includes 
internal delays, calculating the exact time in which response is ready would not be easy and reliable. 
A more convenient way to display new output values is to wait for an event on the output z, which 
means that it has received a new value. This can be complemented by displaying the time of change 
using the $time, task.

Using hierarchical naming, this testbench can be used for displaying internal variables and 
signals of MUT. The initial statement containing $monitor is responsible for displaying MUT, 
current, which is the current state of residue5 addressed by its hierarchical name. The initial 
statement starts $monitor in the background. Display occurs when the task is started and when 
an event occurs on one of the variables in the task arguments. The %b, %d, and %t format 
specifications in this testbench cause the related signals to be reported as binary, decimal, and in 
time unit, respectively.

2.8.6 � Random Time Intervals

We have shown how $random can be used for generation of random data. The testbench we are 
discussing in this section uses random delays for assigning values to x.

Figure 2.41 shows a testbench for the Residue-5 circuit that uses $random for its delay control. 
As shown, the running initial statement applies appropriate initial values to inputs of the MUT. In 
this procedural block, nonblocking assignments cause intra-assignment delay values to be regarded 
as absolute timing values. Then, the testbench waits for 13 complete clock pulses before it finishes 
the simulation. As shown, an always block concurrent with the running block continuously gener-
ates clock pulses of 5 ns duration.

Also concurrent with these blocks is another always block that generates random data on t, and 
uses t to delay the assignment of random values to x. This block generates data on the x input for as 
long as the $finish statement in the running block is not reached. Assume that it is desirable to 
check if the state machine of residue5 ever meets state Three or not. The last always block in this 
testbench waits on observing 2’b11 on the internal state of the Reside-5 circuit (the current reg), 
and if it is found, it will be reported.
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Fig. 2.41  Testbench using random time intervals

module test_residue5;
reg reset, clock;
reg [1:0] x;
wire [2:0] z;

   residue5 MUT ( clock, reset, x, z ); 

initial begin :running
      clock = 1'b0; x = 1'b0;

   reset = 1'b1; reset = #7 1'b0; 
repeat (13) begin

         @( posedge clock ); 
         @( negedge clock );  

end
#5;
$finish;

end

always #5 clock=~clock; 
always begin 

      t = $random; 
      #(t) x=$random;

end

   always begin 
      wait (MUT.current == 2’b11);

$display(“state is 2’b11”);
   end 
endmodule

2.8 Testbench Techniques

2.8.7 � Text IO

Input and output from external files are discussed here. In VHDL, this is referred to as Text IO, and we 
use the same terminology here. The input side of Text IO means that instead of generating test data, a 
testbench can apply data to the MUT from a pre recorded text file. This is equivalent to a stored vector 
testing that is done by an ATE. In this book, using this type of providing data is very common.

Figure 2.42 shows a testbench that uses Text IO to read data and expected output of the MUT. 
Three file pointers dataFile, responseFile, and reportFile of type integer are declared and are 
assigned in the first initial block to three physical text files “Res5.dat,” “Res5.rsp,” and “Res5.rpt,” 
respectively. This assignment is performed by using the $fopen task function. The second argument 
in these statements shows the mode of opening file, which could be “r” as read, “w” as write, and 
“a” as append.

The next initial block is responsible for reading data and the expected output from the related 
text files, managing the required delay and then collecting the responses of the MUT and comparing 
them with the expected values. All of the mentioned processes continue until the end of one or more 
of the input files is reached; this condition is checked with the $feof task function in the condition 
part of the while statement.

The data reading from the input files can be done using $fscanf or $fread. In this case, $fscanf is 
used. This task function has an integer return value which shows if the reading was successful or not. 
Therefore, variable status of type integer should be declared and used here. After reading and apply-
ing data from dataFile to d_in, and reading the expected response from responseFile, the testbench 
waits for the posedge of the clock to make sure that the input is affected, and the internal state of the 
circuit has been changed. Then after a very short delay, the expected and the actual responses of MUT 
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Fig. 2.42  Testbench using text IO

module test_residue5; 
reg  rst, clk; 
reg [1:0] d_in;  
wire [2:0] d_out; 
reg [2:0] expected_out; 
integer dataFile, responseFile, reportFile, status;

   residue5 MUT (clk, rst, d_in, d_out); 

initial begin 
     clk = 0; 
     rst = 1’b1; #7; rst = 1’b0; 
     dataFile = $fopen("Res5.dat", "r"); 
     responseFile = $fopen("Res5.rsp", "r"); 
     reportFile = $fopen("Res5.rpt", "w"); 

end

always #5 clock=~clock; 

initial begin 
while((!$feof(dataFile) && (!$feof(responseFile))
begin

          status = $fscanf(dataFile, “%b\n”,d_in); 
          status = $fscanf(responseFile, “%b\n”,expected_out); 

