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2.1  Introduction

The uncapacitated facility location problem ( UFLP) involves locating an undeter-
mined number of facilities to minimize the sum of the (annualized) fixed setup costs 
and the variable costs of serving the market demand from these facilities. UFLP is 
also known as the “simple” facility location problem SFLP, where both the alterna-
tive facility locations and the customer zones are considered discrete points on a 
plane or a road network. This assumes that the alternative sites have been predeter-
mined and the demand in each customer zone is concentrated at the point represent-
ing that region. UFLP focuses on the production and distribution of a single com-
modity over a single time period (e.g., one year that is representative of the firm’s 
long-run demand and cost structure), during which the demand is assumed to be 
known with certainty. The distinguishing feature of this basic discrete location prob-
lem, however, is the decision maker’s ability to determine the size of each facility 
without any budgetary, technological, or physical restrictions. Krarup and Pruzan 
(1983) provided a comprehensive survey of the early literature on UFLP, including 
its solution properties. By demonstrating the relationships between UFLP and the 
set packing-covering-partitioning problems, they established its NP-completeness.

The seminal paper of Erlenkotter (1978), which is reviewed in Sect. 2.2 of this 
chapter, presents a dual-based algorithm for solving the UFLP that remains as one of 
the most efficient solution techniques for this problem. Prior to Erlenkotter (1978), 
the best-known approaches for solving the UFLP were the branch-and-bound al-
gorithm developed by Efroymson and Ray (1966) and the implicit enumeration 
technique of Spielberg (1969). Efroymson and Ray (1966) use a compact formula-
tion of UFLP to take advantage of the fact that its linear programming relaxation 
can be solved by inspection. Nonetheless, this linear programming relaxation does 
not provide tight lower bounds for UFLP; Efroymson and Ray’s model is therefore 
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known as the “weak formulation.” Khumawala (1972) developed efficient branching 
and separation strategies for the branch-and-bound algorithm. Erlenkotter (1978), 
however, uses the “tight formulation” of UFLP that is known to often produce natu-
ral integer solutions. This property of the tight formulation was first highlighted by 
Schrage (1975) and was used effectively by Cornuejols et al. (1977). Here, it is im-
portant to credit the work of Bilde and Krarup (1977), which led to the development 
of a dual-based algorithm for UFLP that is quite similar to Erlenkotter’s procedure.

In many cases, it is more realistic to incorporate the capacity limitations on the 
facilities to be established. This version of UFLP is called the capacitated facil-
ity location problem ( CFLP). Section 2.3 reviews the contribution by Kuehn and 
Hamburger (1963). Their paper presents one of the earliest models and a heuristic 
procedure for the CFLP. Branch-and-bound procedures for this problem were devel-
oped by Akinc and Khumawala (1977) using linear programming relaxation, and by 
Nauss (1978) through Lagrangean relaxation. The cross-decomposition algorithm of 
Van Roy (1986) and the Lagrangean-based approach of Beasley (1988) are among 
the most effective techniques that were subsequently devised for solving the CFLP. 
The basic idea of Van Roy’s algorithm is to obtain a UFLP structure by dualizing 
the capacity constraints. This Lagrangean relaxation provides values for the location 
and allocation variables given a set of multipliers. The location decisions are then 
used to fix the integer variables and solve the CFLP as a transportation problem, 
obtaining improved multiplier values. It is necessary, however, to solve an appro-
priately defined linear program at some of the iterations to update the multipliers.

The UFLP and CFLP constitute the basic discrete facility location formula-
tions, and there is an abundance of papers based on their extensions by relaxing one 
or more of the underlying assumptions mentioned above. Section 2.4 presents an 
overview of the prevailing literature. Aikens (1985) presented a survey of the early 
work on discrete location models for distribution planning. He reviewed 23 models 
covering a wide range of problems from the single-commodity UFLP to the multi-
commodity, capacitated, multi-echelon versions. Although the UFLP and CFLP 
formulations have been used for tackling a wide range of problems, the most com-
mon context for their use has been the production-distribution network (i.e., supply 
chain) design problem. In a supply chain that comprises suppliers, plants, distri-
bution centers, warehouses and customers, these basic formulations are relevant 
for making location decisions involving two consecutive echelons. For example, 
notwithstanding the focus of a majority of the literature on warehouse location, the 
UFLP and CFLP formulations are equally relevant for choosing suppliers to satisfy 
the needs of a firm’s plants (Gutierrez and Kouvelis 1995). The next two sections 
review two classical papers that form the basis of this chapter.

