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Chapter 2
Performance Analysis of Call-Handling
Processes in Buffered Cellular
Wireless Networks

In this chapter effective numerical computational procedures to calculate QoS
(Quality of Service) metrics of call-handling processes in mono-service Cellular
Wireless Networks (CWN) with queues of either original (o-calls) or handover
(h-calls) calls are proposed. Generalization of the results found here for integrated
voice/data CWN is straightforward. Unlike classical models of mono-service CWN,
here original and handover calls are assumed not to be identical in terms of time of
radio channel occupancy. First we consider models of CWN with queues of h-calls
in which for their prioritization a guard channels scheme is also used. We will then
consider models of CWN with queues of o-calls and guard channels for h-calls. For
both kinds of model the cases of limited and unlimited queues of patient and impa-
tient calls are investigated. For the models with unlimited queues of heterogeneous
calls the easily checkable ergodicity conditions are proposed. The high accuracy of
the developed approximate formulae to calculate QoS metrics is shown.

2.1 Models with Queues for h-Calls

As mentioned in Chap. 1, the main method for prioritization of h-calls is the use of
reserve channels (shared or isolated reservation). Another scheme for this purpose
is the efficient arrangement of their queue in the base station. However, joint use of
these schemes improves the QoS metrics of h-calls.

The required queue arrangement for h-calls can be realized in networks where
microcells are covered by a certain macrocell, i.e. there exists a certain zone (han-
dover zone – h-zone), within which mobile users can be handled in any of the
neighboring cells. The time for the user to cross the h-zone is called the degra-
dation interval. As the user enters the h-zone a check is made of the availability of
free channels in a new cell. If a free channel exists, then the channel is immedi-
ately occupied and the h-procedure is considered to be successfully completed at
the given stage; otherwise the given h-call continues to use the channel of the old
(previous) cell while concurrently queuing for availability of a certain channel of a
new cell. If the free channel does not appear in the new cell before completion of
the degradation interval, then a forced call interruption of the h-call occurs.

31L. Ponomarenko et al., Performance Analysis and Optimization of Multi-Traffic
on Communication Networks, DOI 10.1007/978-3-642-15458-4_2,
C© Springer-Verlag Berlin Heidelberg 2010



32 2 Performance Analysis of Call-Handling Processes in Buffered CWN

Herein we consider models of four types: (i) limited queuing of h-call and infinite
degradation interval; (ii) limited queuing of h-call and finite degradation interval;
(iii) unlimited queuing of h-call and infinite degradation interval; (iv) unlimited
queuing of h-call and finite degradation interval.

In all mentioned types of model it is assumed that a cell contains N >1 radio
channels and o-calls (h-calls) enter the given cell by the Poisson law with intensity
λo (λh), the time of channel occupancy by o-calls (h-calls) being an exponentially
distributed random quantity with a mean of μo

–1 (μh
–1). Note, that the time of chan-

nel occupancy considers both components of occupancy time: the call service time
and mobility. If during the service time of any type of call the h-procedure occurs,
then due to the lack of memory of exponential distribution the remaining time of the
given call service in a new cell (now the h-call) also has an exponential distribution
with the same mean.

The different types of call are handled by the scheme of guard channels (shared
reservation), i.e. an entering o-call is received only when there exists not less than
g + 1 free channels; otherwise the o-call is lost (blocked). A handover call is received
with at least one free channel available; should all N channels be busy, the h-call
joins the queue (limited or unlimited). In all model types it is assumed that at the
moment a channel becomes free in a new cell the queue of h-calls (if it exists)
is served by the FIFO (First-In-First-Out) process; with no queue the free channel
stands idle.

2.1.1 Models with Finite Queues

First we consider the models of type (i), i.e. models with a limited queue of patient
h-calls. In this model if all N channels are busy, then the entering h-call joins the
queue with maximal size B >1, if at least one vacant place is available; otherwise
(i.e. when all places in the buffer are occupied) the h-call is lost. Since the degra-
dation interval is infinite, the handover call cannot be lost should it be placed in a
queue. In other words, the waiting h-calls are assumed to be patient. Note that this
model is adequate for networks with slow velocity mobile users.

For a more detailed description of a cell’s operation use is made of 2-D MC
(Markov chain), i.e. the cell state at the arbitrary time instant is given by the vector
k = (k1, k2), where ki is the number of o-calls (h-calls) in the system, i = 1,2. Since
o-calls are handled in a blocking mode and the system is conservative (i.e. with
the queue available channel outages are not admitted), in the state k the number of
h-calls in channels (ks

2) and in the queue (kq
2) are determined as follows:

ks
2 = min {N − k1, k2} , kq

2 = (k1 + k2 − N)+, (2.1)

where x+ = max (0, x) . Therefore, the set of all possible states of the system is
determined in the following way:
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S := {k:k1 = 0, 1, . . . , N − g; k2 = 0, 1, . . . , N + B, k1 + ks
2 ≤ N, kq

2 ≤ B
}

.
(2.2)

Note 2.1. In the known works in view of the calls being identical in terms of
channel occupation time, the state of a cell is described by a scalar magnitude
which points out a general number of busy channels in a base station, i.e. as the
mathematical model one applies 1-D MC. Since in the models studied the channel
occupation time by different types of call is different, the description of a cell by a
scalar magnitude is impossible in principle.

The elements of the generating matrix corresponding to 2-D MC, q(k, k′), k, k′∈
S, are determined as follows (see Fig. 2.1):

q(k, k′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λo if k1 + k2 ≤ N − g − 1, k′ = k + e1,
λh if k′ = k + e2,
k1μo if k′ = k − e1,
ks

2μh if k′ = k − e2,
0 in other cases.

(2.3)
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Fig. 2.1 State transition
diagram for the model with
a limited queue of patient
h-calls, N = 6, g = 3, B = 2
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Hence, the mathematical model of the given system is presented by 2-D MC with
a state space (2.2) for which the elements of the generating matrix are determined
by means of relations (2.3).

The stationary probability of state k is denoted by p(k). Then in view of the
model being Markovian, according to the PASTA theorem we find that the dropping
probability of h-calls (Ph) and probability of blocking of o-calls (Po) are determined
in the following way:

Ph :=
∑
k∈S

p(k)δ
(
kq

2, B
)
, (2.4)

Po :=
∑
k∈S

p(k)I(k1 + ks
2 ≥ N − g). (2.5)

The average number of busy channels of the cell (Ñ) and the average length of the
queue of h-calls (Lh) are also determined via stationary distribution of the model:

Ñ :=
N∑

j=1

jς (j) , (2.6)

Lh :=
B∑

l=1

lτ (l), (2.7)

where

ς (j) :=
∑
k∈S

p (k) δ
(
k1 + ks

2, j
)

and τ (l) :=
∑
k∈S

p (k) δ
(
kq

2, l
)

are the marginal distribution of a model.
Hence, to find QoS metrics (2.4), (2.5), (2.6), and (2.7) it is necessary to deter-

mine the stationary distribution of the model p(k), k ∈ S, from the corresponding
system of global balance equations (SGBE). This is of the following form:

p (k)
(
λoI
(
k1 + ks

2 ≤ g − 1
)+ λh

(
1 − δ

(
kq

2, B
)+ (k1 + ks

2

)
μ
))

= λop (k − e1) (1 − δ (k1, 0)) I
(
k1 + ks

2 ≤ g − 2
)+ λhp (k − e2) (1 − δ (k2, 0))

+ (k1 + 1) μp (k + e1) I (k1 < N − g − 1) + (ks
2 + 1)μp (k + e2) I

(
ks

2 < N
)

,
k ∈ S,

(2.8)

∑
k∈S

p (k) = 1 (2.9)

However, to solve the last problem one requires laborious computation efforts
for large values of N and B since the corresponding SGBE (2.8) and (2.9) have no
explicit solution. As was mentioned in Sect. 1.2, very often the solution of such
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problems is evident if the corresponding MC has a reversibility property and hence
there exists a stationary distribution for it of the multiplicative type. However, by
applying Kolmogorov criterion for 2-D MC one can easily demonstrate that the
given MC is not reversible. Indeed, the necessary reversibility condition states that
if the transition from state (i, j) into the state (i′, j′) exists, then the reverse transi-
tion also exists. However, for the MC considered this condition is not fulfilled. So
by the relations (2.3) in the given MC the transition (k1, k2) → (k1 − 1, k2) with
intensity k1μo exists, where k1 + k2 >N–g, while the inverse transition does not
exist.

To overcome these difficulties one suggests employing the approximate method
of calculating the stationary distribution of the 2-D MC. It is acceptable for models
of micro- and picocells for which the intensity of h-calls entering greatly exceeds
that of o-calls and the talk time generated by an h-call is short. In other words, here
it is assumed that λh >> λo, μh >> μo (for respective comments see Sect. 1.2).

Consider the following splitting of the state space (2.2):

S =
N−g⋃
j=0

Sj, Sj

⋂
Sj′ = ∅, j �= j′, (2.10)

where

Sj := {k ∈ S : k1 = j} , j = 0, N − g.

The sets Sj are combined in merged state < j > and the merging function with the
domain (2.2) is introduced:

U(k) =< j > if k ∈ Sj, j = 0, N − g. (2.11)

The merging function (2.11) specifies the merged model, which is 1-D MC with
state space S̃ := {< j >: j = 0, N − g

}
.

The above assumption about relations of loading parameters of different call
types provides the fulfillment of conditions necessary for correct application of
phase-merging algorithms: intensities of transitions between states inside each class
Sj, j = 0,1,. . . , N–g, essentially exceed intensities of transitions between states from
different classes.

To find the stationary distribution of the initial model one needs a preliminary
determination of the stationary distribution of split and merged models. The sta-
tionary distribution of the jth split model with space of states Sj is denoted by
ρj(i), j = 0, 1, . . . , N −g, i = 0, 1, . . . , N +B− j, i.e. ρj(i) is the stationary probabil-
ity of state (j, i) ∈ Sj in jth split model. It is determined as the stationary distribution
of classical queuing system M/M/N–j/B with the load νh Erl, i.e.

ρj(i) =

⎧⎪⎪⎨
⎪⎪⎩

νi
h

i! ρj(0) if i = 1, N − j,

νi
h

(N − j)!(N − j)i+j−N ρj(0) if i = N − j + 1, N − j + B,
(2.12)
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where

ρj(0) =
⎛
⎝N−j∑

i=0

vi
h

i! + 1

(N − j)!
N−j+B∑

i=N−j+1

vi
h

(N − j)i+j−N

⎞
⎠

−1

.