@posedge(clk);
          #1; if(expected_out == d_out) 

$display(“correct output = %d”, d_out); 
else

                 $fdisplay(reportFile, “wrong output.. d_out= %b\t
expected_out = %b\n”, d_out, expected_out);    

end
  #1; 
$finish;

end

endmodule
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can be compared. Since the internal state of the circuit changes right at the posedge of the clock, this 
1 ns delay guarantees that we are not looking at the previous state of the circuit. The correctness of 
results is reported on the console of the simulator using $display or $monitor, and in case that they 
are not equal, it can be reported in a text file using $fprintf, $fwrite, or $fdisplay. Concurrent with 
the mentioned initial blocks, an always block generates a periodic clock with a 10 ns period.

2.8.8 � Simulation Code Coverage

A good testbench that can verify the correctness of a design should guarantee that is able to exercise 
most of the design under test and especially its critical parts. The percentage of the statements, blocks, 
paths, etc., in a design that are covered using a testbench is the code coverage of that testbench. 
Most of the simulation environments provide tools to estimate the code coverage for testbenches. 
During the compilation part in an HDL simulator, the kind of required code coverage can be speci-
fied; then, the simulator calculates the specified type of code coverage for the instantiated design. 
If the resulted code coverage is less than expected, it can be decided that the testbench is not a good 
quality testbench. The parameters that most of the HDL simulators support for code coverage 
include statement coverage, condition coverage, block coverage, and branch coverage.
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Fig. 2.43  Behavioral code of a comparator

module Comparator (input a, b, output a_gtoreq_b, a_lt_b); 

always @ ( a, b ) begin
if ( a < b ) begin

         a_gtoreq_b = 0; 
         a_lt_b = 1; 

end
else begin 

         a_gtoreq_b = 1; 
         a_lt_b = 0; 
      end 
   end 
endmodule

Fig. 2.44  Types of code coverage for a comparator

always @ (a,b)

a_gtoreq_b = 1

a_lt_b = 0a_lt_b = 1

a_gtoreq_b = 0

If a<b

Block Coverage

Path Coverage

Condition Coverage

Statement Coverage

2.8 Testbench Techniques

Code coverage matrices measure how much of the design a testbench covers. On the other hand, 
if we want to estimate how much of the possible design faults this testbench covers, we must apply 
this testbench to the post-synthesis model of the design, and simulate it. Reports generated by this 
simulation are called fault coverage. We may think, or hope, that high-level code coverage and low-
level fault coverage somehow correspond. Although this correspondence is very weak, but using 
code coverage we can have a sense of how good a testbench would be for gate-level fault simulation. 
The advantage of using high-level simulation is that it is much faster than the gate-level simulation. 
Therefore, the fast behavioral testbench can be performed as an estimation of a good testbench; it 
can get matured in this level of simulation at a lower cost and then get adjusted for covering more 
faults.

As an example, Figs. 2.43 and 2.44 show the Verilog code of a Comparator and its block diagram 
on which various code coverages are depicted.
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In these figures, output a_gtoreq_b becomes 1 when the first input is greater than or equal to the 
second input, and a_lt_b checks if a is less than b or not. Figure 2.44 shows the block diagram 
related to this code, and various types of code coverages are specified with different line styles.

Condition coverage means how many of the edges of all the conditions in the code will be visited 
with the related testbench. For example in Fig. 2.44, if the testbench is such that a is always less 
than b, then the left-hand side branch of the condition is never covered.

In this block diagram, statements are identified using solid lines. Statement coverage specifies 
how many of these statements can be examined by the testbench.

Two curved dotted lines on the sides of the block diagram show two paths in this code. Path 
coverage shows how many paths in a design are covered using a certain testbench. For example, in 
a case statement, the code branches out to many paths and they converge at the same place, and there 
might be some paths from the divergence to the convergence point that have not been examined.

