
Semantic Web Services

Bearbeitet von
Dieter Fensel, Federico Michele Facca, Elena Simperl, Ioan Toma

1. Auflage 2011. Buch. xi, 357 S. Hardcover
ISBN 978 3 642 19192 3

Format (B x L): 15,5 x 23,5 cm
Gewicht: 719 g

Weitere Fachgebiete > EDV, Informatik > Programmiersprachen: Methoden >
Netzwerkprogrammierung, Web Services

Zu Inhaltsverzeichnis

schnell und portofrei erhältlich bei

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft.
Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm
durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr

als 8 Millionen Produkte.

http://www.beck-shop.de/Fensel-Facca-Simperl-Semantic-Web-Services/productview.aspx?product=8428660&utm_source=pdf&utm_medium=clickthru_lp&utm_campaign=pdf_8428660&campaign=pdf/8428660
http://www.beck-shop.de/trefferliste.aspx?toc=8296
http://www.beck-shop.de/trefferliste.aspx?toc=8296
http://www.beck-shop.de/fachbuch/inhaltsverzeichnis/9783642191923_TOC_001.pdf

Chapter 12
Lightweight Semantic Web Service Descriptions

Abstract The Web standardization consortium W3C has developed a lightweight
bottom-up specification, Semantic Annotation for WSDL (SAWSDL), for adding
semantic annotations to WSDL service descriptions. In this chapter, we de-
scribe SAWSDL, and then we present WSMO-Lite and MicroWSMO, two related
lightweight approaches to Semantic Web Service description, evolved from the Web
Service Modeling Ontology (WSMO) framework. WSMO-Lite defines an ontology
for service semantics, used directly in SAWSDL to annotate WSDL-based services.
MicroWSMO and its basis, hRESTS, are microformats that supplement WSDL and
SAWSDL for unstructured HTML descriptions of services, providing WSMO-Lite
support for the growing numbers of RESTful services.

12.1 Motivation

As the first step towards standardizing semantic descriptions for Web services, the
Web standardization consortium W3C has developed a lightweight bottom-up spec-
ification for annotating WSDL service descriptions. The specification is called Se-
mantic Annotations for WSDL and XML Schema (SAWSDL, [3, 6]).

Technologies such as WSMO (cf. Chap. 7) and OWL-S (cf. Chap. 11) embody
the so-called top-down approach to semantic Web service modeling: a service en-
gineer describes the semantics of the service independently of the actual realization
in the service implementation; then the semantics is grounded in an underlying de-
scription such as WSDL. This approach separates the semantics from the underlying
WSDL, on the principle that the semantics should not be influenced by implemen-
tation details.

In contrast, SAWSDL embodies a bottom-up modeling approach where the
WSDL layer that describes the service on the implementation level forms the basis
for adding semantics. With a bottom-up approach, semantics are added to WSDL
descriptions in a modular fashion, as needed in a concrete deployment. SAWSDL
by itself, however, does not specify any actual types of semantics; it only gives
us hooks for attaching semantics to WSDL descriptions. SAWSDL is the ground
stone on which semantic Web services frameworks should be built, and a catalyst
for building them. We further describe SAWSDL in Sect. 12.2.1.

The standardization of SAWSDL led to the development of WSMO-Lite [4], an
emerging technology that realizes the WSMO Semantic Web Services approach in

D. Fensel et al., Semantic Web Services,
DOI 10.1007/978-3-642-19193-0_12, © Springer-Verlag Berlin Heidelberg 2011

279

280 12 Lightweight Semantic Web Service Descriptions

Fig. 12.1 WSMO-Lite and
MicroWSMO layer cake

SAWSDL and RDF. WSMO-Lite identifies four types of semantics and defines a
lightweight RDF Schema ontology for expressing them. Built on a simplified ser-
vice model, WSMO-Lite applies directly to WSDL services, described in Chap. 4.
We present the service semantics defined by WSMO-Lite in Sect. 12.2.2, and in
Sect. 12.2.3, we show the specifics of how WSMO-Lite applies to WSDL descrip-
tions.

The WSMO-Lite service model also maps naturally to RESTful services, de-
scribed in Chap. 5. However, at the time of writing, there is no widely accepted
standard for machine-readable descriptions of RESTful services, which are instead
simply documented in HTML Web pages. Faced with HTML pages, we employ
two microformats (an “adaptation of semantic XHTML that makes it easier to pub-
lish, index, and extract semi-structured information” [2]) to make the key pieces
of the human-oriented service documentation machine-readable (hRESTS), and to
add semantic annotations (MicroWSMO). Both microformats, defined in [5], are
described in Sect. 12.2.4.

12.2 Technical Solution

Figure 12.1 shows the relative positioning of WSMO-Lite, WSDL with SAWSDL,
and hRESTS with MicroWSMO. WSDL is the standard description language for
Web services; SAWSDL extends it with annotations that can point to semantics,
such as WSMO-Lite. hRESTS is analogous to WSDL—it describes the basic struc-
ture of RESTful services. MicroWSMO is then a direct realization of SAWSDL
annotations over hRESTS. Both SAWSDL and MicroWSMO are annotation mech-
anisms enabling pointers to semantics; WSMO-Lite specifies a simple vocabulary
for four types of semantics that fit in SAWSDL/MicroWSMO annotations.

