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2

Survivability and biocomplexity

2.1 INTRODUCTION

One of the main problems facing modern science is the estimation of biosphere
survivability under conditions of increasing anthropogenic impact. Such estimation
can be brought about by using a biosphere model. Well-known attempts at
synthesizing a global model have given unsatisfactory results. The global models
that have been created are educational in nature and are not fit for purpose for
real estimations. In the last couple of decades many investigators proposed creat-
ing reliable and effective systems that are capable of considering the environmental
state globally. Generally, this proposal included developing technical means for
the collection, storage, and transfer of the data on nature’s state, on the one hand,
and the development of methods to process these data, on the other hand. Current
means for collecting information about natural objects and processes make it
possible to form a dataset covering large territories—even the whole biosphere.
Remote means of environmental monitoring have become especially effective. The
aim of this chapter is to formulate a basic model of biosphere survivability and to
propose a new view on global modeling. The behavior of any system is determined
by the value it can place on the different terms characterizing the state of the
system. By interacting with an external medium and, in particular, with other
systems, the values of these terms can vary in one way or another. For any
technological or biological system it must always be possible to show changes in
the field of characteristic parameters in which the system can be considered to be
functioning. Outside this field the system does not exist.

Thus, we can substitute the complex behavior of a system by describing the
behavior depicting this system as a point in phase space of the characteristic
parameters. If a change in any coordinate leads to the disappearance of the
depicting point from the allowable field, the system collapses (i.e., the organism as
a whole perishes).

 Springer erlag Berlin Heidelberg 2012-VSpringer Praxis Books, DOI 10.1007/978-3-642-20567-5_2, ©
V.F. Krapivin and A.M. Shutko, Information Technologies for Remote Monitoring of the Environment, 73



Significant variables are not identical regarding the degree of threat they pose
to the system. Such variables as the oxygen content of blood or the structural
integrity of the medulla oblongata cannot tolerate any significant changes, since
such changes would almost invariably lead to immediate death. However, there
are changes, such as in the temperature of individual areas of the skin where sharp
fluctuations do not necessarily lead to such an eventuality. Separating all variables
characterizing the state of the system into significant variables makes it possible
to simplify the behavioral strategy of a system as it interacts with an external
environment or other systems.

A system is defined by its structure and behavior. The behavior of such a
system is aimed at providing uninterrupted functioning by means of a correspond-
ingly organized structure and behavior. The characteristic of a complex system
to actively withstand the hostile action of an external medium is referred to in
this book as ‘‘survivability’’ (Abrahamson, 1989; Corcoran, 2005; EPA, 2005;
Fleishman, 1965; Kondratyev et al., 2003d; Krapivin, 1978; Krapivin and
Nazaryan, 1995; Starke, 2004; Svirezhev, 1987; Tait, 1987).

In the present chapter an analysis is made of a system whose elements are
subdivided into working, defending, and active external agents of the system,
which suppress or neutralize the hostile actions of an external medium. By taking
into account the possibility of suppressing the hostile action of an external
medium and the vulnerability of all the elements of the system, it becomes possible
to reach a theoretical game definition of the problems. The use of game theory to
investigate the survivability of complex systems makes it possible to classify the
most unfavorable action of an external medium on the system and to work out
the best strategy behavior for the system. This study of antagonistic situations
between systems enables the mechanisms involved in the adaptability of living
systems to the varying conditions of an external medium to be understood.

2.2 PRINCIPAL DEFINITIONS

The biosphere is a complex unique system. Looked at historically, humankind was
but an element of the biosphere. However, at the present time the problem of co-
evolution between human society (H) and nature (N) has arisen. The influence of
human activity on natural systems has reached global scales, but it is still possible
to divide anthropogenic and natural processes conditionally. The use of system
analysis permits carrying out a more formal description of this division. There are
commonly two interacting systems:

. H deals with technologies, sciences, economics, sociology, agriculture, industry,
etc.;

. N deals with climatic, biogeocenotic, biogeochemical, hydrological, geophysical,
and other natural processes.