2.2  Erlenkotter 1978: A Dual-Based Procedure  
for the UFLP

Let I denote the set of m alternative facility locations, indexed by i, and J denote the 
set of n customer zones, indexed by j. The UFLP has two sets of decision variables:
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xij:  the fraction of customer zone j’s demand satisfied by the facility at i, and
yi:  binary variables that assume a value of 1, if a facility is to be established at 

location i, and 0 otherwise.

Note that the demand data pertaining to each customer zone j is implicit in the defi-
nition of the facility-customer allocation variables xij. The cost data is represented 
by the following notation:

fi:  the (annualized) fixed cost of establishing a facility at location i, and
cij:  the total capacity, production and distribution cost for supplying all of cus-

tomer zone j’s demand by the facility at i.

The variable costs cij are assumed to be linear functions of the quantities produced 
and shipped at each facility, thus ignoring any possible economies of scale in the 
variable costs. Erlenkotter (1978) presents the following formulation of UFLP:

 (2.1)

 
(2.2)

 (2.3)

The objective function (2.1) represents the total fixed and variable costs, whereas 
constraints (2.2) ensure that the demand at each customer zone is satisfied. Con-
straints (2.3) guarantee that customer demand can be produced and shipped only 
from the locations where a facility is established, i.e., if yi = 1, and in such a case, the 
firm incurs the associated fixed costs. The weak formulation of UFLP uses a more 
compact formulation of these constraints by aggregating the constraints (2.3) into a 
single constraint for each facility location i:

In developing the solution approach, Erlenkotter (1978) utilizes a condensed dual 
formulation to the linear programming relaxation of UFLP. To this end, let vj and 
wij represent the dual variables associated with constraints (2.2) and (2.3), respec-
tively. By relaxing yi as non-negative variables, the dual problem can be formulated 
as follows:

 (2.4)

 
(2.5)

Max
∑

i

∑

j

cij xij +
∑

i

fiyi

s.t.
∑

i

xij = 1 for all j

xij ≤ yi for all i, j

xij ≥ 0, yi ∈ {0, 1} for all i, j.

∑

j

xij ≤ nyi for all i.

Max
∑

j

vj

s.t.
∑

j

wij ≤ fi for all i
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 (2.6)

Note that the wij variables are not part of the dual objective, and hence can be safely 
fixed at the minimum levels permitted by the values of vj. Erlenkotter assumes that 
wij = max {0, vj − cij} and develops the condensed dual formulation below that has a 
single set of decision variables:

 

(2.7)

The dual ascent procedure that constitutes the core of Erlenkotter’s algorithm aims 
at increasing the values of vj so as to maximize their sum. The idea is to use a quick 
and simple heuristic for solving the condensed dual rather than searching for an 
exact solution. To this end, the heuristic starts by setting the vj values to the small-
est cij for each customer zone j. At each iteration of the dual ascent procedure, the 
customer zones are processed one by one and the vj value at each zone is raised to 
the next higher cij value, unless such an increase is constrained by (2.7). When the 
inequality (2.7) becomes binding during this process, the vj value is increased to the 
highest level allowed by the constraint. The heuristic terminates when no further 
increase is possible for the vj values.

To illustrate the dual ascent procedure, consider a UFLP instance with eight 
customer zones and five alternative facility sites, which was also used by Erlen-
kotter. Table 2.1 depicts the variable costs cij and fixed costs fi for this problem 
instance. At the initialization, the vj values are set at the lowest cij value at each 
column in Table 2.1. As a result, si, the slack of constraint (2.7), is equal to the 
fixed cost fi at each location. The initialization step is denoted as Iteration 0 in 
Tables 2.2 and 2.3, which depict the progress of the vj and si values during the 
course of the algorithm.

The bolded entries in Table 2.2 indicate the vj values blocked by (2.7) from fur-
ther increase. Note that in iteration 1, all vj values are raised to the next higher cij 
value (under column j in Table 2.1), except v8. We would normally raise v8 from 120 

vj − wij ≤ cij for all i, j

wij ≥ 0 for all i, j

Max
∑

j

vj

s.t.
∑

j

max{0, vj − cij } ≤ fi for all i

Table 2.1  Cost data for the illustrative example
i/j Variable cost Fixed cost

1 2 3 4 5 6 7 8
1 120 180 100 – 60 – 180 – 100
2 210 – 150 240 55 210 110 165  70
3 180 190 110 195 50 – – 195  60
4 210 190 150 180 65 120 160 120 110
5 170 150 110 150 70 195 200 –  80
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to 165, but this would violate (2.7). Therefore, the value of v8 is raised to 155 reduc-
ing the dual slack s4 to zero, as indicated in Table 2.3 under Iteration 1.