Finally, the dash-and-dot lines in Fig. 2.44 represent the blocks of the code in which their cover-
age can be calculated using the block coverage option of the simulator. To this point, we have 
discussed the HDL techniques to develop testbenches useful for HDL design. However, as mentioned 
at the beginning of this chapter, the main objective of using HDLs and testbenches in this book is 
utilizing their facilities to implement existing test applications and developing new ones. As men-
tioned in Sect. 2.2, an HDL environment can provide utilities to develop fault simulation, test genera-
tion, DFT evaluation and configuration, and various other test applications. However, some facilities 
are required for test purposes that Verilog HDL basic constructs do not provide. For example, Verilog 
is not able to model a defective wire without making changes in the components of the original design 
[9]. In addition, a number of test utilities such as fault compilation and testability measurements need 
to explore the gate-level netlist of a design at a reasonable cost. In the standard Verilog language, this 
cannot easily be done since it does not have mechanisms for creating software-like structures. 
Fortunately, these drawbacks of HDL environment are compensated for by using the PLI of Verilog. 
PLI also has other capabilities that facilitate integration of design and test [10]. The following section 
briefly introduces PLI and its features and illustrates how it can be useful for providing a convenient 
environment for test application development.

2.9 �PLI Basics

Procedural language interface PLI provides a library of C language functions that can directly access 
data within an instantiated Verilog HDL data structure [11] and provides mechanisms to invoke C or 
C++ functions from a Verilog testbench. Therefore, not only the design core and its testbench can be 
developed in a uniform programing environment, but also all the facilities of software programing 
(such as complex data structures and utilization of functions) become available by the use of PLI. 
A function invoked in Verilog code is called a system call. An example of a built-in system call is 
$display, $stop, $random, which were introduced in the testbench section above. PLI allows the user 
to create custom system calls, for tasks that the standard Verilog language does not support.

Verilog PLI has been in use since the mid-1980s. This standard comprises of three primary gen-
erations of the Verilog PLI: a) Task/function routines (tf), b) Access routines (acc), and c) VPI rou-
tines. The tf and acc libraries construct the PLI 1.0 standard, which is vast and old. The next set of 
routines, which was introduced with the latest release of Verilog 2001 is called vpi routines. These 
are small and down-to-point PLI routines that make the new version, PLI 2.0.

Test applications in this book are developed using Access (acc) routines. The acc routines are C 
programing language functions that start with acc_. These routines provide direct access to a 
Verilog HDL structural description. Using the acc routines, we can access and modify information, 
such as delay and logic values on various objects in a Verilog HDL description. More information 
about these routines can be found in the next subsection.
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Fig. 2.45  The general view of running test programs in mixed HDL/PLI environment

2.9 PLI Basics

2.9.1 � Access Routines

Access routines are C programing language routines that provide procedural access to information 
within Verilog-HDL. Access routines perform one of two operations, read or write. Using read 
operations, certain data and information can be obtained about particular objects in the circuit 
directly from its internal data structure. The objects that access routines can perform read operations 
for, included module instances, module ports, module paths, intermodule paths, top-level modules, 
primitive instances, primitive terminals, nets, regs, parameters, specparams, timing checks, 
named events, integer, and real and time variables. Write operations replace new data or information 
for objects in the circuit by directly changing the related variables into the internal data structures. 
Access routines can write to intermodule paths, module paths, primitive instances, timing checks, 
register logic values, and sequential UDP logic values.

According to the operation performed by access routines, they are classified into six categories: 
1) Fetch routines return a variety of information about different objects in the design hierarchy,  
2) Handle routines return handles – the pointer to an object in the data structure, to a variety of 
objects in the design hierarchy, 3) Modify routines alter the values of a variety of objects in the design 
hierarchy, 4) Next routines when used inside a loop construct can find each object of a given type that 
is related to a particular reference object in the design hierarchy; for example, ports of a module, the 
instantiated modules within it – which are called its children, or the module which instantiated this 
module – which is called its parent, 5) Utility routines perform a variety of operations, such as ini-
tializing and configuring the access routine environment, and 6) Vcl or Value Change Link (VCL) 
allows a PLI application to monitor the value changes of selected objects. VCL can monitor value 
changes for events, scalar and vector registers, scalar nets, bit-selects of expanded vector nets, and 
unexpanded vector nets. On the other hand, VCL cannot extract information about the following 
objects: bit-selects of unexpanded vector nets or registers, part-selects, and memories.