To find the stationary distribution of the merged model one should preliminarily
determine the elements of the generating matrix corresponding to 1-D MC denoted
by q(< j′, < j′′ >), < j′ >, < j′′ >∈ S̃. The following relations determine the
mentioned parameters:

q(< j′ >, < j′′ >) =
⎧⎨
⎩

λo · �(j′ + 1) if j′′ = j′ + 1,
j′μ if j′′ = j′ − 1,
0 in other cases,

(2.13)

where

�(i + 1) = ρi(0)
N−g−i−1∑

j=0

vj
h

j! , i = 0, N − g − 1.

The last relations imply the stationary distribution of the merged model
π (< j >), < j >∈ S̃, to be determined as the corresponding distribution of the
appropriate birth-and-death process. In other words

π (< j >) = vj
o

j!
j∏

i=1

�(i)π (< 0 >), j = 1, N − g, (2.14)

where

π (< 0 >) =
⎛
⎝1 +

N−g∑
i=1

vi
o

i!
i∏

j=1

�(j)

⎞
⎠

−1

.

Summing up everything stated above one can offer the following approximate
formulae for calculating the QoS metrics (2.4), (2.5), (2.6), and (2.7) of the given
model:

Ph ≈
N−g∑
j=0

ρj(N + B − j)π (< j >); (2.15)

Po ≈
N−g∑
j=0

N+B−j∑
i=N−g−j

ρj(i)π (< j >); (2.16)
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Ñ ≈
N−g∑
j=1

j
j∑

i=0
ρi(j − i)π (< i >)

+
N−1∑

j=N−g+1
j

N−g∑
i=0

ρi(k − i)π (< i >) + N
N−g∑
i=0

N+B−i∑
j=N−i

ρi(j)π (< i >);

(2.17)

Lh ≈
N+B−g∑

j=1

j
g∑

i=0

ρi(j)π (< i >) +
N+B∑

j=N+B−g+1

j
N+B−j∑

i=0

ρi(j)π (< i >). (2.18)

Now we can generalize the obtained results to the model with a limited queue
of h-calls with a finite degradation interval [i.e. to the model of type (ii)]. Unlike
the previous model in this model it is assumed that the degradation interval for
h-calls are independent, equally distributed random quantities having exponential
distribution with the finite mean γ–1.

The state space of the given model is defined by (2.2) also. But for the given
model the elements of the generating matrix corresponding to 2-D MC, q(k, k′),
k, k′ ∈ S are determined as follows (see Fig. 2.2):

q(k, k′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λo if k1 + k2 < N − g − 1, k′ = k + e1,
λh if k′ = k + e2,
k1μ if k′ = k − e1,
ks

2μδ (k2
q, 0) + (k2

sμ + k2
qγ ) (1 − δ (k2

q, 0)) if k′ = k − e2,
0 in other cases.

(2.19)

The stationary probability of blocking of o-calls (Po) in this model is determined
also by the formula (2.5). However, in this model losses of h-calls occur in the
following cases:

(a) If at the moment of its entering the queue there are already B calls of the given
type;

(b) If the interval of its degradation is completed before it gains access to a free
channel.

Hence the given QoS metric is determined as follows:

Ph :=
∑
k∈S

p(k)δ
(
kq

2, B
)+ 1

λh

B∑
i=1

iγ
N−g∑
j=0

p (j, N + i − j). (2.20)

In the last formulae the first term of the sum defines the probability of the event
corresponding to case (a) above, while the second term of the sum defines the
probability of even corresponding to case (b) above.

For the given model the average number of busy channels of the cell (Ñ) and
the average length of the queue of h-calls (Lh) are also determined analogously to
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Fig. 2.2 State transition diagram for the model with a limited queue of impatient h-calls, N = 6,
g = 3, B=2

(2.6) and (2.7). And SGBE for the given model is also derived in a similar way to
(2.8) and (2.9). However, as in the model with patient h-calls, to solve the indicated
SGBE requires laborious computation efforts for large values of N and B since the
corresponding SGBE has no explicit solution. But to overcome these difficulties
use is made of the approximate method proposed above for the model with patient
h-calls.

In this case the splitting (2.10) of state space (2.2) is considered also
and by function (2.11) an appropriate merged model with state space S̃ :={
< j >: j = 0, N − g

}
is constructed. But in this case the stationary distribution in

the jth split model is determined as follows:

ρj(i) =

⎧⎪⎪⎨
⎪⎪⎩

vi
h

i! ρj(0) if i = 1, N − j,

vN−j
h

(N − j)!
i+j−N∏

l=1

λl
h

(N − j) μ + lγ
ρj(0) if i = N − j + 1, N − j + B,

(2.21)
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where

ρj(0) =
⎛
⎝N−j∑

i=0

vi
h

i! + vN−j
h

(N − j)!
N−j+B∑

i=N−j+1

i+j−N∏
l=1

λl
h

(N − j) μ + lγ

⎞
⎠

−1

, j = 0, N − g.

Furthermore, the stationary distribution of the merged model π (< j >), < j >∈ S̃
is determined in a similar way to (2.14). Note that in this case the terms in (2.13)
and (2.14) are calculated by taking into account formulae (2.21).

Making use of the above results and omitting the known intermediate mathemat-
ical calculations the following formulae to calculate the QoS metrics of a network
with a limited queue and finite interval of degradation of h-calls are obtained:

Ph ≈
N−g∑
i=0

ρi(N + B − i)π (i) + 1

λh

B∑
i=1

iγ
N−g∑
j=0

ρj (N + i − j) π (j); (2.22)

Po ≈
N−g∑
j=0

N+B−j∑
i=N−g−j

ρj(i)π (< j >); (2.23)

Ñ ≈
N−g∑
j=1

j
j∑

i=0
ρi(j − i)π (< i >)

+
N−1∑

j=N−g+1
j

N−g∑
i=0

ρi(j − i)π (< i >) + N
N−g∑
j=0

π (< j >)
N+B−j∑
i=N−j

ρj(i);

(2.24)

Lh ≈
N+B−g∑

j=1

j
g∑

i=0

ρi(j)π (< i >) +
N+B∑

j=N+B−g+1

j
N+B−j∑

i=0

ρi(j)π (< i >). (2.25)

2.1.2 Models with Infinite Queues

We now consider the model of type (iii), i.e. a model of a cell with an unlimited
queue of h-calls and an infinite degradation interval. The set of all possible states of
the given model is determined in the following way:

S := {k:k1 = 0, 1, . . . , N − g; k2 = 0, 1, . . . ; k1 + ks
2 ≤ N

}
. (2.26)

The number of h-calls in the queue and in channels and the elements of the
generating matrix are calculated in a similar way to (2.1) and (2.3), respectively
(see Fig. 2.3).

The required QoS metrics in this case is also calculated via a stationary distri-
bution of the model that is determined from the corresponding SGBE of infinite



40 2 Performance Analysis of Call-Handling Processes in Buffered CWN

08

07

h

h

h

h

h

h

6μh

6μh 5μh

5μh h

h h

4μh

4μh 3μh

h 3μh

2μh

2μo

μh

μo

17

06 16 26

05 15 25 35

04 14 24 34

03 13 23 33

02 12 22 32

01 11 21 31

o o

00 10 20 30

.

.

.

.

.

.

.

.

.

.

.

.

Fig. 2.3 State transition diagram for the model with an unlimited queue of patient h-calls, N = 6,
g = 3

dimension. However, the employment of the method of two-dimensional generat-
ing functions for finding the stationary distribution of the given model from the
mentioned SGBE is related to well-known computational and methodological diffi-
culties. In relation to this we shall apply the above-described approach to calculating
the stationary distribution of the model.

Without repeating the above procedures we just note that here we also made use
of the split scheme of the state space (2.26) analogous to (2.10). Since the selec-
tion of the split scheme completely specifies the structures of the split and merged
models, below only minor comments are made on the formulae suggested.
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The stationary distribution of the jth split model is determined as the stationary
distribution of the classical queuing system M/M/N–j/∝ with the load νh Erl, i.e.

ρj (i) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vh
i

i! ρj (0) , i = 1, N − j,

vh
i(N − j)N−j−i

(N − j)! ρj (0) , i ≥ N − j,

(2.27)

where

ρj (0) =
⎛
⎝N−j−1∑

i=0

vh
i

i! + vh
N−j

(N − j)! · N − j

N − j − vh

⎞
⎠

−1

, j = 0, 1, . . . , N − g.

The ergodicity condition of the jth split model is νh < N–j. Hence, for the sta-
tionary mode to exist in each split model the condition νh< g should be fulfilled.
Note that the model ergodicity condition is independent of the o-calls load. This
should have been expected since by the assumption λh >> λo, μh >> μo o-calls
are handled by the scheme with pure losses. In the particular case g = 1 we obtain
the condition νh < 1.

The stationary distribution of the merged model is π (< j >), < j >∈ S̃ deter-
mined in a similar way to (2.14). However, in this case one should consider the
fact that in the above formulae the parameters ρj (0), j = 0, 1, . . . , N − g − 1, are
calculated from (2.27).

After performing the necessary mathematical transformations one obtains the
following approximate formulae for calculating the QoS metrics of the model with
an unlimited queue of patient h-calls and guard channels available:

Po ≈ 1 −
N−g−1∑

j=0

N−g−1−j∑
i=0

ρj (i) π (< j >); (2.28)

Ñ ≈
N−g∑
j=1

j
j∑

i=0
ρi(j − i)π (< i >) +

N−1∑
j=N−g+1

j
N−g∑
i=0

ρi(k − i)π (< i >)

+ N
N−g∑
j=0

π (< j >)

(
1 −

N−j−1∑
i=0

ρj (i)

)
;

(2.29)

Lh ≈
N−g∑
i=0

π (< i >) ρi (0)
vN+1−i

h

(N − i)! · N − i

(N − i − vh)
2

. (2.30)

Now we consider the model of type (iv), i.e. a model with an unlimited queue of
impatient h-calls with the guard channels available. In the given model the impatient
h-call can be lost from the unlimited queue unless a single channel of a new cell is
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Fig. 2.4 State transition diagram for the model with an unlimited queue of impatient h-calls,
N = 6, g = 3

freed before termination of its degradation interval. To obtain tractable results as in
the model of type (ii) it is assumed that degradation intervals for all h-calls are inde-
pendent, equally exponentially distributed random quantities with the finite mean
γ –1. The state space of this model is given by means of the set (2.26). However,
thereby the elements of the generating matrix of the corresponding 2-D MC are
determined in a similar way to (2.19) (see Fig. 2.4). Similarly to the previous model
for the given model one can develop the appropriate SGBE for stationary probabili-
ties of the system states. However, the above-mentioned difficulties of applying such
SGBE in this case are even more complicated since to solve this one the approximate
approach is used.
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The stationary distribution of the jth split model in the given case is deter-
mined by

ρj (i) =

⎧⎪⎪⎨
⎪⎪⎩

vh
i

i! ρj (0) , if i = 1, N − j,

vh
N−j

(N − j)!
i∏

k=N−j+1

λh

(N − j) μh + (k + j − N) γ
ρj (0) , if i ≥ N − j + 1,

(2.31)
where

ρj (0) =
⎛
⎝N−j∑

i=0

vh
i

i! + vh
N−j

(N − j)!
∞∑

m=N−j+1

m∏
k=N−j+1

λh

(N − j) μh + (k + j − N) γ

⎞
⎠

−1

.