Below, we first describe SAWSDL, the simple specification that is the corner-
stone of lightweight semantic Web services frameworks. Then we proceed to detail
WSMO-Lite, with its simple service model and four types of service semantics. Af-
terwards, we show exactly how WSMO-Lite semantics are applied in WSDL and
SAWSDL. Finally, we extend the reach of WSMO-Lite also to RESTful services,
using the microformats hRESTS and MicroWSMO.

12.2 Technical Solution 281

12.2.1 SAWSDL

SAWSDL is a set of extensions for WSDL,1 the standard description format for Web
services. To briefly recap from Chap. 4, WSDL uses XML as a common flexible data
exchange format, and applies XML Schema for data typing. WSDL describes a Web
service in three levels:

• Reusable abstract interface defines a set of operations, each representing a simple
exchange of messages described with XML Schema element declarations.

• Binding describes the on-the-wire message serialization, following the structure
of an interface and filling in the necessary networking details (for instance, for
SOAP or HTTP).

• Service represents a single physical Web service which implements a single in-
terface; the Web service can be accessible at multiple network endpoints.

The purpose of WSDL is to describe the Web service on a syntactic level: WSDL
specifies what the messages look like rather than what the messages or operations
mean. SAWSDL defines an extension layer over WSDL that allows the semantics
to be specified on the various WSDL components. SAWSDL defines extension at-
tributes that can be applied to elements both in WSDL and in XML Schema in order
to annotate WSDL interfaces, operations and their input and output messages.

The SAWSDL extensions are of two forms: model references point to semantic
concepts, and schema mappings specify data transformations between the XML data
structure of messages and the associated semantic model.

12.2.1.1 Model Reference

A model reference is an extension attribute, sawsdl:modelReference, that
can be applied to any WSDL or XML Schema element, in order to point to one or
more semantic concepts. The value is a set of URIs, each one identifying some piece
of semantics.

Model reference has the very generic purpose of referring to semantic concepts.
As such, it serves as a hook where semantics can be attached. As illustrated in the
examples presented later in this chapter, model reference can be used to describe the
meaning of data or to specify the function of a Web service operation.

12.2.1.2 Schema Mappings

Schema mappings are represented by two attributes, sawsdl:liftingSchema-
Mapping and sawsdl:loweringSchemaMapping. Lifting mappings trans-
form XML data from a Web service message into a semantic model (for instance,

1Web Services Description Language, http://www.w3.org/TR/wsdl20/.

282 12 Lightweight Semantic Web Service Descriptions

Fig. 12.2 RDF data lifting
and lowering for WS
communication

Fig. 12.3 RDF data lifting
and lowering for data
mediation

into RDF data that follows some specific ontology), and lowering mappings trans-
form data from a semantic model into an XML message.

Lifting and lowering transformations are required for communication with the
Web service from a semantic client: the client software will lower some of its se-
mantic data into a request message and send it to the Web service, and when the
response message is received, it can be lifted for semantic processing. This is illus-
trated in Fig. 12.2.

Lifting and lowering annotations can also be used for XML data mediation
through a shared ontology, as shown in Fig. 12.3. The data in one XML format can
be lifted to data in the shared ontology and then lowered to another XML format,
using the lifting annotation from the schema for the first format, and the lowering
annotation from the second schema.

12.2.1.3 Annotation Propagation

In an XML Schema, the content of an element is described by a type definition,
and the name of the element is added as an element declaration. SAWSDL model
reference and schema mapping annotations can be both on types and on elements;
in fact, the annotations of a type apply also to all elements of that type.

In particular, for a given pair of an element declaration and its type definition,
the model references from the type are merged with the model references of the el-
ement, and all of them apply to the element. Schema mappings, on the other hand,
are only propagated from the type if the element does not declare any schema map-
pings of its own. This allows a type to provide generic schema mappings, and the

12.2 Technical Solution 283

Table 12.1 SAWSDL syntax summary

Name Description

modelReference
(XML attribute)

a list of references to concepts in some semantic
models

liftingSchemaMapping
(XML attribute)

a list of pointers to alternative data lifting
transformations

loweringSchemaMapping
(XML attribute)

a list of pointers to alternative data lowering
transformations

attrExtensions
(XML element)

used for attaching attribute extensions where
only element extensibility is allowed

element to specify more concrete mappings appropriate for the specific use of the
type. Table 12.1 provides a summary of the syntactical constructs of SAWSDL.

12.2.1.4 WSDL 1.1 Support

While SAWSDL is primarily built for WSDL 2.0, the older and more prevalent ver-
sion WSDL 1.1 is also supported. Essentially, both model references and schema
mappings apply in the same places in both versions of WSDL. However, the
XML Schema for WSDL 1.1 only allows element extensions on operations, so a
WSDL 1.1 document with the SAWSDL sawsdl:modelReference attribute
on an operation would not be valid. To overcome this obstacle, SAWSDL defines
an element called sawsdl:attrExtensions that is intended to carry exten-
sion attributes in places where only element extensibility is allowed. Instead of
putting the model reference directly on the wsdl11:operation element, it is
put on the sawsdl:attrExtensions element, which is then inserted into the
wsdl11:operation element.