2.9.2 � Steps for HDL/PLI Implementation

Figure 2.45 shows the general view of implementing and running test programs in a mixed HDL/
PLI environment. All test applications in this book are implemented based on this block diagram.
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Fig. 2.46  t_tfcell struct for registering the PLI function with the HDL simulator

typedef struct t_tfcell 
{
    PLI_INT16 type;     /* USERTASK, USERFUNCTION, or USERREALFUNCTION  */  
    PLI_INT16 data;     /* passed as data argument of callback function */ 
    p_tffn checktf;  /* argument checking callback function          */
    p_tffn sizetf;   /* function return size callback function       */ 
    p_tffn calltf;   /* task or function call callback function      */ 
    p_tffn misctf;   /* miscellaneous reason callback function       */ 
    char * tfname;   /* name of system task or function              */
}

Fig. 2.47  PLI coding and registration for a very simple function

#include “..\\HDLsimulatorInstallationPath\\include\\veriuser.h” 
static PLI_INT32   Start()
{

io_printf(“Starting…\n”);
return 0;

}
static PLI_INT32   End()
{
    io_printf(“Ending…\n”);

return 0; 
}

s_tfcell veriusertfs[] =
{
    {usertask, 0, 0, 0, Start, 0, “$printStart”}, 
    {usertask, 0, 0, 0, End, 0, “$printEnd”}, 
    {0} /*last entry must be 0 */ 
};
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The main part of this block diagram is the PLI function; the PLI functions should be written and 
compiled using a C compiler. A number of examples for writing PLI functions are given in the fol-
lowing. After completing the C code for the PLI function using the acc routines, the provided func-
tion must register its system tasks and functions with the HDL simulator. Registering each system 
task and function must be performed by filling the entries of an array of s_tfcell structures shown 
in Fig. 2.46. The resulted struct must take place at the end of the C code which implements the PLI 
function.

To make these steps more clear, a simple PLI function (perhaps the simplest possible) is shown in 
Fig. 2.47. This is just a simple PLI call for printing a message. The first line of this code includes the 
veriuser.h header to be able to use the io_printf function. veriuser.h and acc_user.h are two header 
files in the directory of the HDL simulator installation path, and should be included in the C code 
of the PLI function to have access to the routines of these libraries.

The last part of this C code performs the registration of these PLI functions with the HDL simulator. 
This code varies from one simulator to another, and we have shown this for Mentor Graphics’s 
ModelSim simulator. As depicted in this code, there must be one entry for each declared function in 
this code, and the last entry of the veriusertfs must always be zero. The first field in each entry 
shows the type of the declared function, which for common uses we usually set it as usertesk. This 
value means that the registered task does not return any value. The last field declares the name that 
the PLI function will be invoked with in the HDL testbench (notice the $ character at the beginning 
of these names). The fifth field is the name of the C function that describes the PLI function.
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Fig. 2.48  PLI function call in HDL testbench

module verilog_test(); 

initial
    $printStart(); 
    //  . . .
    //  . . .
    $printEnd(); 
    $stop(); 
endmodule

2.9 PLI Basics

After providing this C code and compiling it with the C compiler, it must be built to generate a 
Dynamic Linked Library (.dll1) file. When the C part is done, we get to the HDL simulator part. 
The resulted .dll1 file must be placed in the working directory of the HDL simulator. For invoking 
the prepared PLI function, the pseudo code in Fig. 2.48 can be used.

In order to simulate this testbench in the presence of the PLI.dll in ModelSim simulation environ-
ment, the following command must be performed in the simulator console.

vsim –c –pli dllFileName TestbenchName

In this line, vsim is the simulation command, -c is for the command mode, -pli means in the 
presence of the .dll file the name of which appears next, and finally the name of the top-level module 
or the testbench must be declared. In order to link more than one PLI .dll file to the HDL project, 
the following command should be used.

vsim –c –pli dllFileName_1 –pli dllFileName_2 … –pli dllFileName_n TestbenchName

By running this command, the simulation of the testbench and designs added to the project is 
done, and it can be run like any other normal HDL project. As a result of running this testbench, the 
following lines will be printed on the simulator console.

Starting…
Ending…

In the next subsection, the implementation of fault injection and removal as more complex PLI 
functions and also a very important part of test applications are discussed.

2.9.3 � Fault Injection in the HDL/PLI Environment

The most important utilities for implementing most of test algorithms are fault injection (FI) and 
fault removal (FR) functions. As mentioned, PLI provides mechanisms for reading and writing net 
and reg values. Therefore, we can force and release values in the data structures corresponding to 
nets, which give us the capabilities for FI and FR on and from circuit lines. In PLI, a handle is a 
pointer to a specific object in the design hierarchy. handles give information about a unique instance 
of a special object to acc routines. They contain useful information such as how and where we can 
find data about the object. For reading and writing information about an object, most acc routines 
require a handle argument. For each input argument of a PLI function, a variable of type handle 
will be used.