It is worth noting that in the given model at any permissible values of load param-
eters in the system there exists a stationary mode. It can be easily proved since
the analysis of the ratio limit of two neighboring terms of a series shows that the
numerical series

R :=
∞∑

m=N−j+1

m∏
k=N−j+1

λh

(N − j) μh + (k + j − N) γ
(2.32)

involved in determining ρj (0) [see formulae (2.31)] converges at any positive values
of load parameters of h-calls and degradation interval. However, unfortunately one
does not manage to find the exact value of the sum of series (2.32) but we manage
to find the following limits of this sum change:

exp

(
λh

(N − j) μh + γ

)
− 1 ≤ R ≤ exp

(
λh

γ

)
− 1. (2.33)

Note 2.2. From the last relations one can see that in a particular case, when
(N − j) μh << γ or the quantity (N − j) μh is sufficiently small, the approximate
value of sum R can be used as the right-hand side of inequality (2.33).

The QoS metrics of the given model are determined like (2.28), (2.29), and
(2.30) but now the described formulae involve the corresponding distributions for
the model with impatient h-calls. In the given model losses of h-calls from the queue
due to their impatience also occur. The probability of such an event is calculated as
follows:

Ph = 1

λh

∞∑
n=1

nγ

N−g∑
i=0

p (i, N + n − i) . (2.34)
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2.1.3 Numerical Results

The algorithms suggested allow one to study the behavior of QoS metrics of the
systems investigated in all admissible ranges of changes to their structural and load
parameters. In order to be short, among the models of cells with a queue of h-calls,
only the results for models with unlimited queues are given in detail.

Some results of numerical experiments for the model with patient h-calls at
N = 15 and μo = 0.5 are shown in Figs 2.5, 2.6, and 2.7. They completely con-
firmed all theoretical expectations. So, the probability of losing o-calls grows (see
Fig. 2.5) and the average number of busy channels (see Fig. 2.6) and the average
number of h-calls in the queue (see Fig. 2.7) falls as the number of guard channels
increases. As changes to the average time of h-call delay coincide with the analo-
gous dependence on their average number in a queue, the details of this function are
not presented here.

Note that all the functions under study are increasing with respect to inten-
sity of o-call traffic. However, unlike the function Ñ the rates of change of the
functions Po and Lh are sufficiently high. So, at N = 15, νo = 4, and νh = 0.8 the
values of functions Po and Lh at the points g = 1 and g = 10 equal Po(1) = 3.8E-04,
Po(10) = 2.8E-01, Lh(1) = 9.9E-05, Lh(10) = 1.2E-10, and those of the function Ñ
at these points equal 4.7985 and 3.6551.

The analysis of results of numerical experiments shows that regardless of the
essential difference in loads of o-calls, as the number of guard channels grows
the corresponding values of functions Po and Lh become closer. For example,
in two experiments at N = 15 the load parameters were selected in this way: (1)
νo = 4, νh = 0.8; (2) νo = 2, νh = 0.75. For this data the following ratios hold:
Po

1(1)/Po
2(1) ≈ 400, Po

1(14)/Po
2(14) ≈ 1.01; Lh

1(1)/Lh
2(1) ≈ 103, Lh

1(14)/Lh
2(14) ≈ 3,

LgPo

g

1

2

Fig. 2.5 Po versus g for the model with an unlimited queue of h-calls in the case where N = 15;
μo = 0.5; 1 – λo = 2, λh = 4 μh = 5; 2 – λo = 1, λh = 3 μh = 4
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g
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2

Fig. 2.6 Ñ versus g for the model with an unlimited queue of h-calls in the case where N = 15;
μo = 0.5; 1 – λo = 2, λh = 4 μh = 5; 2 – λo = 1, λh = 3 μh = 4

g

LgLh

1

2

Fig. 2.7 Lh versus g for the model with an unlimited queue of h-calls in the case where N = 15;
μo = 0.5; 1 – λo = 2, λh = 4 μh = 5; 2 – λo = 1, λh = 3 μh = 4

where Po
i (Lh

i) is the value of the function Po (Lh) in the ith experiment,
i = 1,2. The corresponding ratios for the function Ñare of the form Ñ1(1)/Ñ2(1)
≈ 1.8,Ñ1(14)/Ñ2(14) ≈ 1.1.

The results of numerical experiments for the model with impatient h-calls
showed that the probability of losing o-calls also grew as the number of guard chan-
nels increased. In this model the probability of losing h-calls decreases with respect
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to the number of guard channels and the increase in the number of guard channels
also decreases the average number of busy channels. Both functions increase with
respect to the intensity of o-call traffic.

The analysis of QoS metrics of different models with equal initial data showed
that in the model with patient h-calls the probability of losing o-calls was higher
than in the model with impatient h-calls. This should have been expected since in
the model with impatient h-calls there occur losses of h-calls from the queue thereby
increasing the chances for o-calls to occupy a free channel. These comments also
refer to other QoS metrics namely utilization of channels in the model with impa-
tient h-calls is worse than in the model with patient h-calls. And the average length
of the queue of h-calls in the model with patient h-calls is larger than that in the
model with impatient h-calls.

Another goal of performing numerical experiments was the estimation of the
proposed formula accuracy. The exact values (EV) of the QoS metrics for the model
with patient h-calls at the identical time of channel occupancy by different types
of calls are determined by the following formulae which are easily derived from
classical one-dimensional birth-and-death processes:

Po = 1 −
N−g−1∑

k=0

ρk,

Ñ =
N−1∑
k=1

kρk + N

(
1 −

N−1∑
k=0

ρk

)
,

Lh = AṽN+1
h

(1 − ṽh)
2

,

where

ρk =

⎧⎪⎨
⎪⎩

vk

k! · ρ0 if k = 1, N − g,(
λ
λh

)N−g · vh
k

k! · ρ0 if k = N − g + 1, N,

ρ0 =
⎛
⎝N−g∑

k=0

vk

k! +
(

λ

λh

)N−g N∑
k=N−g+1

vh
k

k! +
(

λ

λh

)N−g

· NN

N! · ṽN+1
h

1 − ṽh

⎞
⎠

−1

;

λ := λo + λh; v := λ

μ
; μ := μo = μh; ṽh := vh

N
; A :=

(
λ

λh

)N−g

· NN

N! .

Note that approximate values (AV) of QoS metrics are almost identical to their
exact values when the accepted assumption about ratios of load parameters of o-
and h-calls is valid. Some comparisons for the models with parameters N = 10,
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λ0 = 0.3, λh = 2, μo = μh = 3 and N = 15, λ0 = 2, λh = 4, μo = μh = 5 are presented
in Tables 2.1 and 2.2, respectively.

As indicated in Tables 2.1 and 2.2 the accuracy of approximate formulae is suf-
ficiently high even when the accepted assumption is not valid, i.e. μo = μh. Similar
results are obtained for any possible values of initial data of the model.

It is worth noting that sufficiently high accuracy exists for the initial data not
satisfying the above-mentioned assumption concerning the ratios of traffic of o-
and h-calls. In other words, the numerical experiments for the models with sym-
metric traffic (i.e. λo = λh) in addition to the ones in which the intensity of o-calls
greatly exceeds the intensity of h-calls showed a sufficiently high accuracy for the
suggested approximate formulae. Certain results of the comparison for the models

Table 2.1 Comparison of exact and approximate values of QoS metrics for the model with patient
h-calls in the case where N = 10, λo = 0.3, λh = 2, μo = μh = 3

Po Ñ Lh

g EV AV EV AV EV AV

1 1.25516E-07 1.26890E-07 0.766666654 0.76666665 1.28659E-09 8.27322E-10
2 1.48437E-06 1.50207E-06 0.766666518 0.76666652 1.11877E-09 8.27185E-10
3 1..56409E-05 1.58504E-05 0.766665103 0.76666508 9.72847E-10 8.26463E-10
4 1.44624E-04 1.46806E-04 0.766652204 0.76665199 8.45954E-10 8.23177E-10
5 1.15118E-03 1.17021E-03 0.766551548 0.76654965 7.35612E-10 8.01069E-10
6 7.68970E-03 7.81343E-03 0.765897696 0.76588532 6.39663E-10 7.72305E-10
7 4.16251E-02 4.20410E-02 0.762504156 0.76246247 5.56228E-10 6.80938E-10
8 1.73829E-01 1.72958E-01 0.749283793 0.74937084 4.83677E-10 5.22265E-10
9 5.21507E-01 5.11655E-01 0.714515980 0.71550113 4.20589E-10 3.33886E-10

Table 2.2 Comparison of exact and approximate values of QoS metrics for the model with patient
h-calls in the case where N = 15, λo = 2, λh = 4, μo = μh = 5

Po Ñ Lh

g EV AV EV AV EV AV

1 4.68574E-11 4.8229E-11 1.200000000 1.20000000 4.67447E-13 3.54354E-13
2 5.48753E-10 5.65712E-10 1.200000000 1.20000000 3.11631E-13 3.54052E-13
3 5.97224E-09 6.17134E-09 1.199999998 1.20000000 2.07754E-13 3.53091E-13
4 6.00456E-08 6.22177E-08 1.199999976 1.19999998 1.38503E-13 3.50246E-13
5 5.53951E-07 5.75773E-07 1.199999778 1.19999977 9.23352E-14 3.42914E-13
6 4.65197E-06 4.85165E-06 1.199998139 1.19999806 6.15568E-14 3.26731E-13
7 3.52214E-05 3.68591E-05 1.199985911 1.19998526 4.10379E-14 2.96472E-13
8 2.37618E-04 2.49355E-04 1.199904953 1.19990026 2.73586E-14 2.49023E-13
9 1.407653E-03 1.478063E-03 1.199436939 1.19940877 1.82391E-14 1.8732E-13

10 7.18795E-03 7.51375E-03 1.19712482 1.1969945 1.21594E-14 1.21736E-13
11 3.090382E-02 3.186036E-02 1.187638471 1.18725586 8.10625E-15 6.58789E-14
12 1.087237E-01 1.091789E-01 1.156510523 1.15632842 5.40416E-15 2.87429E-14
13 3.032389E-01 2.945699E-01 1.078704409 1.08217203 3.60278E-15 9.97493E-15
14 6.476778E-01 6.191261E-01 0.940928864 0.95234956 2.40185E-15 2.82974E-15
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with parameters N = 10, λo = 2, λh = 0.3, μo = μh = 3 and N = 15, λo =λh = 4,
μo = μh = 5 are shown in Tables 2.3 and 2.4, respectively.