WSDL is a well-known and accepted language for describing Web service in-
terfaces, and virtually all Web service enabled systems use it to advertise and use
Web services. SAWSDL is a non-intrusive, simple extension of WSDL that enables
semantic annotations in a way that does not invalidate any existing uses of WSDL.
This makes it perfectly suitable as the basis for an ontology for describing Semantic
Web Services, working towards automation in service-oriented systems.

12.2.2 WSMO-Lite Service Semantics

WSMO-Lite is a lightweight technology for semantic description of Web services.
It distinguishes between the following four types of service semantics:

• Information model defines the semantics of input, output and fault messages.
• Functional semantics defines service functionality, that is, what a service can

offer to its clients when it is invoked.

284 12 Lightweight Semantic Web Service Descriptions

Fig. 12.4 Web service
description model with
attached semantics

• Non-functional semantics defines any incidental details specific to the imple-
mentation or running environment of a service, such as its price, location or qual-
ity of service.

• Behavioral semantics specifies the protocol (ordering of operations) that a client
needs to follow when consuming a service.

These semantics apply to service descriptions, as illustrated in Fig. 12.4: func-
tional and non-functional semantics belong to the Web service as a whole, behav-
ioral semantics belong to the operations, and the information model describes the
input and output messages. With SAWSDL, the Web service description can contain
pointers to the semantics as appropriate.

The service model shown in Fig. 12.4 is very similar to the model of WSDL, but
it also applies to RESTful Web services (as shown in Chap. 5). It can be seen as the
minimal service model: a Web service provides several operations, each of which
can have input and output messages, along with possible input and output faults.

Figure 12.5 lists the WSMO-Lite ontology. The ontology consists of 3 main
blocks: a service model that unifies the views of WSDL-based and RESTful Web
services, SAWSDL annotation properties for attaching semantics, and finally, classes
for representing those semantics.

Note that instances of the service model are not expected to be authored di-
rectly; instead, the underlying technical descriptions (WSDL, hRESTS) are parsed
in terms of this ontology, with SAWSDL pointers to instances of the service seman-
tics classes in the third block.

The service model is rooted in the class wsl:Service. In contrast to WSDL, this ser-
vice model does not separate the service from its interface, as such separation does
not need to be kept to support SWS automation. A service is a collection of oper-
ations (class wsl:Operation). Operations may have input and output messages, plus
possible fault messages (all in the class wsl:Message). Input messages (and faults2)
are those that are sent by a client to a service, and output messages (and faults) are
those sent from the service to the client.

2Input faults are uncommon but possible in some WSDL message exchange patterns.

12.2 Technical Solution 285

� �

1 # namespace declarations (this line is a comment)
2 @prefix owl: <http://www.w3.org/2002/07/owl#> .
3 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
4 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
5 @prefix sawsdl: <http://www.w3.org/ns/sawsdl#> .
6 @prefix wsl: <http://www.wsmo.org/ns/wsmo−lite#> .
7
8 # WSMO−Lite service model classes and properties
9 # this model is a simplified WSDL−based view of Web services

10 wsl:Service a rdfs:Class .
11 wsl:hasOperation a rdf:Property ;
12 rdfs:domain wsl:Service ;
13 rdfs:range wsl:Operation .
14 wsl:Operation a rdfs:Class .
15 wsl:hasInputMessage a rdf:Property ;
16 rdfs:domain wsl:Operation ;
17 rdfs:range wsl:Message .
18 wsl:hasOutputMessage a rdf:Property ;
19 rdfs:domain wsl:Operation ;
20 rdfs:range wsl:Message .
21 wsl:hasInputFault a rdf:Property ;
22 rdfs:domain wsl:Operation ;
23 rdfs:range wsl:Message .
24 wsl:hasOutputFault a rdf:Property ;
25 rdfs:domain wsl:Operation ;
26 rdfs:range wsl:Message .
27 wsl:Message a rdfs:Class .
28
29 # SAWSDL properties (included here for completeness)
30 sawsdl:modelReference a rdf:Property .
31 sawsdl:liftingSchemaMapping a rdf:Property .
32 sawsdl:loweringSchemaMapping a rdf:Property .
33
34 # WSMO−Lite service semantics classes
35 wsl:Ontology a rdfs:Class ;
36 rdfs:subClassOf owl:Ontology .
37 wsl:FunctionalClassificationRoot rdfs:subClassOf rdfs:Class .
38 wsl:NonFunctionalParameter a rdfs:Class .
39 wsl:Condition a rdfs:Class .
40 wsl:Effect a rdfs:Class .

� �

Fig. 12.5 Service Ontology, Captured in Notation 3. (A brief intro to the Notation 3 RDF
syntax: comment lines start with “#”, URIs are denoted as namespace-qualified names “a”,
is short for rdf:type, triples end with a period, and triples with the same subject can be
grouped, having the next property–object pair after a semicolon instead of a period. More at
http://www.w3.org/DesignIssues/Notation3.html)

To link the components of the service model with the concrete description of
the functional, non-functional, behavioral and information semantics, as illustrated
in Fig. 12.4, we adopt the SAWSDL properties sawsdl:modelReference, sawsdl:lifting-

SchemaMapping and sawsdl:loweringSchemaMapping, defined by the SAWSDL RDF
mapping in [6].