The FI and FR processes are done simply by using the acc_set_value PLI routine that sets the 
desired value on the target wire or removes the value from it. In order to implement PLI InjectFault 
and RemoveFault, there are two structs named s_setval_value and s_setval_delay, for which several 
fields must be set. However, the most important fields that need to be mentioned are the model field 
in acc_setval_delay and the value field of acc_setval_value. Figure 2.49 depicts these two structs 
for one of the input ports of an AND gate.
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Fig. 2.50  Fault injection PLI code

static PLI_INT32 injectFault () 
{
    arg1 = acc_handle_by_name ((char*) acc_fetch_tfarg_str(1), null);

arg2 = acc_handle_tfarg(2);

//get value of arg2 into value_of_arg2 
value_of_arg2.format = accScalarVal;
acc_fetch_value (arg2, “%%”, &value_of_arg2); 

    //prepare a data 
    value_for_arg1.format = accScalarVal;
    value_for_arg1.value.scalar = Value_for_arg3.value.scalar; 

    //prepare delay mode 
    delay_of_arg1.model = accForceFlag;
    delay_of_arg1.time.type = accSimTime;
    delay_of_arg1.time.low = 0; 
    delay_of_arg1.time.high = 0; 

    //Put it in arg1 
acc_set_value (arg1, &value_for_arg1, &delay_for_arg1); 

acc_close();
return 0; 

}

Fig. 2.49  PLI structures for stuck-at fault injection and fault removal

2 Verilog HDL for Design and Test

In FI, the model field must be defined as accForceFlag. This means that the desired value will be 
forced on the wire until it is removed by calling a PLI function for FR. During this time, the wire will 
not take values assigned to it by the Verilog simulator. The C code for the PLI FI is shown in Fig. 2.50.

The removeFault function sets the s_setval_delay model field to accReleaseFlag. Once this is 
done, values coming from HDL simulator will again appear on the wire. In other words, by put-
ting the desired fault value on a variable of type s_setvalue_value and setting the model field of 
a variable of type s_setvalue_delay to accForceFlag or accReleaseFlag, FI and FR can be 
achieved. Figure 2.51 shows that the faulty value of the selected wire is applied by the PLI 
$InjectFault function. Only after calling $RemoveFault for that wire, it will accept the normal 
values, propagated to it by the HDL testbench.

Figures 2.52 and 2.53, respectively illustrate the usage of inject and remove fault on the wires of 
a full adder and the resulted waveform.
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Fig. 2.52  Fault injection and removal for a full adder – testbench

module testbench();
reg a, b, cin;
wire sum_f, sum_g;
wire co_f, co_g;

   FA FA_ golden (a, b, cin, sum_g, co_g); 
   FA FA_faultable (a, b, cin, sum_f, co_f); 

   initial begin 
      #20; 

$InjectFault(“testbench.FA_faultable.s”, 1’b0); 
repeat(10) begin

         #150; 
         {a,b,cin} = $random(); 

end
$RemoveFault(“testbench.FA_faultable.s”);
repeat(10) begin

         #150; 
         {a,b,cin} = $random(); 
     end 
      $stop; 
    end 
endmodule

Fig. 2.51  Stuck-at fault injection and fault removal mechanism

Fig. 2.53  Fault injection and removal for a full adder – waveform

2.9 PLI Basics
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In the testbench of Fig. 2.52 after 20 ns, the FA_  faultable.s which is the sum port in this instance 
of the full adder, is stuck to 0 utilizing the PLI $InjectFault function and stays in this state for 1,500 ns. 
The waveform shows that while FA_golden.s is obtaining the related output values during this 
period, the result of adding is not reflected on the FA_faultable.s, and its value is always 0 until the 
simulation time of 1,520 ns. At this time, the PLI $RemoveFault function, removes the injected 
fault and from this moment to the end of simulation both faultable and golden instances of the full 
adder obtain the same values on their sum port.

2.10 �Summary

In this chapter, the basics of Verilog HDL design and testbench techniques and its PLI are discussed. 
The overall guidelines to use this environment for design and test of digital circuits are shown and 
developing test applications in this environment is expressed by implementing the FI and FR utili-
ties. All mentioned concepts of this chapter are used in the rest of this book to describe and enhance 
test techniques.
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