Practical problems when investigating complex systems involve evaluating
their effectiveness and, in particular, their stability under the indeterminate con-
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ditions in which they function. The theory of the potential effectiveness of complex
systems is used to resolve these problems (Fleishman, 1970). A constructive
mathematical apparatus making it possible to solve the different problems that
arise when optimizing the structure and behavior of H and N functioning in
certain situations has been developed within the framework of this theory.

The systems H and N are determined by their structure (i.e., the number of
elements and relations among them) and behavior (responses to impacts). The
internal behavior of such a system is aimed at maintaining its uninterrupted
functioning. The external behavior of the system is aimed at achieving a certain
outside goal. The temporal stability of a complex system is a necessary property
without which all its other properties become meaningless. This is connected with
the structural stability of the material composition and energy balance of the com-
plex system as well as with the regularity of its responses to the same external
impacts.

A breach in the stability of a system may result from internal causes (the
aging of its elements) or external causes associated with the unfavorable influence
of the environment (an ill-intentioned enemy, in particular). The survivability of
biological systems is determined by the environmental conditions that apply to
them, humankind’s interference with nature being an important factor. Keeping
this in mind when trying to construct artificial biological systems leads to the
problem of finding the best way to do this, increase in the productivity of a
biological system being the main optimality criterion.

On the global scale, the problem of interacting system survivability is
complicated by a hierarchy of interaction levels. For a complete explanation of H
and N systems their openness has to be taken into account. It is normal to con-
sider the interaction of two open complex systems H and N as defined by their
goals HG and NG, structures HS and NS, and behavior HB and NB, respectively.
Fleishman (1970) suggested that the functioning of such systems should be
described by the equations involved in (V ;W) exchange. In other words, the inter-
action of an open system with the environment (or other system) is represented as
a process whereby the system exchanges a certain quantity V of resources spent in
exchange for a certain quantity W of resources consumed. The aim of the systems
is the most advantageous (V ;W) exchange (i.e., it tries to get maximum W in
exchange for minimum V). V is a complex function of the structure and behavior
of both systems:

V ¼ VðW ;HS;NS;HG;NGÞ ¼ VðW ;H;NÞ: ð2:1Þ
As a result of interaction, the systems H and N get the following (V ;W)

exchanges:

VH;max ¼ VH;maxðWH ;H
�;N �Þ ¼ max

fHB;HSg
min

fNB;NSg
VHðWH ;H;NÞ;

VN;max ¼ VN;maxðWN ;H
�;N �Þ ¼ max

fNB;NSg
min

fHB;HSg
VNðWN ;H;NÞ;

9>=
>; ð2:2Þ

where H � and N � are the optimal H and N systems, respectively.
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From equations (2.1) and (2.2) we can see that the value of (V ;W) exchange
depends on the goal of the system and may vary within certain limits:
V1;min � VH � V1;max, V2;min � VN � V2;max, where Vi;min (i ¼ 1; 2) corresponds to
the case when both systems are most aggressive, and Vi;max (i ¼ 1; 2) to the case
when they are most cautious. In a word there is a spectrum of interactions between
H and N. For a formal description of these interactions we shall divide all the
elements of both systems into three classes: the working (functioning), protective
(defensive), and active elements, the latter designed to act on the environment. In
short, we shall refer to the working elements of systems H and N as a and b
elements, to the protective elements as Ra and Rb elements, and to the active
elements as Ca and Cb elements, respectively.

Let us assume that before interaction the systems H and N have certain
limited energy resources (i.e., vital ‘‘substrates’’) Va and Vb, where
Va ¼ fVaj; j ¼ 1; . . . ;mag, Vb ¼ fVbi; i ¼ 1; . . . ;mbg. These substrates generate
working elements in such a way that the substrate Vaj (Vbi) can generate Hj (Ni)
a ðbÞ elements of the jth (ith) type of values aj (bi).