As seen from Tables 2.3 and 2.4 small deviations are observed upon calculation
of average length of h-calls. Therewith the approximate values of the QoS metrics
are always larger than their exact values. The last circumstance suggests that to
increase the reliability of network performance the obtained approximate formulae
can be applied at the initial stages of its design.

Analogous results are obtained for the models with a limited queue of h-calls. For
the model with a limited queue of patient h-calls the approximate results obtained
were compared with results in [11], wherein accurate formulae for the model with
identical (with respect to channel occupation times) calls were developed. The

Table 2.3 Comparison of exact and approximate values of QoS metrics for the model with patient
h-calls in the case where N = 10, λo = 2, λh = 0.3, μo = μh = 3

Po Ñ Lh

g EV AV EV AV EV AV

1 1.18332E-07 1.20335E-07 0.766666588 0.76666659 2.57292E-11 5.31368E-10
2 1.39066E-06 1.41037E-06 0.766665740 0.76666573 3.35598E-12 1.51235E-10
3 1.45316E-05 1.46932E-05 0.766656979 0.76665687 4.37736E-13 3.60410E-11
4 1.32920E-04 1.33885E-04 0.766578053 0.76657741 5.70961E-14 6.56823E-12
5 1.04287E-03 1.04528E-03 0.765971420 0.76596981 7.44731E-15 8.94899E-13
6 6.83047E-03 6.80289E-03 0.762113022 0.76213141 9.71388E-16 8.95273E-14
7 3.60318E-02 3.56001E-02 0.742645458 0.74293325 1.26703E-16 6.41398E-15
8 1.46785E-01 1.43779E-02 0.668809421 0.67081413 1.65265E-17 3.19136E-16
9 4.46385E-01 4.35614E-01 0.469076476 0.47625721 2.15562E-18 1.08186E-17

Table 2.4 Comparison of exact and approximate values of QoS metrics for the model with patient
h-calls in the case where N = 15, λo = λh = 4, μo =μh = 5

Po Ñ Lh

g EV AV EV AV EV AV

1 1.76280E-09 1.86813E-09 1.599999999 1.6000000 2.62346E-11 2.73750E-11
2 1.54833E-08 1.64400E-08 1.599999988 1.59999999 1.31173E-11 2.65173E-11
3 1.26382E-07 1.34674E-07 1.599999899 1.59999989 6.55865E-12 2.51571E-11
4 9.52992E-07 1.01936E-06 1.599999238 1.59999918 3.27933E-12 2.28218E-11
5 6.59388E-06 7.07790E-06 1.599994725 1.59999434 1.63966E-12 1.93241E-11
6 4.15307E-05 4.46986E-05 1.599966775 1.59996424 8.19832E-13 1.48828E-11
7 2.35835E-04 2.54048E-04 1.599811332 1.59979676 4.09916E-13 1.01637E-11
8 1.19341E-03 1.28238E-03 1.599045275 1.59897409 2.04958E-13 6.00668E-12
9 5.30507E-03 5.65419E-03 1.595755945 1.59547665 1.02479E-13 3.00061E-12

10 2.03616E-02 2.13408E-02 1.583710735 1.58292732 5.12395E-14 1.23831E-12
11 6.61732E-02 6.74847E-02 1.547061432 1.54601217 2.56197E-14 4.13800E-13
12 1.78719E-01 1.75864E-01 1.457024740 1.45930802 1.28099E-14 1.10834E-13
13 3.95653E-01 3.76449E-01 1.283477649 1.29884051 6.40494E-15 2.40351E-14
14 7.10236E-01 6.69481E-01 1.031811366 1.06441553 3.20247E-15 4.38201E-15
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comparative analysis was performed over a wide range of variance in the initial
data of the model. It is worth noting that the approximate and exact results from
calculating the loss probability of h-calls were identical. An insignificant difference
is observed in calculating the blocking probability of o-calls. It can be seen that the
maximal value of error in all executed experiments was negligible and in most cases
equals zero even for data not satisfying the above-mentioned assumption concern-
ing the ratios of traffic of o- and h-calls. So, for example, at N = 50, B = 10, λ0 = 2,
λh = 1, μ = 10 the maximal error holds for g = 49 and is 1.6%, i.e. for these initial
data the exact value of Po equals 0.233 while its approximate value equals 0.249.

2.2 Models with Queues for o-Calls

In order to compensate for the chance of o-calls a queue (limited or unlimited) is
required for them, while maintaining a high chance for h-calls to access the system
via reservation of channels. Here we consider four types of models with queues for
o-calls whereas h-calls are treated according to a lost model [2, 9]. Note that in this
section it is assumed that the required handling time is independent of call type and
exponentially distributed with the same average μ–1.

In all schemes it is assumed that all m+n channels are divided into two groups:
a Primary group with m channels and a Secondary group with n channels. If all
channels in both groups are busy the h-call is lost. New calls are only allowed to the
Primary group; therefore if all m channels are busy this call is placed into a queue.

In two schemes reallocation of channels from one group to another is not allowed,
i.e. isolated reservation is considered. In the NOPS (Handoff calls Overflow from
Primary to Secondary) scheme, for handling of an h-call, the Primary group chan-
nels are used first and upon absence of an empty channel in the Primary group (all
m channels are busy) the Secondary group channels are used. In the HOSP (Handoff
calls Overflow from Secondary to Primary) scheme the search for a free channel for
handling of an h-call is realized in the Secondary group first.

The last two schemes involve shared reservation of channels. They maybe
described as follows. In one scheme upon release of a channel in the Primary group
(either by an o-call or h-call) an h-call from the Secondary group is reallocated to the
Primary group regardless of the length of the o-calls in the queue. However, o-calls
from the queue are admitted to channels in accordance with the FIFO discipline
only if the number of total empty channels exceeds n. The given channel reallo-
cation scheme is called Handoff Reserve Margin Algorithm (HRMA). The main
difference of the final scheme from the previous one is in the reallocation of the
h-call from the Secondary group to the Primary group. Upon release of a channel in
the Primary group (either by an o-call or h-call) an h-call from the Secondary group
is reallocated to the Primary group if and only if there are no o-calls in the queue. In
other words reallocation of h-calls from the Secondary group to the Primary group
is not allowed until the queue does not contain any o-calls. This reservation scheme
is called Handoff calls Overflow from Primary to Secondary with Rearrangement
(HOPSWR).
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2.2.1 Models Without Reassignment of Channels

Here we consider two isolated reservation schemes in which reallocation (reassign-
ment) of channels from one group to another is not allowed. In the NOPS (Handoff
calls Overflow from Primary to Secondary) scheme the initial search for a free chan-
nel for service of an h-call is carried out in the Primary Group and upon the absence
of an empty channel in the Primary group (all m channels are busy) Secondary
group channels are used (see Fig. 2.8a). In the HOSP (Handoff calls Overflow from
Secondary to Primary) scheme the initial search for a free channel to service an
h-call is carried out in the Secondary Group (see Fig. 2.8b).

In both schemes o-calls can be served only in the Primary Group of channels
and any conservative discipline of service which does not admit to idle times of
channels in the presence of a queue can be used for service of the o-calls queue. In
both schemes in cases of occupancy of all m+n channels the h-call is lost and any
reassignment of the h-call from one group to another is not permitted.

First of all we shall consider the HOPS scheme in the model with an infinite
queue of o-calls. The QoS metrics include probability of loss of h-calls (Ph), average
length of o-calls queue (Lo), and the average latency period in the queue (Wo).

The following hierarchical approach can be used for the analysis of this model
as in this scheme received h-calls initially go to the Primary Group of channels, and
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Fig. 2.9 Hierarchical
approach for study of the
HOPS model

only missed calls of the given type are further received in the Secondary Group of
channels. In the first step of the hierarchy (see Fig. 2.9a) we shall consider a system
with m channels which serve calls of two types with rates λo and λh, thus the holding
time of any type of call has an exponential distribution with a common mean μ–1.
New calls are buffered in an infinite queue and h-calls are lost in case of occupancy
of all channels. Missed h-calls are forwarded to the Secondary Group of channels
for service.

Consider that the probability of loss of h-calls is equal to Ph
1 in the Primary Group

of channels. From Poisson flow property we deduce that the input to the Secondary
Group of channels forms Poisson flow with rate λ̃h := λhP1

h. Hence on the second
stage of hierarchy (see Fig. 2.9b) we examine classic Erlang model M/M/n/0. Loss
probability of calls of this model then will be considered as the desired Ph. And the
desired Lo and Wo are calculated as QoS parameters of queuing system described at
the first step of hierarchy.

Now we shall consider the problem of calculation of the above-specified QoS
metrics. The state of the queuing system with two types of calls described in the first
step of the hierarchy is given by scalar parameter k which specifies the total number
of calls in the system, k = 0,1,2, . . . . Stationary distribution of the corresponding
one-dimensional birth-death process (1-D BDP) is calculated as (Fig. 2.10):

ρk =

⎧⎪⎨
⎪⎩

vk

k! ρ0 if 1 ≤ k ≤ m,

vm

m! · vk−m
o

mk−m
ρ0 if k ≥ m + 1,

(2.35)
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Fig. 2.10 State transition diagram for the HOPS model

where

v := λ/μ, λ := λo + λh , vo := λo/μ, ρ0 =
(

m∑
k=0

vk

k! + vm

m! · vo

m − vo

)−1

.