A model reference can be used on any component in the service model to point
to the semantics of that component. In particular, a model reference on a service
can point to a description of the service’s functional and non-functional semantics;
a model reference on an operation points to the operation’s part of the behavioral
semantics description; and a model reference on a message points to the message’s
counterpart(s) in the service’s information model. The lifting and lowering schema

286 12 Lightweight Semantic Web Service Descriptions

mapping properties complement the model references on messages, to point to the
appropriate data transformations.

A single component can have multiple model reference values, which all apply
together; for example, a service can have a number of non-functional properties
together with a pointer to its functionality description, or a message can be annotated
with multiple ontology classes, indicating that the message carries instances of all
the classes.

In the remainder of this subsection, we describe how the four types of service
semantics are represented in the WSMO-Lite service ontology. In the example list-
ings, we use the following namespace prefixes:

� �

1 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
2 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
3 @prefix wsl: <http://www.wsmo.org/ns/wsmo−lite#> .
4 @prefix ex: <http://example.org/onto#> .
5 @prefix xs: <http://www.w3.org/2001/XMLSchema#> .
6 @prefix wsml: <http://www.wsmo.org/wsml/wsml−syntax#> .
� �

Information semantics are represented using domain ontologies. An ontology
intended for information semantics may be marked as wsl:Ontology (as shown below
on line 2), so that authoring tools can focus annotation suggestions more easily. The
following listing is an example domain ontology for a video-on-demand service:

� �

1 # ontology example
2 <> a wsl:Ontology.
3
4 ex:Customer a rdfs:Class .
5 ex:hasService a rdf:Property ;
6 rdfs:domain ex:Customer ;
7 rdfs:range ex:Service .
8 ex:Service a rdfs:Class .
9 ex:hasConnection a rdf:Property ;

10 rdfs:domain ex:Customer ;
11 rdfs:range ex:NetworkConnection .
12 ex:NetworkConnection a rdfs:Class .
13 ex:providesBandwidth a rdf:Property ;
14 rdfs:domain ex:NetworkConnection ;
15 rdfs:range xs:integer .
16 ex:VideoOnDemandService rdfs:subClassOf ex:Service .

� �

Functional semantics are represented with functionality classifications and/or
preconditions and effects.

Functionality classifications define the service’s functionality using some classi-
fication taxonomy (i.e., a hierarchy of categories, such as the ecl@ss taxonomy3),
and the class wsl:FunctionalClassificationRoot marks a class that is a root of a classi-
fication. The classification also includes all the RDFS subclasses of the root class.
Functionality classifications are coarse-grained means for describing service func-
tionality, due to the cost of creating shared taxonomies. An example functionality
classification for subscription services is listed below:

3eCl@ss Standardized Material and Service Classification, http://eclass-online.com.

12.2 Technical Solution 287

� �

1 # classification example
2 ex:SubscriptionService a wsl:FunctionalClassificationRoot .
3 ex:VideoSubscriptionService rdfs:subClassOf ex:SubscriptionService .
4 ex:NewsSubscriptionService rdfs:subClassOf ex:SubscriptionService .
� �

Preconditions and effects can be more fine-grained. They are logical expressions:
the preconditions must hold in a state before the client can invoke the service, and
the effects hold in a state after the service invocation. The current set of Web stan-
dards does not include a language for logical expressions, therefore the WSMO-Lite
classes wsl:Condition (for preconditions) and wsl:Effect are simply placeholders. In our
examples, we use WSML to express the logical expressions (cf. Chap. 8); we ex-
pect that in the future, the W3C Rule Interchange Format4 will be a suitable logical
expression language for preconditions and effects.

Non-functional semantics are represented using some ontology, semantically
capturing non-functional properties such as the price, location or quality of service
(QoS). The class wsl:NonfunctionalParameter marks a concrete piece of non-functional
semantics, such as the example price specification below:

� �

1 # non−functional property example
2 ex:PriceSpecification rdfs:subClassOf wsl:NonFunctionalParameter .
3 ex:VideoOnDemandPrice a ex:PriceSpecification ;
4 ex:pricePerChange "30"^^ex:euroAmount ;
5 ex:installationPrice "49"^^ex:euroAmount .
� �

Behavioral semantics are represented by annotating the service operations with
functional descriptions, i.e., with functionality classifications and/or preconditions
and effects. Below, we show the preconditions and effects for a subscription opera-
tion on a video-on-demand service:

� �

1 # precondition and effect examples
2 ex:VideoOnDemandSubscriptionPrecondition a wsl:Condition ;
3 rdf:value """
4 ?customer[ex#hasConnection hasValue ?connection]
5 memberOf ex#Customer and
6 ?connection[ex#providesBandwidth hasValue ?y]
7 memberOf ex#NetworkConnection and
8 ?y > 1000
9 """^^wsml:AxiomLiteral .

10 ex:VideoOnDemandSubscriptionEffect a wsl:Effect ;
11 rdf:value """
12 ?customer[ex#hasService hasValue ?service]
13 memberOf ex#Customer and
14 ?service memberOf VideoOnDemandSubscription
15 """^^wsml:AxiomLiteral .
16
17 # definition of the axiom for WSML language
18 wsml:AxiomLiteral a rdfs:Datatype .

� �

4http://www.w3.org/2005/rules/.