At Iteration 2, the dual variables for customer zones 3, 4, 6 and 7 are blocked, 
and the heuristic terminates after Iteration 3 when no further increase is possible. 
Table 2.3 indicates that the dual constraints for locations 4 and 5 are binding at the 
end of the dual ascent procedure.

It is helpful to analyze the complementary slackness conditions for the con-
densed dual and the linear programming relaxation at this point. The bolded terms 
in (8) and (9) indicate the optimal values of the primal and dual decision variables.

 (2.8)

 (2.9)

The dual ascent produces a feasible solution vj with at least one binding constraint 
(2.7). For each associated location i, the slack of the dual constraint is zero, and us-
ing (2.8) it is possible to set yi = 1. Examining (2.9) for these open facilities, we hope 
that there is only one facility i with cij  ≤  vj for all j, because in this case it is possible 
to set xij = yi = 1 and obtain a primal integer solution that satisfies both complemen-
tary slackness conditions. It is likely, however, that the dual ascent procedure termi-
nates with a solution where, among open facilities, there is more than one facility i 
with cij ≤ vj for some j. This would violate (2.9), since each customer zone must be 
served from the lowest-cost open facility. Therefore it is possible to set xij = yj = 1 for 
only the smallest value of cij, and the primal integer solution is not optimal.

In the illustrative example, customer zones 1, 2, 3, and 4 are served from facility 
5 and zones 5, 6, 7, and 8 are served from facility 4. A comparison of the vj values 
at Iteration 3 of Table 2.2 with the cij values in Table 2.1 reveals that there are no 

yi



fi −
∑

j

max{0, vj − cij}



 = 0 for all i

[yi − xij] max{0, vj − cij} = 0 for all i, j

Table 2.2  The values of the dual variables vj

Iter/vj 1 2 3 4 5 6 7 8

0 120 150 100 150 50 120 110 120
1 170 180 110 180 55 195 160 155
2 180 190 110 180 60 195 160 155
3 180 190 110 180 65 195 160 155
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si /iter 0 1 2 3
1 100 40 20 15
2 70 20 15 10
3 60 55 50 45
4 110 0 0 0
5 80 20 0 0

Table 2.3  The values of the 
slack of (2.7)
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complementary slackness violations and the solution produced by the dual ascent 
procedure is optimal. Consider another instance with fixed costs fi  = (200, 200, 200, 
400, 300) and the same variable costs. At the termination of the dual ascent pro-
cedure, s2 = s5 = 0 and v6 = 285 (the other vj values are irrelevant here). Given that 
c26 = 210 and c56 = 195 (see Table 2.1), there is more than one cij with a smaller value 
than vj, and hence (2.9) would be violated.

To close the duality gap in such cases, Erlenkotter first uses a dual adjustment 
procedure, and if this does not suffice, he resorts to a simple branch-and-bound. The 
dual adjustment procedure focuses on a customer zone j for which (2.9) is violated. 
Reducing the value of vj can create slack for some of the binding dual constraints 
(2.7), which in turn can be used for increasing the value of other dual variables. As 
a result, the dual solution can be improved. Even if the dual solution remains the 
same, the associated primal integer solution would be altered because a different 
set of dual constraints would be binding after the adjustment. Continuing the above 
illustrative example, the value of v6 is reduced to 210 in the adjustment procedure, 
creating slacks for three of the dual constraints (2.7) that are then used for im-
proving the dual solution. The dual adjustment procedure processes each customer 
zone j associated with a complementary slackness violation and terminates when 
no further improvement to the dual solution is possible. If the duality gap persists, 
a standard branch-and-bound is utilized to identify the optimal solution. The solu-
tions generated by the dual ascent and dual adjustment procedures serve as bounds 
during this final phase of the algorithm.

Erlenkotter solved UFLPs of up to 100 alternative facility sites and 100 cus-
tomer zones, including the classical problem instances provided Kuehn and Ham-
burger (1963). In all but two of the instances, there was no duality gap at the end 
of the dual ascent and adjustment procedures and hence branch-and-bound was 
not necessary. Among the largest problem instances, two required branching and 
21 nodal solutions were evaluated for the most challenging UFLP. Perhaps more 
importantly, the solution from the dual ascent procedure was within 1% of the 
optimal objective value in all reported instances. The quality of the lower bounds 
obtained from the condensed dual formulation, coupled with the ease of construct-
ing primal integer solutions from a dual solution, underlies the efficiency of Erlen-
kotter’s algorithm.