On derivation of formulae (2.35) an intuitively clear and simple condition of
ergodicity of the models becomes apparent: vo < m. Hence we can see that the
condition of ergodicity of the models does not depend on the loading of handover
calls. From (2.35) it is concluded that the probability of h-call loss in the Primary
Group (Ph

1) is defined as:

P1
h = 1 −

m−1∑
k=0

ρk . (2.36)

Hence, required QoS metric Ph is calculated by means of Erlang’s classical B-
formula for the M/M/n/0 c model with a load of ṽh := λ̃h/μ Erl. In other words,
Ph = EB (ṽh, n) .

After certain transformations we obtain the following formula for calculation of
QoS metric Lo:

Lo =
∞∑

k=1

kρk+m = vm

(m − 1)! · vo

(m − vo)
2

· ρ0 . (2.37)

QoS metric Wo is obtained from the Little formulae, i.e. Wo = Lo/λ .
The developed approach allows the definition of QoS metrics of the model also

in the presence of a limited buffer for waiting in a queue of o-calls. We should note
that in these models at any loading and structural parameter values in the system
there is a stationary mode, i.e. ergodicity performance is not required, vo < m.

Let the maximum size of the buffer be equal to R, R<∞. On the basis of formulae
for finite BDP we conclude that stationary distribution of the appropriate system is
calculated as follows:

⎪
⎪
⎩

⎪⎪
⎨
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⋅
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если

mm

если
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mk
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oν  

m

ν  
k

ρk ν

ρ0

ρ0
(2.38)
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where

ρ0 =
⎛
⎝ m∑

k=0

vk

k! + vm

m! · mm

vm
o

R∑
k=m+1

(vo

m

)k

⎞
⎠

−1

.

Then by using (2.38) from (2.36) and Erlang’s B-formula QoS metric Ph is cal-
culated. And from (2.38) the following formula for calculation of the QoS metric
Lo(R) for the model with a limited queue of o-calls finds:

Lo (R) =
R∑

k=1

kρk+m . (2.39)

From (2.39) quantity Wo(R) in the given model is calculated as follows

Wo (R) = Lo (R)

λo (1 − Po (R))
,

where Po(R) denotes the loss probability of o-calls in the given model, i.e. Po (R) =
ρm+R.

Now consider the HOSP scheme in the model with an infinite queue of o-calls.
As in the previous scheme it is possible to use the hierarchical approach. Here in the
first step of the hierarchy (see Fig. 2.11a) the classical Erlang model M/M/n/0 with

.

.

.

1

n

exit

h

h

(a)

o

queue

1

m

exit

.

.

.h h

h

(b)

Fig. 2.11 Hierarchical
approach for study of the
HOSP model



54 2 Performance Analysis of Call-Handling Processes in Buffered CWN

a load vh := λh/μ Erl is considered. The probability of h-call loss in this model will
be denoted by Ph

2, i.e. P2
h = EB (vh, n) .

Missed h-calls in this system are forwarded to the Primary Group for reception
of service. Hence, in the second step of the hierarchy (see Fig. 2.11b) the system
with m channels which serves calls of two types with rates λo and λ̂h := λhP2

h, thus
the holding time of a call of any type that has an exponential distribution with the
general average μ–1, is considered. New calls are buffered in an infinite queue and
in the case of occupancy of all channels h-calls are lost. Missed h-calls in this system
are finally lost. Thus, stationary distributions of the queuing system described in the
second step of the hierarchy are calculated by means of the formula (2.35). However,
in this case the specified formula parameter λ is determined as λ = λo + λ̂.

Stationary distribution of the last system will be denoted through σk,

k = 0,1,2,. . . . The condition of ergodicity of models in the given scheme is also
vo < m. Then in view of the above-stated, it is concluded that the required QoS
metric Ph in the HOSP scheme of channel distribution is calculated as:

Ph = 1 −
m−1∑
k=0

σk . (2.40)

Other QoS metrics Lo and Wo in the given scheme of channel allocation are also
calculated from (2.37) and Little’s formula, accordingly. Thus, it is necessary to
consider that in this case λ = λo + λ̂.

The above-described approach might also be used for calculation of the QoS
metrics in the HOSP scheme with a limited queue of o-calls. As this procedure is
almost the same as the analogous procedure for the HOPS scheme, it is not presented
here.

2.2.2 Models with Reassignment of Channels

In this section we consider two schemes with reassignment of channels. First we
consider the HRMA (Handoff Reserve Margin Algorithm) scheme for channel
assignment. In this case for the handling of an h-call a channel from the Primary
group is used first and upon absence of an empty channel in this group (all m chan-
nels are busy) Secondary group channels are used. If all channels in both groups are
busy the h-call is lost. New calls are only allowed to the Primary group; therefore if
all m channels are busy this call is placed into a queue. Upon release of a channel
in the Primary group (either by an o-call or h-call) an h-call from the Secondary
group is reallocated to the Primary group regardless of the length of the o-calls in
the queue. However, o-calls from the queue are admitted to channels in accordance
with FIFO discipline only if the number of total empty channels exceeds n.

The system’s state at any time is described by the two-dimensional vector k=
(k1, k2), where k1 is the total number of o-calls in the system k1 = 0,1,2,. . ., and k2



2.2 Models with Queues for o-Calls 55

is the total number of busy channels, k2 = 0,1,. . . , m+n. Note that state space S of
the given model does not include vectors k with components k1>0, k2<m.

On the basis of the adopted channel allocation scheme, we can conclude that
elements of the generating matrix q (k, k′), k, k′ ∈ S of the appropriate 2-D MC are
defined from the following relations (see Fig. 2.12):

q(k, k′) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

λo + λh, if k1 = 0, k2 ≤ m − 1, k′ = k + e2,
λh, if k2 ≥ m, k′ = k + e2,
λo, if k2 ≥ m, k′ = k + e1,
k2μ, if k2 �= m, k′ = k − e2,
mμ, if k2 = m, k′ = k − e1,
0 in other cases.

(2.41)

The desired QoS metrics for the model with an infinite queue of o-calls are
calculated by stationary distribution of the model as follows:

Ph =
∞∑

k1=0

p (k1, m + n), (2.42)

Lo =
∞∑

k1=1

m+n∑
k2=m

k1p (k1, k2), (2.43)

Here we develop simple approximate computational procedures to calculate
these QoS metrics. For correct application of the approximate approach condition

mµλ0
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λ0+λh
0,0 0,m–1 0,m 0,m+1 0,m+n...
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λ0+λh
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λh ...
(m+n)µ

λh

1,m 1,m+1 1,m+n
(m+1)µ

λh ...
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λh
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(m+1)µ
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λ0 mµ λ0 λ0

...
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Fig. 2.12 State transition diagram for the HRMA model with an unlimited queue of patient
o-calls
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λh >> λois required. As was mentioned in previous sections this condition is true
for micro- and picocells. In addition, we assume that both types of calls are char-
acterized by very short duration with respect to their frequency of arrivals. The last
assumption is valid for many real system models that are quite close to those in this
work (see Sect. 1.1).

The following splitting of state space of the given model is considered:

S =
∞⋃

i=0

Si, Si

⋂
Sj = ∅, i �= j, (2.44)

where

Si := {k ∈ S : k1 = i} .

Furthermore, the class of microstates Si is merged into the isolated merged state
< i > and an appropriate merged model with state space S̃ := {< i >: i = 0, 1, 2, . . .}
is constructed.

The elements of the generated matrix of splitting models with state space Si that
is denoted by qi(k, k′), k, k′ ∈ Si are calculated as follows [see (2.41)]:

For the model with state space S0:

q0
(
k, k ′) =

⎧⎪⎪⎨
⎪⎪⎩

λo + λh, if k2 ≤ m − 1, k2
′ = k2 + 1,

λh, if m ≤ k2 ≤ m + n − 1, k2
′ = k2 + 1,

k2μ, if k2
′ = k2 − 1,

0 in other cases,

(2.45)

For models with state spaces Si, i≥1:

qi
(
k, k ′) =

⎧⎨
⎩

λh if k2
′ = k2 + 1,

k2μ if k2
′ = k2 − 1,

0 in other cases.
(2.46)

By using (2.45) and (2.46) the stationary distribution of the splitting models are
calculated from the following expressions:

For i = 0:

ρ0(j) =
⎧⎨
⎩

vj

j! ρ0 if j = 1, m,(
v
vh

)m vh
j

j! ρ0 if j = m + 1, m + n.
(2.47)

For i>0:

ρi (j) = m!
vh

m

vh
j

j! ρ1, j = m + 1, m + n, (2.48)
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where

ρ0 =
⎛
⎝ m∑

i=0

vi

i! +
(

v

vh

)m m+n∑
i=m+1

vh
i

i!

⎞
⎠

−1

, ρ1 =
(

m!
vh

m

m+n∑
i=m

vh
i

i!

)−1

, v := vo + vh.

By using (2.45), (2.46), (2.47), and (2.48) we conclude that the elements of the
generating matrix of merged model q

(
< i >, < i′ >

)
, < i >, < i′ >∈ S̃ are

calculated as follows:

q
(
< i >, < i′ >

) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λo

m+n∑
j=m

ρ0 (j) if i = 0, i′ = i + 1,

λo if i ≥ 0, i′ = i + 1,
mμρ1 if i ≥ 0, i′ = i − 1,
0 in other cases.

(2.49)

From (2.49) we find the following ergodicity condition of the merged model:

a := vo

mρ1(m)
< 1

or in explicit form

vo

m
· m!

vm
h

(
m+n∑
i=m

vh
i

i!

)
< 1. (2.50)

Note 2.3. It is important to note that ergodicity condition (2.50) is exactly the
stability condition of the system established in [2], i.e. here we easily obtain the
stability condition of the investigated model.

By fulfilling the condition (2.50) the stationary distribution of the merged model
(π (< i >) :< i >∈ S̃) is calculated as

π (< i >) = aibπ (< 0 >), i = 1, 2, . . . , (2.51)

where

b :=
m+n∑
i=m

ρ0(i), π (< 0 >) = 1 − a

1 − a + ab
.

In summary the following simple formulae for calculation of the desired QoS
metrics (2.42) and (2.43) can be suggested:

Ph ≈ 1

1 − a + ab
((1 − a)EB(vh, m + n) + abET

B(vh, m + n)), (2.52)

Lo ≈ ab

(1 − a + b)(1 − a)
, (2.53)
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where ET
B(vh, m + n) – the truncated Erlang’s B-formula, i.e.

EB
T(vh, m + n) := vh

m+n

(m + n)!

(
m+n∑
i=m

vh
i

i!

)−1

.