288 12 Lightweight Semantic Web Service Descriptions

� �

1 <wsdl:description>
2 <wsdl:types><xs:schema>
3 ...
4 <xs:element name="NetworkConnection" type="NetworkConnectionType"
5 sawsdl:modelReference="http://example.org/onto#NetworkConnection"
6 sawsdl:loweringSchemaMapping="http://example.org/NetCn.xslt"/>
7 ...
8 </xs:schema></wsdl:types>
9 ...

10 <wsdl:interface name="NetworkSubscription"
11 sawsdl:modelReference="http://example.org/onto#VideoSubscriptionService" >
12 <wsdl:operation name="SubscribeVideoOnDemand"
13 sawsdl:modelReference="
14 http://example.org/onto#VideoOnDemandSubscriptionPrecondition
15 http://example.org/onto#VideoOnDemandSubscriptionEffect">
16 <wsdl:input element="NetworkConnection"/>
17 ...
18 </wsdl:operation>
19 ...
20 </wsdl:interface>
21 ...
22 <wsdl:service name="ExampleCommLtd"
23 interface="NetworkSubscription"
24 sawsdl:modelReference="http://example.org/onto#VideoOnDemandPrice">
25 <wsdl:endpoint name="public"
26 binding="SOAPBinding"
27 address="http://example.org/comm.ltd/subscription" />
28 </wsdl:service>
29 </wsdl:description>

� �

Fig. 12.6 Various WSDL components with WSMO-Lite annotations

12.2.3 WSMO-Lite in SAWSDL

WSMO-Lite is based on the simplified service model shown in Fig. 12.4. In this
section, we describe a set of recommendations on how to annotate actual WSDL
descriptions with the four kinds of semantics, and a mapping from the annotated
WSDL structure to the WSMO-Lite RDFS service model, which is then the input
to semantic automation.

The listing in Fig. 12.6 shows WSMO-Lite annotations on an example WSDL
document. WSDL distinguishes between a concrete service (line 22) and its abstract
(and reusable) interface (line 10) that defines the operations (line 12). This structure
is annotated using SAWSDL annotations with the examples of semantics shown in
the preceding section.

The following paragraphs describe how the various types of semantics are at-
tached to the WSDL structure:

Functional semantics can be attached as a model reference either on the WSDL
service construct, concretely for the given service, or on the WSDL interface con-
struct (line 11), in which case the functional semantics apply to any service that
implements the given interface.

Non-functional semantics, by definition specific to a given service, are attached
as model references directly to the WSDL service component (line 24).

Information semantics are expressed in two ways. First, pointers to the semantic
counterparts of the XML data are attached as model references on XML Schema el-

12.2 Technical Solution 289

ement declarations and type definitions that are used to describe the operation mes-
sages (line 5). Second, lifting and lowering transformations need to be attached to
the appropriate XML schema components: input messages (going into the service)
need lowering annotations (line 6) to map the semantic client data into the XML
messages, while output messages need lifting annotations so the semantic client can
interpret the response data.

Finally, behavioral semantics of a service are expressed by annotating the ser-
vice’s operations (within the WSDL interface component, lines 13–15) with func-
tional descriptions, so the client can then choose the appropriate operation to invoke
at a certain point in time during its interaction with the service.

The mapping of a WSDL document into the WSMO-Lite RDFS service model is
mostly straightforward: a WSDL <wsdl:service> element becomes an instance
of WSMO-Lite wsl:Service, the WSDL operations of the interface implemented by
the service are attached to the WSMO-Lite service as instances of wsl:Operation,
with input, output and fault messages as specified in the WSDL operation. Model
references from a WSDL service map directly to model references on the WSMO-
Lite service instance; and similarly for model references on the operations.

Since WSMO-Lite does not represent a separate service interface, we combine
the interface annotations with the service annotations-model references on an inter-
face and added them to the model references of the service that implements this in-
terface. And finally, any annotations (model references and lifting/lowering schema
mappings) from the appropriate XML Schema components are mapped to annota-
tions of the messages in our service model.

The listing in Fig. 12.7 shows a generated RDF form that captures the data in
Fig. 12.6, using the lightweight WSMO-Lite RDFS ontology. Note the service, its
operation and the operation’s request message and the appropriate SAWSDL prop-
erties; Fig. 12.6 does not contain any additional data, therefore it is not shown in
Fig. 12.7.

12.2.4 WSMO-Lite for RESTful Services

In the case of RESTful services and Web APIs, there is no widely accepted machine-
readable service description language. WSDL 2.0 and WADL5 are two proposals
for such a language. However, the vast majority of public RESTful services are de-
scribed in plain unstructured HTML documentation. In this section, we present two
microformats, hRESTS and MicroWSMO, that enhance the HTML service docu-
mentation with machine-oriented structure and semantic annotations.

Microformats take advantage of existing XHTML facilities such as the class
and rel attributes to mark up fragments of interest in a Web page, making the
fragments more easily available for machine processing. For example, a calendar
microformat marks up events with their start and end time and with the event title,

5https://wadl.dev.java.net/.