2.3  Kuehn and Hamburger (1963): A Heuristic Program 
for Locating Warehouses

Kuehn and Hamburger’s classical paper presents, perhaps, the earliest heuristic so-
lution approach for discrete facility location and describes in detail a set of twelve 
problem instances. Focusing on warehouse location, they highlight the potential ad-
vantages of these facilities due to (1) economies of scale in transportation costs be-
tween factories and warehouses, (2) economies of scope from combining products 
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from different factories into a single shipment in serving customer demand, and (3) 
improved delivery times by increased proximity to customer locations. In determin-
ing the locations for a set of capacitated warehouses, Kuehn and Hamburger trade 
off these potential cost savings associated with the new facilities with the costs of 
establishing and operating them.

They state the following three principles concerning the proposed heuristic:

1. most geographical regions are not promising sites for a regional warehouse, as 
locations with promise will be at or near concentrations of demand,

2. near optimum warehousing systems can be developed by locating warehouses 
one at a time, adding at each stage of the analysis that warehouse which produces 
the greatest cost savings for the entire system; and

3. only a small subset of all possible warehouse locations needs to be evaluated 
in detail at each stage of the analysis to determine the next warehouse site to be 
added.

In essence, Kuehn and Hamburger assume that the set of M alternative facility sites 
is a subset of the set of demand locations. They adopt a myopic approach as the ba-
sis of their heuristic, and confine the detailed evaluation at each iteration of the heu-
ristic to a small subset of N location alternatives that they call the “buffer” (where 
N < M). The heuristic comprises a constructive phase (“the main program”) and an 
improvement phase (“the bump and shift routine”).

At the beginning of the constructive phase the buffer is initialized with the N 
sites, where serving the local demand with a local warehouse results in the highest 
cost savings. Then the N sites in the buffer are assessed one by one in terms of the 
system-wide cost savings that can be attained by opening a warehouse. The site that 
brings in the highest cost savings to the distribution network is assigned a ware-
house, while the sites that do not offer any cost savings are eliminated from further 
consideration. The algorithm cycles between re-constructing the buffer from the re-
maining sites and the detailed evaluation step until all the sites are either eliminated 
or assigned a warehouse. The resulting solution is evaluated in the improvement 
phase to determine whether it is possible to attain cost savings by closing any of 
the open warehouses and/or by shifting each warehouse to another alternative site 
within its service region.

Kuehn and Hamburger propose 12 problem instances comprising combinations 
of three sets of factory locations and four levels of warehouse setup costs. The 
sample problems involve a single commodity and the transportation costs are as-
sumed to be proportional to the railroad distances. The set of customer zones com-
prise 50 large cities across the United States, and 24 of these are also identified 
as alternative warehouse locations. The computational experiments were carried 
out with a buffer of 5 facilities. The Kuehn and Hamburger problem instances are 
available through the OR-Library at http://people.brunel.ac.uk/~mastjjb/jeb/info.
html (developed and maintained by J. Beasley). These problems still constitute 
benchmark instances for comparing computational efficiencies of different algo-
rithms for UFLP and CFLP.
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2.4  Major Works that Followed

The classical UFLP and CFLP models have been extended in a number of ways by 
relaxing one or more of their underlying assumptions mentioned in Sect. 2.1. Here 
we provide an overview of the major works that extend the classical formulations 
by increasing the number of products, the number of facility echelons, and the num-
ber of time periods included in the model, as well as by more realistic representation 
of problem parameters through incorporation of possible scale and scope economies 
and uncertainties.

An immediate generalization of UFLP is the multi-commodity facility location 
problem that relaxes the single product assumption. Although Neebe and Khu-
mawala (1981) and Karkazis and Boffey (1981) offered alternative formulations 
for this problem, both papers assumed that each facility deals with a single product. 
Klincewicz and Luss (1987) was the first paper that studied a multi-commodity 
facility location model without any restrictions on the number of products at each 
facility.