From (2.52) we conclude that Ph is the convex combination of two functions
EB(vh, m+n) and ET

B(vh, m+n). In other words, for any admissible values of number
of channels and traffic loads the following limits for Ph may be proposed:

EB(vh, m + n) ≤ Ph ≤ ET
B(vh, m + n). (2.54)

The limits in (2.54) will be achieved and are the same only in the special case
m = 0, i.e. when only h-calls arrive in the system.

The proposed approach also allows calculation of QoS metrics for the model with
a limited queue of o-calls. Indeed, let the maximal length of the queue of o-calls be
R, R<∝. Then for any admissible values of number of channels and traffic loads in
this system the stationary mode exists, i.e. in this case fulfilling of the ergodicity
condition (2.50) is not required.

For the given model the number of splitting models is R+1 and their stationary
distribution are calculated by (2.47) and (2.48). Making use of the above-described
approach and omitting the known transformation the following expressions are
determined to calculate the stationary distribution of the merged model:

π (< i >) = aibπ (< 0 >), i = 1, R, (2.55)

where

π (< 0 >) =
(

1 + ab
1 − aR

1 − a

)−1

.

Since the approximate values of the QoS metrics for the model with a limited
queue of o-calls are calculated as follows:

Ph(R) ≈ π (< 0 >)EB(vh, m + n) + (1 − π (< 0 >))ET
B(vh, m), (2.56)

Lo(R) ≈ ab
1 − aR(R + 1 + Ra)

(1 − a)2
π (< 0 >) , (2.57)

Wo(R) ≈ Lo (R)

λo (1 − Po (R))
, (2.58)

where Po(R) is the probability of loss of o-calls which is calculated by

Po(R) ≈ π (R)orPo(R) ≈ aRbπ (< 0 >). (2.59)

Now we consider another shared reservation scheme of channels for h-calls in
the model with a queue of o-calls. The main difference between this scheme and
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the previous one is reallocation of h-calls from the Secondary group to the Primary
group. Upon release of a channel in the Primary group (either by an o-call or h-
call) an h-call from the Secondary group is reallocated to the Primary group if and
only if there are no o-calls in the queue. In other words reallocation of h-calls from
the Secondary group to the Primary group is not allowed until the queue does not
contain any o-calls. This reservation scheme is called Handoff calls Overflow from
Primary to Secondary with Rearrangement (HOPSWR).

The system’s state at any time is described by the two-dimensional vector k =
(k1, k2), where k1 is the total number of busy channels k1 = 0,1,. . .,m+n, and k2 is
the number of o-calls in the queue, k2 = 0,1,2,. . . . The model’s state space S has the
following view:

S =
n⋃

i=0

Si , Si

⋂
Sj = Ø, i �= j, (2.60)

where

S0 = {(j, 0) : j = 0, 1, . . . , m} ∪ {(m, j) : j = 1, 2, . . .} ,

Si = {(m + i, j) : j = 0, 1, 2, . . .} , i ≥ 0.

On the basis of the adopted channel allocation scheme, we can conclude, that
elements of the generating matrix q (k, k′), k, k′ ∈ S of appropriate 2-D MC are
defined from the following relations (see Fig. 2.13):

q
(
k, k′) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λo + λh if k1 ≤ m − 1, k′ = k + e1,
λh if k1 ≥ m, k′ = k + e1,
λo if k1 ≥ m, k′ = k + e2,
k1μ if k1 ≤ m − 1, k′ = k − e2,
mμ if k1 ≥ m, k′ = k − e2,
k1μ if k1 ≥ m, k2 = 0, k′ = k − e1,
(k1 − m) μ if k1 ≥ m, k2 ≥ 0, k′ = k − e1,
0 in other cases.

(2.61)

The desired QoS metrics of the system in this case are defined via stationary
distribution of the model as follows:

Ph =
∞∑

i=0

p (m + n, i), (2.62)

Lo =
∞∑

i=1

ip (i), (2.63)

where p (i) := ∑
k∈S

p (k)δ(k2, i) are marginal probability mass functions.
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Fig. 2.13 State transition diagram for the HOPSWR model with an unlimited queue of patient
o-calls

First, we will analyze the model of a macrocell with an infinite queue for o-calls.
It is clear that the following condition holds true in macrocells λo >> λh.

The above-mentioned condition on relations of intensities of different types of
calls allow the conclusion that transitions from state k ∈ S into state k + e2 ∈ S
occur more often than into state k + e1 ∈ S. In other words transition between
states (microstates) inside classes Si occurs more often than transitions between
states from different classes. Because of this fact, classes of microstates Si in (2.60)
are depicted as isolated merged state <i>, and in initial state space S a known
merging function is introduced. Thus, an appropriate 1-D MC with state space
S̃ := {< i >: i = 0, 1, 2, . . . , n} is constructed.

Elements of the generating matrix of split models with state space Si, denoted as
qi(k, k′), k, k′ ∈ Si, are found through relations (2.61):

For the model with state space S0:

q0
(
k, k ′) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

λo + λh if k1 ≤ m − 1, k′ = k + e1,
λo if k1 ≥ m, k′ = k + e2,
k1μ if k1 ≤ m − 1, k′ = k − e1,
mμ if k1 ≥ m, k′ = k − e2,
0 in other cases;

(2.64)

For models with state space Si, i≥1:

qi
(
k, k ′) =

⎧⎨
⎩

λo, if k′ = k + e2,
mμ, if k′ = k − e2,
0 in other cases.

(2.65)
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The stationary probability of state k ∈ S inside the split model with state space
Si is denoted ρ(k). Then with the aid of (2.64) and (2.65) the stationary distribution
of split models can be found:

For the model with state space S0:

ρ(i, j) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vi

i! ρ0 if 1 ≤ i ≤ m, j = 0,

v m

m! ṽo
jρ0 if i = m, j ≥ 1,

(2.66)

where

ρ0 =
(

m∑
i=0

vi

i! + vm

m! · ṽo

1 − ṽo

)−1

, v = vo + vh, ṽo = vo/m;

For models with state space Si, i = 1, 2, . . . , n :

ρ (m + i, j) = ṽo
j (1 − ṽo) , j = 0, 1, 2, . . . . (2.67)

Upon derivation of formula (2.67) we obtain an intuitively clear and simple
ergodicity condition of the model: ṽo < 1. It is seen that this condition does not
depend on h-call load.

Transition intensities between merged states < i >, < i′ >∈ S̃ that are denoted
q
(
< i >, < i′ >

) ∈ S̃ are found with the aid of (2.61), (2.66), and (2.67), i.e.

q
(
< i >, < i′ >

) =

⎧⎪⎪⎨
⎪⎪⎩

λhc if i = 0, i′ = 1,
λh if 1 ≤ i ≤ n − 1, i′ = i + 1,
(m + i) (1 − ṽo) + iμṽo if 1 ≤ i ≤ n, i′ = i − 1,
0 in other cases

(2.68)

where

c := 1 − ρ0

m−1∑
j=0

vj

j! .

With the ergodicity condition of the system holding true, from relation (2.68) the
stationary distribution of a merged model is defined as follows:

π (< i >) = c
i∏

j=1

λh
j

(m + j) (1 − ṽo) + jμṽo
π (< 0 >), i = 1, 2, . . . , n, (2.69)
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where

π (< 0 >) =
⎛
⎝1 + c

n∑
i=1

i∏
j=1

λh
j

(m + j) (1 − ṽo) + jμṽo

⎞
⎠

−1

.

After required mathematical transformations we obtain the following approxi-
mate formulae for calculating the QoS metrics of the initial model:

Ph ≈ π (< n >) , (2.70)

Lo ≈ ṽo

1 − ṽo
, (2.71)

Note 2.4. From formula (2.71) it can be seen that the average queue length of
o-calls and appropriate average queue waiting time does not depend on the load of
h-calls. This has a simple explanation in macrocells, since in such cells the intensity
of o-calls is much higher than the intensity of h-calls, hence the load of h-calls on
the Primary Group of channels is negligible.

The supposed method allows calculation of QoS metrics of a macrocell with a
finite buffer for o-calls as well. Let R, R < ∞ be the maximum allowable length
of the queue for o-calls. Then at any structural and load parameter values there is a
stationary regime in the system, which has no need for ergodicity condition ṽo < 1
to be true.

In this case the state space of the initial model S(R) is defined as:

S(R) =
n⋃

i=0

Si(R) , Si(R) ∩ Sj(R) = Ø, i �= j, (2.72)

where

S0(R) = {(j, 0) : j = 0, 1, . . . , m} ∪ {(m, j) : j = 1, 2, . . . , R} ,

Si(R) = {(m + i, j) : j = 0, 1, 2, . . . , R} .

Using the above-described method and dropping in-between mathematical trans-
formations, we determine that for the given model the stationary distribution of the
merged model is defined as:

πR(< i >) = c
i∏

j=1

λh
j

(m + j) d + jμ (1 − d)
πR(< 0 >), i = 1, 2, . . . , n, (2.73)
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where

πR (< 0 >) =
⎛
⎝1 + c

n∑
i=1

i∏
j=1

λh
j

(m + j) d + jμ (1 − d)

⎞
⎠

−1

, d := 1 − ṽo

1 − ṽR+1
o

.

Consequently, estimated QoS values for the model with a finite queue are
calculated as follows:

Ph(R) ≈ πR(< n >), (2.74)

Lo (R) ≈ d
R∑

i=1

iṽi
o , (2.75)

Wo (R) ≈ Lo (R)

λ0 (1 − Po (R))
, (2.76)

where Po(R) is the loss probability of o-calls, which, for this model, is calculated as
shown below:

Po (R) ≈ ṽR
o

(
vm

m!πR (< 0 >) + d (1 − πR (< 0 >))

)
. (2.77)

Note 2.5. From formula (2.75) it can be seen that the average queue length of
o-calls for the model with a finite queue also does not depend on h-call load. This
is obvious in macrocells. However, in this model average queue waiting of o-calls
depends on h-call load [see formula (2.76)]. But on the other hand, this dependency
occurs only at small values of buffer for o-calls and disappears with growing buffer
size.

Now we will consider calculation of QoS metrics for micro-cell models. As was
noted above the following condition λo << λh holds true in microcells. This means
that transition from state k ∈ S into state k + e1 ∈ S occurs more often than into
state k + e2 ∈ S. In this case the following splitting of state space S is studied:

S =
∞⋃

i=0

S̃i , S̃i

⋂
S̃i′ = Ø, i �= i′ , (2.78)

where

S̃0 = {(j, 0) : j = 0, 1, . . . , m + n} , S̃i = {(j, i) : j = m, m + 1, . . . , m + n} , i ≥ 1.