290 12 Lightweight Semantic Web Service Descriptions

� �

1 @prefix ex: <http://example.com/onto#>
2 @prefix gen: <http://example.com/svc.wsdl#>
3 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
4 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
5 @prefix sawsdl: <http://www.w3.org/ns/sawsdl#> .
6 @prefix wsl: <http://www.wsmo.org/ns/wsmo−lite#> .
7
8 gen:ExampleCommLtd a wsl:Service ;
9 rdfs:isDefinedBy <http://example.org/svc.wsdl> ;

10 sawsdl:modelReference ex:VideoOnDemandPrice ;
11 sawsdl:modelReference ex:VideoSubscriptionService ;
12 wsl:hasOperation gen:SubscribeVideoOnDemand .
13
14 gen:SubscribeVideoOnDemand a wsl:Operation ;
15 sawsdl:modelReference ex:VideoOnDemandSubscriptionPrecondition ;
16 sawsdl:modelReference ex:VideoOnDemandSubscriptionEffect ;
17 wsl:hasInputMessage gen:SubscribeVideoOnDemandRequest .
18
19 gen:SubscribeVideoOnDemandRequest a wsl:Message ;
20 sawsdl:modelReference ex:NetworkConnection ;
21 sawsdl:loweringSchemaMapping <http://example.org/NetCn.xslt> .

� �

Fig. 12.7 RDF representation of the WSDL/SAWSDL data in Fig. 12.6, using the WSMO-Lite
RDFS ontology

and a calendaring application can then directly import data from what otherwise
looks like a normal Web page.6

As we have shown in Chap. 5, even though the interaction model of RESTful
services (following links in a hypermedia graph) differs from that of SOAP services
(messaging), the service model is actually the same: a service contains a number of
operations with input and output messages. The hRESTS microformat captures this
structure with HTML classes service, operation, input and output that
identify the crucial parts of a textual service description.

In RESTful services, a service is a group of related Web resources, each of which
provides a part of the overall service functionality. The interaction of a client with
a RESTful service is a series of interactions where the client sends a request to
a resource (using one of the HTTP methods GET, POST, PUT or DELETE), and
receives a response that may link to further useful resources. While at runtime the
client interacts with concrete resources, the service description may present a single
operation that acts on many resources (e.g., getHotelDetails() which can be invoked
on any hotel details resource). An operation description in hRESTS can therefore
specify an address as an URI template whose parameters are part of the input data,
and the HTTP method that implements the operation. To capture this information,
hRESTS defines HTML classes address and method.

The definitions of the hRESTS HTML classes are summarized below, with point-
ers into the listing in Fig. 12.8, which shows an example hRESTS and MicroWSMO
service description:

6Further details on how microformats work can be found at http://microformats.org.

12.2 Technical Solution 291

� �

1 <div class="service" id="svc">
2 <h1>ACME Hotels service API</h1>
3 <p>This service is a
4
5 hotel reservation service.
6 </p>
7 <div class="operation" id="op1">
8 <h2>Operation <code class="label">getHotelDetails</code></h2>
9 <p> Invoked using the GET

10 at <code class="address">http://example.com/h/{id}</code>

11
12 Parameters:
13
14 <code>id</code> − the identifier of the particular hotel
15 (lowering)
16

17
18 Output value: hotel details in an
19 <code>ex:hotelInformation</code> document
20
21 </p>
22 </div></div>

� �

Fig. 12.8 Example hRESTS and MicroWSMO service description

The service class on block markup (e.g., <body>, <div>), as shown in the
example listing on line 1, indicates that the element describes a service API. A ser-
vice contains one or more operations and may have a label (see below).

The operation class, also used on block markup (e.g., <div>), as shown in
the listing on line 7, indicates that the element contains a description of a single Web
service operation. An operation description specifies the address and the method
used by the operation, and it may also contain description of the input and output of
the operation, and finally a label.

The address class is used on textual markup (e.g., <code>, shown on line 10)
or on a hyperlink (<a href>) and specifies the URI of the operation, or the URI
template in case any inputs are URI parameters.

The method class on textual markup (e.g., , shown on line 9) specifies
the HTTP method used by the operation.

The input and output classes are used on block markup (e.g., <div> and
also), as shown on lines 11 and 17, to indicate the description of the input
or the output of an operation.

The label class is used on textual markup to specify human-readable labels for
services and operations, as shown on lines 2 and 8.

The definitions above imply a hierarchical use of the classes within the element
structure of the HTML documentation. Indeed, the classes are to be used on nested
elements, in a hierarchy that reflects the structure of the service model.

In summary, hRESTS can be used to structure the HTML documentation of a
RESTful Web service according to the WSMO-Lite simple service model. With
this structure in place, we now describe MicroWSMO, a microformat equivalent to
SAWSDL. As shown earlier in this chapter, to annotate a service description with
the appropriate semantics, a model reference on a service can point to a description
of the service’s functional and non-functional semantics; a model reference on an

292 12 Lightweight Semantic Web Service Descriptions

operation points to the operation’s part of the behavioral semantics description; and
a model reference on a message points to the message’s counterpart(s) in the ser-
vice’s information semantics ontology, complemented as appropriate by a pointer to
a lifting or lowering schema mapping.

SAWSDL annotations are URIs that identify semantic concepts and data trans-
formations. Such URIs can be added to the HTML documentation of RESTful ser-
vices in the form of hypertext links. HTML defines a mechanism for specifying
the relation represented by link, embodied in the rel attribute; along with class,
this attribute is also used to express microformats. In accordance with SAWSDL,
MicroWSMO defines the following three new types of link relations:

• model indicates that the link is a model reference, as shown in the example
listing in Fig. 12.8 on lines 4 and 13.