The protective and active elements of each system are generated by the
working elements. First of all, the protective Ea

Rm (Eb
Rm) and active Ea

Cm (Eb
Cm)

substrates are created which, in their turn, generate R and C elements of the mth
type. These processes are described by the following dependences:

Ea
Rm ¼ Ea

RmðVa;H1; . . . ;Hma
Þ ¼

Xma

j¼1

wa
mj f

a
jRðVaj ;HjÞ;

Eb
Rm ¼ Eb

RmðVb;N1; . . . ;Nmb
Þ ¼

Xmb

j¼1

wb
mj f

b
jRðVbj ;NjÞ;

Ea
Cm ¼ Ea

CmðVa;H1; . . . ;Hma
Þ ¼

Xma

j¼1

w 0a
mj f

a
jCðVaj ;HjÞ;

Eb
Cm ¼ Eb

CmðVb;N1; . . . ;Nmb
Þ ¼

Xmb

j¼1

wb
mj f

b
jCðVbj ;NjÞ;

where w
aðbÞ
mj , w

0aðbÞ
mj , and f aðbÞ are current weights and functions, respectively.

Let us assume that, as a result of such hierarchical synthesis, elements in the
systems H and N have at the beginning of the interaction (i.e., t ¼ 0):

(1) mj and nj working elements of the jth type with values aj and bj, respectively,
where

Xma

j¼1

ajHj ¼ Mað0Þ;
Xmb

j¼1

bjNj ¼ Mbð0Þ; ð2:3Þ
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(2) ra and rb types of protective elements, the mth type having �m and �m elements,
and Xra

m¼1

�m ¼ MRa
ð0Þ;

Xrb
m¼1

�m ¼ MRb
ð0Þ; ð2:4Þ

(3) sa and sb types of active elements, the mth type having 	am and 	bm elements, and

Xsa
m¼1

	am ¼ Dað0Þ;
Xsb
m¼1

	bm ¼ Dbð0Þ; ð2:5Þ

respectively.

In the discrete case, change in the average number of system elements that
have survived until moment tiþ1 will be described by the following relations:

Hsðtiþ1Þ ¼ maxf0;HsðtiÞ � �n
hsðtiÞpnhsðtiÞg; s ¼ 1; . . . ;mh ð2:6Þ

�jðtiþ1Þ ¼ maxf0; �jðtiÞ � �n
RjðtiÞpnRjðtiÞg; j ¼ 1; . . . ; rh ð2:7Þ

	hmðtiþ1Þ ¼ maxf0; 	hmðtiÞ � �n
CmðtiÞpnCmðtiÞg; m ¼ 1; . . . ; sh ð2:8Þ

Nlðtiþ1Þ ¼ maxf0;NlðtiÞ � �h
nlðtiÞphnlðtiÞg; l ¼ 1; . . . ;mn ð2:9Þ

�sðtiþ1Þ ¼ maxf0; �sðtiÞ � �h
RsðtiÞphRsðtiÞg; s ¼ 1; . . . ; rn ð2:10Þ

	nmðtiþ1Þ ¼ maxf0; 	nmðtiÞ � �h
CmðtiÞphCmðtiÞg; m ¼ 1; . . . ; sh; ð2:11Þ

where the �
aðbÞ
!i ðtÞ values characterize the external behavior of both these systems:

�HH ðiÞ
e ¼ fk�a

blk; k�a
Rskg; �NN ðiÞ

e ¼ fk�b
ask; k�b

Rjkg;

and p
aðbÞ
!i ðtÞ are the respective probabilities of death of the elements as a result of

their interaction.
The following limiting conditions should be taken into account here:

XT
i¼0

�b
CsðtiÞpbCsðtiÞ þ

Xmb

j¼1

�a
bjðtiÞ þ

Xrb
j¼1

�a
RjðtiÞ þ

Xsb
j¼1

�a
CjðtiÞ

( )
¼ 	hl ð0Þ; ð2:12Þ

XT
i¼0

�a
CsðtiÞpaCsðtiÞ þ

Xma

j¼1

�b
ajðtiÞ þ

Xra
j¼1

�b
RjðtiÞ þ

Xsa
j¼1

�b
CjðtiÞ

( )
¼ 	nl ð0Þ: ð2:13Þ

The stochastic solution of equations (2.1)–(2.13) can be in the unrealized form
in practice. There are many real situations when the realization of H � or N �

system is impossible. Some tasks and algorithms were described by Krapivin and
Klimov (1995, 1997).
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2.3 SURVIVABILITY MODEL

Let us consider the interaction of the two systems within the framework of the
diagram shown in Figure 2.1. At the start, systems H and N have, respectively,
Nað0Þ and Nbð0Þ working elements, NRað0Þ and NRbð0Þ protective elements, and
Mað0Þ and Mbð0Þ active agents for undertaking action against an external
medium. In this case we shall assume that the initial structures HS and NS of the
systems are uniformly filled with elements. This means that at time t ¼ 0 in any
sphere with a fixed radius ", which is completely confined within system H, there
are constant numbers of elements.

We shall consider that all elements of systems H and N, independent of their
spatial location, are accessible to the same degree to active agents of the external
medium. The interaction of the systems consists in the situation in which each
system in a fixed interval of time ½0;T 	 at discrete moments ti ¼ ih,
i ¼ 0; 1; 2; . . . ; k (k ¼ ½T=h	) can determine its behavior by a set of numbers:

HB ¼ fmbðtiÞ;mRbðtiÞ; 
ig; NB ¼ fmaðtiÞ;mRaðtiÞ; rig;
where ma and mb are parts of those Cb and Ca elements aimed at destroying a and
b elements, respectively; analogously, parts ð1� riÞmRa and ð1� 
iÞmRb of Cb and
Ca elements are directed at destroying the corresponding protective elements. In
the course of time portions of Ca and Cb elements uniformly fill the opposite
system, and in this way the elements of the systems become with time uniformly
depleted.

It is assumed that system HðNÞ is put out of operation if at time ti � T ,
NaðtiÞ � �aNað0Þ (NbðtiÞ � �bNbð0Þ); that is, if more than the (1� �a)th ((1� �b)th)
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problem (Kondratyev et al., 2002).



portion of the initial number of its working elements is out of operation, where
0 � �a; �b � 1. On the other hand, when NaðTÞ > �aNað0Þ (NbðTÞ > �bNbð0Þ), then
system HðNÞ is considered to have survived. The assignment of values �a and �b is
determined by the peculiarities of the system under consideration. It is clear that
the smaller the number �, the more survivable the system.

Further, we shall assume that one of the elements of system H or N is put of
operation by the action of one of the elements Ca or Cb with a probability
p1½NRaðtÞ	 or p2½NRbðtÞ	, respectively. Consequently, in the interval of time
½ti; ti þ h	 with step length h there occur on average the following changes in the
structure of the system:

NaðtiÞ �Naðti þ hÞ ¼ maðtiÞp1½NRaðtiÞ	;
MaðtiÞ �Maðti þ hÞ ¼ rimRaðtiÞ½NRaðtiÞ þmbðtiÞ þmRbðtiÞ;

NRaðtiÞ �NRaðti þ hÞ ¼ ð1� riÞmRaðtiÞp1½NRaðtiÞ	;
NbðtiÞ �Nbðti þ hÞ ¼ mbðtiÞp2½NRbðtiÞ	;
MbðtiÞ �Mbðti þ hÞ ¼ 
imRbðtiÞp2½NRbðtiÞ	 þmaðtiÞ þmRaðtiÞ;

NRbðtiÞ �NRbðti þ hÞ ¼ ð1� 
iÞmRbðtiÞp2½NRbðtiÞ	:

9>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>;