According to the above-mentioned condition on relations of intensities for differ-
ent types of calls, in (2.78) transitions between microstates inside S̃i classes occur
more often than between states from different classes.
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Since the selected scheme of splitting of the initial state space completely defines
the structure of the split and merged models, then further procedures for approxi-
mate calculation of the stationary distribution of the initial model are obvious. That
is why below we drop some known interim steps for solution of this problem.

The stationary distribution of the split model with state space S̃0 coincides with
the appropriate stationary distribution of the Erlang model M/M/m+n/0 with state-
dependent rate λ(j), i.e.

λ (j) =
{

λo + λh if j ≤ m
λh if j ≥ m.

Thus, the stationary distribution of the split model with state space S̃0 is
calculated as follows:

ρ0 (j) =

⎧⎪⎪⎨
⎪⎪⎩

vj

j! ρ0 (0) if j = 1, . . . , m,(
v

vh

)m

· vh
j

j! ρ0 (0) if j = m + 1, . . . , m + n,
(2.79)

where

ρ0 (0) =
⎛
⎝ m∑

j=0

vj

j! +
(

v

vh

)m m+n∑
j=m+1

vh
j

j!

⎞
⎠

−1

.

Stationary distributions of split models with state spaces S̃i, i ≥ 1, are equal and
coincide with the appropriate distribution of the classical Erlang model M/M/n/0
with load vh.

Since the number of micro-state classes in (2.78) is infinite, then in this
case the merged model represents 1-D MC with infinite state space S′ =
{< i >: i = 0, 1, 2, . . .}. Here merged state < i > comprises all microstates from
class S̃i. Then, considering (2.61) and the above-mentioned facts about stationary
distributions inside split models, elements of the generating matrix of this given
merged model are found:

q
(
< i >, < i′ >

) =

⎧⎪⎪⎨
⎪⎪⎩

λof if i = 0, i′ = 1
λo if i ≥ 1, i′ = i + 1
mμ if i′ = i − 1
0 in other cases,

(2.80)

where

f :=
m+n∑
k=m

ρ0 (k) .



2.2 Models with Queues for o-Calls 65

Then from relation (2.80) the ergodicity condition ṽo < 1 of the model is found
which corresponds exactly to the similar condition found for the macro-cell model.
Upon meeting the ergodicity condition from (2.80) the stationary distribution of the
merged model is found:

π (< i >) = f ṽi
oπ (< 0 >) , i ≥ 1, (2.81)

where

π (< 0 >) = 1 − ṽo

1 − ṽo + f ṽo
.

After some mathematical transformation the following relations for approximate
calculation of the QoS metrics of the micro-cell model with an unlimited queue for
o-calls are found:

Ph ≈ ρ0 (m + n) π (< 0 >) + EB (vh, n) (1 − π (< 0 >)) , (2.82)

Lo ≈ 1 − π (< 0 >)

1 − ṽo
. (2.83)

As in the previous case, for the micro-cell model QoS metrics can also be found
when there is finite buffer R, R < ∞ for o-calls. Then at any structural and load
parameter values there is a stationary regime in the system. Dropping well-known
steps in solution of this problem, below are given the final formulae for approximate
calculation of QoS metrics of the micro-cell model with a finite queue:

Ph (R) ≈ ρ0 (m + n) πR (< 0 >) + EB (vh, n) (1 − πR (< 0 >)) , (2.84)

Lo ≈ f πR (< 0 >)

R∑
i=1

iṽi
o , (2.85)

Po (R) ≈ πR (< R >) , (2.86)

Wo ≈ Lo (R)

λo (1 − Po (R))
. (2.87)

Here stationary distribution of the merged model is calculated from the
following:

πR (< i >) = f ṽi
oπR (< 0 >) , i = 1, 2, . . . , R, (2.88)

where

πR (< 0 >) = 1 − ṽo

1 − (1 − f ) ṽo − f ṽR+1
o

.
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2.2.3 Numerical Results

Let us first examine the results of numerical experiments for both schemes with iso-
lated channel reservation. To keep it brief only models for the microcell are shown
(in which λo<<λh) in two series of experiments. In both series the input data is cho-
sen as follows: m+n = 20, λo = 0.5, λh = 10. Also in one series it is assumed that
μ = 0.8, in another – μ = 1.

In Fig. 2.14 the dependency of function Ph on the number of reserved chan-
nels is shown in the HOPS scheme. It is seen from this figure that for given input
data this function decreases in a particular range of value n, thereafter it increases.
This fact has the following explanation. With the increase of n (i.e. decrease of m)
loss intensity of h-calls from the Primary Group increases and consequently the
intensity of these calls in the Secondary Group of channels increases. Thus, in
Erlang’s B-formula load (ṽh) and number of channels (n) increases simultaneously
and therefore, it is impossible to foresee the Ph function’s behavior from the num-
ber of reserved channels in this scheme. In other words determination of the type
of Ph function for concrete values of the model’s parameters requires appropriate
numerical experiments.

Dependency of Lo on the number of reserved channels is shown in Fig. 2.15. This
function is an increasing function at constant intensity of input traffic, since increase
of the number of reserved channels leads to decrease of the number of channels in
Primary Group, i.e. average queue length of o-calls increases. The same type of
dependency on the number of reserved channels is demonstrated by Wo.

Figures 2.16 and 2.17 demonstrate the dependency of QoS parameters of the
model on the number of reserved channels in the HOSP scheme. It is seen from
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Fig. 2.14 Ph versus n for the HOPS model in the case where m + n = 20, λo = 0.5, λh = 10;
1μ = 0.8; 2–μ = 1
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Fig. 2.15 Lo versus n for the HOPS model in the case where m + n = 20, λo = 0.5, λh = 10;
1–μ = 0.8; 2–μ = 1
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Fig. 2.16 Ph versus n for the HOSP model in the case where m + n = 20, λo = 0.5, λh = 10;
1–μ = 0.8; 2–μ = 1

Fig. 2.16 that at μ = 0.8 the function Ph strictly increases in the whole range of the
reserved channels value, whereas at μ = 1 it decreases within an interval [1, 10] and
then increases again. Note that such behavior is specific to the given data and for
other input data it will be different. As a matter of fact, in this scheme, the intensity
of h-calls to the Primary Group of channels (λ̂h) decreases upon the increase of the
number of reserved channels. At the same time, the number of channels in this group
also decreases, i.e. in the queuing system M/M/m/∞ both input traffic intensity and
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Fig. 2.17 Lo versus n for the HOSP model in the case where m + n = 20, λo = 0.5, λh = 10;
1–μ = 0.8; 2–μ = 1

number of channels decrease simultaneously. In other words it is difficult to predict
Ph behavior since it essentially depends on concrete values of number of channels
as well as load parameters. Consequently, as in the case with the HOPS scheme the
definition of Ph behavior at concrete structural and load parameter values requires
appropriate numerical experiments.

Dependency of Lo on the number of reserved channels for the HOSP scheme is
shown in Fig. 2.17. Unlike the HOPS scheme, in this scheme the monotony of this
QoS parameter (as well as QoS parameter Wo) is not guaranteed at any load and
structural parameter values of the model. This is explained also by the fact that the
increase of the number of reserved channels simultaneously decreases the intensity
of input traffic and number of channels in the queuing system M/M/m/∞.

Note that in both schemes an increase of handling intensity has a beneficial effect
on all QoS parameters, i.e. loss probabilities of h-calls and queue length and hence
waiting time of o-calls (see Figs. 2.14, 2.15, 2.16, and 2.17).

Remarkably, from theoretical considerations we can deduce that loss probability
of h-calls is less in the HOPS scheme than in the HOSP scheme, whereas queue
length for o-calls is less in the HOSP scheme hence average waiting time is less than
in HOPS. The first part of this clause is explained by the fact that the initial search of
an empty channel in an “alien” group of channels increases the chances for h-calls
to be accepted. The second part of the clause is explained by the fact that total load
of incoming traffic in the Primary Group of channels in the HOPS scheme (λo +λh)
is higher than that of the HOSP scheme (λo + λ̂). These are clearly demonstrated in
Table 2.5.

From the table we can deduce that if the research aims at decreasing of loss
probability of h-calls, then HOPS scheme has greater advantages compared to the
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Table 2.5 Comparison of QoS metrics for the models HOPS and HOSP in the case where
m+n = 20, λo = 0.5, λh = 10, μ = 0.8

Ph Lo Wo

n HOPS HOSP HOPS HOSP HOPS HOSP

1 2.18945E-04 1.05607E-03 1.09198E-03 2.71982E-04 2.18397E-03 5.43963E-04
2 2.18945E-04 1.08889E-03 1.75272E-03 2.76861E-04 3.50543E-03 5.53721E-04
3 5.72726E-06 1.12561E-03 2.72991E-03 2.82620E-04 5.45982E-03 5.65239E-04
4 2.42487E-07 1.16770E-03 4.14018E-03 2.89725E-04 8.28036E-03 5.79451E-04
5 1.66361E-08 1.21737E-03 6.13771E-03 2.98889E-04 1.22754E-02 5.97777E-04
6 1.83783E-09 1.27779E-03 8.93135E-03 3.11207E-04 1.78627E-02 6.22414E-04
7 3.26134E-10 1.35421E-03 1.28126E-02 3.28418E-04 2.56252E-02 6.56836E-04
8 9.35392E-11 1.45476E-03 1.82008E-02 3.53361E-04 3.64017E-02 7.06723E-04
9 4.40913E-11 1.59290E-03 2.57188E-02 3.90880E-04 5.14376E-02 7.81759E-04

10 3.51240E-11 1.79172E-03 3.63195E-02 4.49701E-04 7.26389E-02 8.99401E-04
11 4.91568E-11 2.09295E-03 5.15097E-02 5.46673E-04 1.03019E-01 1.09335E-03
12 1.26751E-10 2.57717E-03 7.37537E-02 7.17194E-04 1.47507E-01 1.43439E-03
13 6.33316E-10 3.41292E-03 1.07233E-01 1.04361E-03 2.14466E-01 2.08721E-03
14 6.36998E-09 4.98949E-03 1.59309E-01 1.74254E-03 3.18619E-01 3.48508E-03
15 1.27549E-07 8.32246E-03 2.43389E-01 3.47529E-03 4.86779E-01 6.95058E-03
16 4.41134E-06 1.64976E-02 3.84356E-01 8.66709E-03 7.68711E-01 1.73342E-02
17 1.73348E-04 4.09669E-02 6.28121E-01 2.86297E-02 1.25624E+00 5.72594E-02
18 3.48161E-03 1.37682E-01 1.06891E+00 1.39320E-01 2.13781E+00 2.78640E-01
19 1.60324E-02 6.36581E-01 2.55009E+00 1.45224E+00 5.10018E+00 2.90447E+00

HOSP scheme, since in some individual cases this parameter is almost 108-times
better. Likewise using the HOSP scheme allows decreasing average queue length
for o-calls and hence the average waiting time of o-calls is almost 102-times shorter
compared to the HOPS scheme.