• lifting and lowering denote links to the respective data transformations,
such as in the example listing on line 15.

Similarly to how SAWSDL annotations in WSDL can be mapped into the
WSMO-Lite RDFS service ontology (cf. Figs. 12.6 and 12.7), also hRESTS and Mi-
croWSMO descriptions can be transformed into such RDF. Note that hRESTS ex-
tends the WSMO-Lite service model with two properties: hr:hasAddress and hr:has-

Method, applicable to instances of wsl:Operation.
For microformats, the W3C has created a standard called GRDDL (Gleaning

Resource Descriptions from Dialects of Languages, [1]) that specifies how HTML
documents can point to transformations that extract RDF data. In accordance with
GRDDL, an XHTML document that contains hRESTS (and MicroWSMO) data can
point to an XSLT stylesheet7 in its header metadata:

� �

1 <head profile="http://www.w3.org/2003/g/data−view">
2 <link rel="transformation"
3 href="http://cms−wg.sti2.org/TR/d12/v0.1/20081202/xslt/hrests.xslt" />
4 ... further metadata, especially page title ...
5 </head>
� �

This header enables Web crawlers and other parsers to extract the RDF form of
the service description data, even if they are not specifically aware of the hRESTS
and MicroWSMO microformats. The MicroWSMO description from Fig. 12.8 is
embedded in an XHTML document8 that contains also the GRDDL transformation
pointer. Figure 12.9 shows the RDF view of the document.

12.3 Extensions

In this section, we complete the picture of our lightweight SWS approach by sketch-
ing a number of algorithms for processing semantically annotated service descrip-

7The XSLT stylesheet for hRESTS/MicroWSMO is available at http://cms-wg.sti2.org/TR/d12/
v0.1/20081202/xslt/.
8http://cms-wg.sti2.org/TR/d12/v0.1/20081202/xslt/example.xhtml.

12.3 Extensions 293

� �

1 @prefix hr: <http://www.wsmo.org/ns/hrests#> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
3 @prefix sawsdl: <http://www.w3.org/ns/sawsdl#> .
4 @prefix wsl: <http://www.wsmo.org/ns/wsmo−lite#> .
5 @prefix ex: <http://cms−wg.sti2.org/TR/d12/v0.1/20081202/xslt/example.xhtml#> .
6
7 ex:svc a wsl:Service ;
8 rdfs:isDefinedBy <http://cms−wg.sti2.org/TR/d12/v0.1/20081202/xslt/example.xhtml> ;
9 rdfs:label "ACME Hotels" ;

10 sawsdl:modelReference <http://example.com/ecommerce/hotelReservation> ;
11 wsl:hasOperation ex:op1 .
12 ex:op1 a wsl:Operation;
13 rdfs:label "getHotelDetails" ;
14 hr:hasMethod "GET" ;
15 hr:hasAddress "http://example.com/h/{id}"^^hr:URITemplate ;
16 wsl:hasInputMessage [
17 a wsl:Message ;
18 sawsdl:modelReference <http://example.com/data/onto.owl#Hotel> ;
19 sawsdl:loweringSchemaMapping <http://example.com/data/hotel.xsparql>
20] ;
21 wsl:hasOutputMessage [a wsl:Message] .

� �

Fig. 12.9 RDF data extracted from Fig. 12.8 (with blank nodes in square brackets “[]”)

tions, and thus automating the common tasks which are currently performed largely
manually by human operators. Detailed realization of these algorithms remains as
future work. Automation is always guided by a given user goal. While we do not
talk about concrete formal representation for user goals in this chapter, the vari-
ous algorithms need the goal to contain certain specific information. We describe
this only abstractly, since we view the concrete representation of user goals as an
implementation detail specific to a particular tool set.

Service Discovery For discovery (also known as “matchmaking”) purposes, our
approach provides functional service semantics of two forms: functionality classi-
fications and precondition/effect capabilities, with differing discovery algorithms.
With functionality classifications, a service is annotated with particular function-
ality categories. We treat the service as an instance of these category classes. The
user goal will identify a concrete category of services that the user needs. A discov-
ery mechanism uses subsumption reasoning among the functionality categories to
identify the services that are members of the goal category class (“direct matches”).
If no such services are found, a discovery mechanism may also identify instances
of progressively further superclasses of the goal category in the subclass hierar-
chy of the functionality classification. For example, if the user is looking for a
VideoService, it will find services marked as VideoSubscriptionService (presum-
ing the intuitive subclass relationships) as direct matches, and it may find services
marked as MediaService, which are potentially also video services, even though
this is not directly advertised in the description. For discovery with preconditions
and effects, the user goal must specify the user’s preconditions (requirements) and
the requested effects. The discovery mechanism will need to check, for every avail-
able service, that the user’s knowledge base fulfills the preconditions of the service
and that these preconditions are not in conflict with the user’s requirements, and
finally, that the effect of the service fulfills the effect requested by the user. This

294 12 Lightweight Semantic Web Service Descriptions

is achieved using satisfaction and entailment reasoning. Discovery using function-
ality categorizations is likely to be coarse-grained, whereas the detailed discovery
using preconditions and effects may be complicated for the users and resource-
intensive. Therefore, we expect to combine the two approaches to describe the
core functionality in general classifications, and only some specific details using
logical expressions, resulting in better overall usability.