Another important extension involves increasing the number of echelons incor-
porated in the problem formulation. One of the earliest multi-echelon formulations 
is by Kaufman et al. (1977), which determined the locations of a set of facilities and 
a set of warehouses simultaneously. Tcha and Lee (1984) presented a model that 
could represent an arbitrary number of echelons. Both of these papers ignored the 
cost implications of possible interactions among the facilities at different echelons. 
Generalizing Erlenkotter’s dual-based method, Gao and Robinson (1992) proposed 
an efficient dual-based branch-and-bound algorithm for the two-level facility loca-
tion problem. Barros and Labbe (1994) presented a profit maximization version of 
the same problem and developed a branch-and-bound procedure based on Lagrang-
ean relaxation as well as various heuristics.

Perhaps the most influential paper following the sketchy CFLP formulation in 
(the Appendix of) Kuehn and Hamburger (1963) was the contribution by Geoffrion 
and Graves (1974). Their model aimed at minimizing the total cost of transportation 
and warehousing over a distribution network comprising three echelons; factories, 
distribution centers ( DCs), and customers. Given the existing plant and customer 
locations, Geoffrion and Graves (1974) devised a Benders decomposition approach 
for determining the optimal number and locations of the distribution centers to be 
established. They assumed a single-sourcing policy that requires serving each cus-
tomer from a single DC. Their model contained both lower and upper bounds on DC 
throughput, which enabled modeling piecewise linear concave operation costs for 
the distribution centers. The differentiating feature of Geoffrion and Graves (1974) 
from earlier multi-echelon models was the way they modeled the flow variables. In 
earlier work, the flows between each pair of consecutive echelons were represented 
by a different set of decision variables, which required the use of flow conservation 
constraints at each facility. In contrast, Geoffrion and Graves (1974) used a single 
set of variables to represent the flows from the factories through the DCs to the 
customer zones. Although this leads to a considerable increase in the number of 
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decision variables, the resulting model is a tighter formulation of the problem that 
enables the development of efficient algorithms. Moon (1989) extended the model 
and solution procedure in order to incorporate possible economies of scale in DC 
throughput costs. To this end, he used general concave cost functions to represent 
the DC throughput costs. Pirkul and Jayaraman (1996) provided another extension 
that enables facility location decisions at both the DC and the plant echelons. How-
ever, they imposed limits on the number of DCs and plants that could be opened and 
relaxed the lower bound used by Geoffrion and Graves (1974) on DC throughput 
levels. In a subsequent paper, Jayaraman and Pirkul (2001) also incorporated sup-
plier selection in a multi-commodity problem setting. Both papers used Lagrangean 
relaxation as a solution framework. Recently, Elhedhli and Goffin (2005) highlight-
ed the efficiency of interior point techniques in solving multi-echelon formulations.

A number of researchers focused on relaxing the single period assumption of the 
UFLP and CFLP, and developed models and solutions for the dynamic facility loca-
tion problem. The objective was to determine the spatial distribution of the facilities 
at each time period so as to minimize the total discounted costs for meeting the 
customer demand over time. The earliest work on this problem is by Van Roy and 
Erlenkotter (1982), who extended the dual-based algorithm of Erlenkotter to handle 
multiple time periods. Lim and Kim (1999) and Canel et al. (2001) proposed alter-
native methods for solving the problem with capacity restrictions at the facilities. 
Recently, Melo et al. (2005) presented a dynamic and multi-commodity formulation 
as an extension of the CFLP and investigated the possible use of the model as a 
framework for strategic supply chain planning.