This table also suggests a choice of appropriate scheme dependent on load and
structural parameters of a model. The solution of such problems implies defin-
ing requirements for QoS parameters and thus finding a scheme that will meet
these requirements. For instance, if for given selected input data one needs to meet
the following requirement Ph≤10–4, then the HOSP scheme will not allow doing
this at any values of n, whereas in the HOPS scheme this requirement is met at
n = 3,4,. . . ,16.

It is important to note that the obtained results correspond exactly to those from
[9], where the values were calculated using the fairly complex theory of a multi-
dimensional generating function. Moreover, this work only suggests a solution for
models with infinite queues of o-calls, whereas the suggested approach works with
finite queues as well.

Numerical experiments were also conducted separately for macro-cell models
(where λo>>λh) and for models with a symmetrical load of different types of calls
(where λo =λh) with different schemes of channel assignment. For brevity these
results are not given here. We will just note that the above-mentioned behavior of
QoS parameters is demonstrated for any type of cell.
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Now we will consider the results of numerical experiments for schemes with
reassignment of channels. First we will consider the HRMA model. In numerical
experiments for the model with an unlimited queue of o-calls initial data are cho-
sen as follows: N = 40, λh = 15, μ = 1. As expected the function Ph (Fig. 2.18)
decreases while both functions Lo (Fig. 2.19) and Wo (Fig. 2.20) increase versus

n
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Fig. 2.18 Ph versus n for the HRMA model in the case where N = 40, λh = 15, μ= 1; 1–λo = 4,
2–λo = 2
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Fig. 2.20 Wo versus n for the HRMA model in the case where N = 40, λh = 15, μ= 1; 1–λo = 4,
2–λo = 2

the number of guard channels. Therewith all functions are increasing versus o-call
load. Note that for the indicated initial data the ergodicity property of the model is
violated at n≥24 therefore in graphs the values of parameter n are shown in interval
[1, 23]. Numerical experiments were executed for the model with a limited queue
of o-calls also and analogous results were found.

The accuracy of the proposed approximate formulae for the given model was also
estimated. Exact values of QoS are considered to be those calculated by formulae
which were proposed in [2]. Note that both the approximate and exact results for Ph
are almost identical. Some results of the comparison are given in Table 2.6.

It is worth noting that sufficiently high accuracy exists even for the initial data
not satisfying the known assumption concerning the ratios of traffic loads of o- and

Table 2.6 Comparison of
exact and approximate values
of QoS metrics for the model
HRMA with patient o-calls in
the case where λo = 1,
λh = 10, μ= 2.0

Ph

m+n n EV AV

20 3 8.43E-07 2.98E-07
20 5 7.02E-07 2.97E-07
20 7 5.88E-07 2.96E-07
30 3 1.92E-13 2.79E-14
30 5 1.59E-13 2.75E-14
30 7 1.32E-13 2.72E-14
30 20 4.07E-14 2.71E-14
40 7 1.07E-21 9.42E-23
40 20 3.17E-22 8.54E-23
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h-calls. So, for example, for the model with 20 channels and load parameters
λo =λh = 7, μ = 2 maximal difference between EV and AV occur at n = 1, i.e. in
this case the exact value of Ph equals 1.91E-05 while its approximate value equals
4.13E-06. Similar results were obtained for other initial data.

In Figs. 2.21, 2.22, 2.23, 2.24, and 2.25 the dependency of QoS metrics on num-
ber of guard channels for h-calls (i.e. number of channels in the Secondary group)
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Fig. 2.21 Ph versus n for the HOPSWR model of the microcell in the case where m+n = 15,
λo = 5, μ = 2; 1–λh = 40, 2–λh = 35
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Fig. 2.22 Ph versus n for the HOPSWR model of the microcell in the case where m+n = 15,
λh = 20, μ= 4; 1–λo = 5, 2–λo = 2
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Fig. 2.23 Ph versus n for the HOPSWR model of the macrocell in the case where m + n = 10,
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Fig. 2.24 Lq versus n for the HOPSWR model of the macrocell in the case where m+n = 15,
μ= 2; 1–λo = 5, λh = 15, 2–λo = 2, λh = 20

in the model HOPSWR are given. They completely meet theoretical expectations.
So, the Ph function’s shape in the microcell is given in Figs. 2.21 and 2.22. It
can be seen from Fig. 2.21 that at fixed initial values of the model, this function
systematically decreases. This is explained by the fact that at these values of cell
parameters h-calls use channels of the Primary group poorly, i.e. they in fact use
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Fig. 2.25 Wq versus n for the HOPSWR model of the macrocell in the case where m + n = 15,
μ= 2; 1–λo = 5, λh = 15, 2–λo = 2, λh = 20

channels from the Secondary group, and, therefore, with the increase of the latter
the given function decreases. The picture is different in Fig. 2.22. Here at low values
of the number of channels in the Secondary group, h-calls use all available chan-
nels poorly, however with an increase of the number of channels in the Secondary
group, total channel usage rate improves, and consequently, Ph has the shape we
see in Fig. 2.22. Noticeably, as was expected, the function increases in a monotonic
fashion depending on traffic loads of both types of calls.

Figure 2.23 depicts Ph function shape in the macrocell. Here both cases of func-
tion decrease and increase upon variation of the number of channels in Secondary
group are shown. The load of new calls is constant. In other words, at low load h-
calls mainly occupy channels in the Secondary group, therefore, with an increase
of the number of such channels, Ph decreases. And at higher load h-calls occupy
channels from both groups, but at the given initial values the total channel occupa-
tion rate of h-calls worsens, hence with an increase of the number of channels in the
Secondary group Ph increases.

In both types of cells functions Lo and Wo increase with respect to the number
of channels in the Secondary group regardless of traffic loads and total number of
channels. Figures 2.24 and 2.25 depict these functions’ shape for the macrocell.
They have similar shapes for the microcell as well.

Analysis of numerical experiments reveals that the problem of optimal distribu-
tion of channels with the aim of compliance with QoS parameters of different types
of calls is not a trivial one, consequently, its solution in each concrete case will
require special investigation. This is caused by Ph behavior at various relations of
traffic intensities (see Figs. 2.21, 2.22, and 2.23).
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Table 2.7 Comparison of exact and approximate values of QoS metrics for the model HOPSWR
with patient o-calls in the case where m+n = 15, λo = 5, λh = 15, μ= 2

Ph Lq Wq

n EV AV EV AV EV AV

1 0.0509 0.0506 0.0401 0.0358 0.0098 0.0072
2 0.0445 0.0436 0.0179 0.0366 0.0088 0.0073
3 0.0498 0.048 0.0625 0.0609 0.0156 0.0122
4 0.0588 0.0534 0.0989 0.0945 0.0201 0.0189
5 0.0601 0.0583 0.1542 0.1395 0.0302 0.0279
6 0.0626 0.0612 0.2002 0.1978 0.0411 0.0396
7 0.0655 0.0611 0.2823 0.2724 0.0600 0.0545
8 0.0599 0.0576 0.3987 0.3678 0.0765 0.0736
9 0.0545 0.0511 0.5002 0.4943 0.0856 0.0989

10 0.0478 0.0428 0.6987 0.6757 0.1246 0.1351
11 0.0352 0.0341 0.9899 0.9792 0.2003 0.1958
12 0.0279 0.0259 1.6803 1.6576 0.2998 0.3315

Another aim of numerical experiments is to measure the accuracy of suggested
formulae. Thus, the approximate results for macro- and microcells are almost com-
pletely identical to the results of [10] which are considered exact when μo = μh.
Some comparisons for the microcell are given in Table 2.7. Noticeably, the accu-
racy of given formulae increases with the increase of intensity ratios of different
types of calls. Similar results are also achieved for other parameters of the models
studied.

It is important to note that the given approximate formulae have low accu-
racy at close values of load parameters of heterogeneous calls (i.e. when λo ≈ λh
and μo ≈ μh) and therefore cannot be used in QoS research for cells where load
parameters of original and handover calls do not differ substantially.

2.3 Conclusion

In this chapter simple numerical procedures for calculation of QoS metrics in wire-
less networks are proposed, where well-known shared channel reservation schemes
for prioritized h-calls and either limited or unlimited queues for homogenous calls
are used. It is important to note that unlike the classical models of the above com-
munication networks, here new and handover calls are assumed not to be identical
in time of radio channel occupancy. The works [3, 5] applied the analytical models
of a cell with an unlimited queue of h-calls under the assumption that the duration
of the degradation interval has an exponential distribution. The analogous model
with a limited queue of h-calls and infinite degradation interval was studied in [11].
The works [6, 7] suggested numerical algorithms for studying models with a lim-
ited length of queue for h-calls. Therewith consideration was given to models with
patient [6] and impatient calls [7]. In [1] signal-flow graphs and Mason’s formula
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were used to obtain the blocking probabilities of o- and h-calls and mean waiting
times in the model with a limited queue of both kinds of calls and reneging/dropping
of waiting calls. In all the above works o- and h-calls were assumed to be identical
in terms of channel occupancy time. Computational procedures to calculate QoS
metrics of investigated networks with an unlimited queue of patient or impatient
h-calls were proposed in [4]. In the latter work it was assumed that o- and h-calls
were nonidentical.

Models of investigated networks with unlimited queues of o-calls were studied
in [2, 9]. For calculation of QoS metrics of the HRMA model, a matrix-geometric
approach was used in [2], while generation of function method in conjunction with
matrix spectral tools for the model HOPSWR was used in [9]. Note that these meth-
ods allow for calculation of QoS metrics in the case of an unlimited queue of o-calls
only. Approximate methods to calculate QoS metrics for the model HOPSWR were
proposed in [10]. It is important to note that unlike the methods that were proposed
in [2, 9] the approximate method allows one to investigate models with limited
queues of o-calls as well. The proposed method can also be used for research into
two-dimensional models where more sophisticated channel reservation schemes are
used as well as for models with a finite buffer for both kinds of impatient calls, for
example see [1, 12]. Simple algorithms for computing the QoS metrics of HOPS
and HOSP schemes for channel assignment were proposed in [8].
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