Offer Discovery Especially in e-Commerce scenarios, service discovery as de-
scribed above cannot guarantee that the service will actually have the particular
product that the user requests. For instance, if the user wants to buy a certain
book, service discovery will return a number of online bookstores, but it cannot tell
whether the book is available at these bookstores. Offer discovery is the process of
negotiating with the service about the concrete offers pertinent to the user’s goal.
An offer discovery algorithm uses the behavioral and information model annota-
tions of a Web service to select and invoke the appropriate offer inquiry operations.
In the Web architecture, there is a concept of safe interaction, mostly applied to in-
formation retrieval. In particular, HTTP GET operations are supposed to be safe,
and WSDL 2.0 contains a flag for safe SOAP operations.

Filtering, Ranking, Selection These tasks mostly deal with the non-functional pa-
rameters of a service. The user goal (or general user settings) specifies constraints
and preferences (also known as hard and soft requirements) on a number of differ-
ent aspects of the discovered services and offers. For instance, service price, avail-
ability and reliability are typical parameters for services, and delivery options and
warranty times can accompany the price as further non-functional parameters of
service offers. Filtering is implemented simply by comparing user constraints with
the parameter values, resulting in a binary (yes/no) decision. Ranking, however, is a
multidimensional optimization problem, and there are many approaches to dealing
with it, including aggregation of all the dimensions through weighted preferences
into a single metric by which the services are ordered, or finding locally-optimal
services using techniques such as Skyline Queries. Selection is then the task of
selecting only one of the ranked services. With a total order, the first service can be
selected automatically, but due to the complexity of comparing the different non-
functional properties (for instance, is a longer warranty worth the slightly higher
price?), often the ordered list of services will be presented to the user for manual
selection.

Invocation Service invocation involves the execution of the various operations of
the selected service in the proper order so that the user goal is finally achieved.
To invoke a single operation, the client uses the information model annotations
plus the technical details from the WSDL or hRESTS description to form the ap-
propriate request message, transmit it over the network to the Web service, and
to understand the response. If multiple operations must be invoked, the client can
use artificial intelligence planning techniques with functional semantics, and on
RESTful services, the hypermedia graph can guide the client in its invocations,
as the client gets links to further operations in the response to the last operation
invoked.

12.4 Summary 295

12.4 Summary

In this chapter, we presented SAWSDL, and then we introduced WSMO-Lite and
MicroWSMO, two related lightweight approaches to semantic Web service descrip-
tion, evolved from the WSMO framework. WSMO-Lite defines an ontology for
service semantics, used directly in SAWSDL to annotate WSDLbased services. Mi-
croWSMO and its basis, hRESTS, are microformats that supplement WSDL and
SAWSDL for unstructured HTML descriptions of services, giving WSMO-Lite sup-
port for the growing numbers of RESTful services.

12.5 Exercises

Exercise 1 Referring to the scenario introduced in Sect. 4.3, create a simple tax-
onomy of travel services in RDF or OWL.

Exercise 2 Adopting WSML as language, define preconditions for BlueHotelSer-
vice described in Sect. 4.3.

Exercise 3 Given the WSDL in Listing 4.13, add annotations from the above tax-
onomy, the precondition, and an ontology.

Exercise 4 Transform the annotated WSDL obtained in Exercise 3 into the
WSMO-Lite RDFS form (make up identifiers for the service model components).

Exercise 5 Create from the RESTful version of the BlueHotelService presented
in Sect. 5.3 and HTML description and annotate it to obtain the hRESTS.

Exercise 6 Enhance the obtained hRESTS with MicroWSMO pointers, reflecting
the ones used in the SA-WSDL of Exercise 3.

Exercise 7 Transform the annotated HTML obtained in Exercise 6 into the
WSMO-Lite RDFS form.

References

1. Gleaning resource descriptions from dialects of languages (GRDDL). Recommendation, W3C,
(2007). Available at http://www.w3.org/TR/grddl/

2. Khare, R., Çelik, T.: Microformats: a pragmatic path to the Semantic Web (Poster). In: Pro-
ceedings of the 15th International Conference on World Wide Web, pp. 865–866 (2006)

3. Kopecký, J., Vitvar, T., Bournez, C., Farrell, J.: SAWSDL: semantic annotations for WSDL and
XML schema. IEEE Internet Computing 11(6), 60–67 (2007)

4. Kopecký, J., Vitvar, T., Fensel, D.: WSMO-Lite: lightweight semantic descriptions for services
on the Web. CMS WG Working Draft D11 (2009). Available at http://cms-wg.sti2.org/TR/d11/

5. Kopecký, J., Vitvar, T., Fensel, D., Gomadam, K.: hRESTS & MicroWSMO. CMS WG Work-
ing Draft D12 (2009). Available at http://cms-wg.sti2.org/TR/d12/

6. Semantic annotations for WSDL and XML schema. Recommendation, W3C (2007). Available
at http://www.w3.org/TR/sawsdl/

http://www.springer.com/978-3-642-19192-3