Another stream of research to extend the classical UFLP and CFLP formulations 
focuses on improving the realism of the cost representations in these models. These 
efforts are motivated by the possible economies of scale and scope in the fixed and 
variable costs, as well as the potential cost implications of the interactions between 
a plant’s location and the other structural decisions including capacity acquisition 
and technology selection. Soland (1974) is one of the earliest attempts to develop 
an extension of the UFLP that incorporates scale economies by representing the 
fixed facility costs as a concave function of facility size. Holmberg (1994) and Hol-
mberg and Ling (1997) extended the CFLP by formulating the capacity acquisition 
costs as arbitrary piecewise linear functions. Verter and Dincer (1995) proposed a 
model where the capacity costs are assumed to be general concave functions of the 
capacity acquired at each facility. Erlenkotter’s dual based algorithm is utilized as 
a subroutine during the progressive piecewise linear under-estimation technique 
developed in this paper. Dasci and Verter (2001) and Verter and Dasci (2002) 
provide extensions to a multi-product setting, where the firm is enabled to select 
among product-dedicated and flexible technology alternatives. At each alternative 
facility location, the technology options present different forms of scale and scope 
economies. More recently, a number of authors studied the integration of inventory 
control and logistics decisions with facility location. Shen (2005) used concave 
functions to represent economies of scale in the costs pertaining to the firm’s inven-
tories, whereas Snyder et al. (2007) and Sourirajan et al. (2007) presented facility 
location models that also considered the logistics costs.
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An important stream of efforts to extend the classical UFLP and CFLP models 
involves the incorporation of uncertainties in the problem parameters. This is par-
ticularly relevant for global manufacturing firms that diversify their operations and 
facilities across many countries. Globalization has many potential advantages: ac-
cess to cheap labor, raw material, and other production factors; presence at regional 
markets, and access to locally available technological resources and know-how. The 
resulting production-distribution networks are, however, increasingly exposed to 
price, exchange rate, and demand uncertainties in the international domain. The ear-
liest efforts to incorporate exchange rate uncertainty in the UFLP are by Hodder and 
Jucker (1985) and Hodder and Dincer (1986). They used scenario-based approaches 
in modeling a risk-averse decision maker’s structural choices. To this end, the ex-
pected profit is penalized by a term that corresponds to the constant portion of profit 
variability. Gutierrez and Kouvelis (1995) also used a scenario-based approach to 
find robust solutions under all possible scenario realizations. Canel and Khumawala 
(2001) and Kouvelis et al. (2004) studied the inclusion of subsidies and tariffs in 
international facility location models. Despite the popularity of the scenario-based 
approach in modeling the various types of uncertainties in the international domain, 
the prevailing papers show that the proliferation of the set of possible scenarios as 
a function of the problem size remains the major challenge from both academic and 
practical perspectives.

This section is an overview of the major works that followed the two classical 
papers reviewed in the preceding sections. The reader is referred to the recent re-
views by Goetschalckx et al. (2002), Klose and Drexl (2005), Meixell and Gargeya 
(2005), Snyder (2006), Sahin and Sural (2007), and Shen (2007) for more exhaus-
tive and comprehensive accounts of the state of the art in discrete facility location.

2.5  Potential Future Research Directions

In line with the classical UFLP and CFLP formulations, an overwhelming major-
ity of the proposed extensions aim at minimizing the total fixed and variable costs 
relevant to the location problem under consideration. Using the categorization in 
Fisher (1997), these models are certainly suitable for designing efficient supply 
chains with functional products. The cost minimization objective, however, does 
not seem to be appropriate in the context of responsive supply chains that typically 
deal with innovative products. Note that many of the reported practical applications 
of discrete facility location models are associated with plant closure decisions, re-
sulting in improved efficiency but mostly ignoring the possible ramifications con-
cerning customer response. According to Ferdows (1997), the access to skills and 
knowledge and the proximity to markets are at least as important as the access to 
low-cost production factors in the firms’ plant location decisions. Among the list of 
factors provided in Ferdows (1997), improving customer service, preemption of po-
tential competitors, learning from supply chain partners, and attraction of a skilled 
workforce are typically not incorporated in the prevailing discrete facility location 
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models. It is necessary to improve the location modeling paradigms in order to bet-
ter represent all the factors deemed important by firms in current practice. The need 
to improve the realism of the objective functions utilized in location models is also 
highlighted in Avella et al. (1999), summarizing the personal views of 20 young 
location researchers.

There is a need for increased empirical research in order to develop a better 
understanding of the factors that impact the facility location decisions of manufac-
turing and service firms and their decision making processes. Based on the location 
decisions of foreign-owned manufacturing plants in the United States in the 1990s, 
three factors seem to be most significant: the presence of a skilled workforce; the 
existence of a manufacturing base comprising suppliers, competitors and relevant 
industries, and the quality of transportation infrastructure. Interestingly, some of the 
past research reported rather conflicting empirical findings. For example, based on 
a survey of 73 plant managers, Brush et al. (1999) identified proximity to markets 
as the most significant location determinant, and concluded that subsidies and free 
trade zones are among the least important factors. Other authors, however, have 
pointed out that firms have been quite sensitive to subsidies, free trade zones, taxes 
and labor costs in making their location decisions (Coughlin and Segev 2000; Head 
et al. 1994). This calls for more empirical research and is perhaps due to the dif-
ferences between the strategic priorities of the industries represented in the sample 
populations. If this observation can be confirmed through empirical studies, the 
development of industry-specific models rather than locating “generic” facilities 
would arise as a fruitful avenue for future research in location science.
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