ð2:14Þ

The above-discussed interaction scheme of the two systems can be readily
implemented using game theory methods. Indeed, from equations (2.14) it follows
that in the interval of time ½0;T 	 (T ¼ kh, we can take h ¼ 1 here) both systems
lose working a and b elements in the following amounts:

Q1 ¼
Xk�1

n¼0

maðnÞp1½NRaðnÞ	; Q2 ¼
Xk�1

n¼0

mbðnÞp2½NRbðnÞ	: ð2:15Þ

In this case, system H with its behavior of HBðtÞ ¼ fmbðtÞ;mRbðtÞ; 
ðtÞg tends to
minimize the function Q1 (which characterizes its losses) and to maximize Q2

(the losses of system N). On the other hand, system N with its behavior
NBðtÞ ¼ fmaðtÞ;mRaðtÞ; rðtÞg tends to maximize function Q1 and minimize function
Q2.

In practical problems, the win function is taken as that characteristic of the
antagonistic situation that describes a given conflict most fully. In this case such a
function is Q ¼ Q1 �Q2. The maximizing participant in this case will be system N,
the minimizing opponent system H. In this manner, solution of the set problem on
the optimal behavior of the two systems in an antagonistic situation is reduced to
solution of a game with a win function:

QðHB;NBÞ ¼
Xi�1

n¼0

fmaðnÞp1½NRaðnÞ	 �mbðnÞp2NRbðnÞ	g; ð2:16Þ
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where, according to equation (2.14),

NRaðnÞ ¼ NRað0Þ �
Xn�1

i¼0

ð1� riÞmRaðiÞp1½NRaðiÞ	;

NRbðnÞ ¼ NRbð0Þ �
Xn�1

i¼0

ð1� 
iÞmRbðiÞp21½NRbðiÞ	;

9>>>>>=
>>>>>;

ð2:17Þ

and conditions are imposed on the behavior of the system related to limitations of
the Ca and Cb elements:

Xk�1

i¼0

frimRaðiÞp1½NRaðiÞ	 þmbðiÞ þmRbðiÞg ¼ Mað0Þ;

Xk�1

i¼0

f
imRbðiÞp2½NRbðiÞ	 þmaðiÞ þmRaðiÞg ¼ Mbð0Þ:

9>>>>>=
>>>>>;

ð2:18Þ

Thus, we have a k-step survival game. At the start of each step, system H provides
a certain amount of its resources u ¼ fmb;mRb; 
g and N provides a certain
amount of its resources v ¼ fma;mRa; rg, so that limitations (2.18) are maintained.
As a result of this distribution of resources, system N gets the advantage:

Rðu; v;Ma;MbÞ ¼ ma p1½NRa	: ð2:19Þ
However, N’s win and H’s losses are not counted on the basis of their initial

resources and cannot be added to the remaining amounts of C elements. After
each step of the game (equation 2.14), a change in the resources available to the
participants takes place, and as a result of the k-step process the total win of
system N can be described by the equation:

Qk ¼ Qk½u0; u1; . . . ; uk�1; v0; v1; . . . ; vk�1;Mað0Þ;Mbð0Þ	

¼
Xk�1

n¼0

fmaðnÞp1½NRaðnÞ	 �mbðnÞp2½NRbðnÞ	g: ð2:20Þ

There are several methods that can help analyze this k-step process. One can
consider this k-step game as a one-step game, in which case system H must select
simultaneously a plurality of the vector fu0; u1; . . . ; uk�1g, and system N a plurality
of the vector fv0; v1; . . . ; vk�1g, where the selection of uk and vk depends on the
previous values obtained according to equation (2.14).

To solve this complex problem, we suggest substituting it by the similar
problem of multi-step optimization. The values of this game can be expressed as:

Vk ¼ max
F

min
G

ð
Qk dFðv0; v1; . . . ; vk�1Þ dGðu0; u1; . . . ; uk�1Þ

� �
¼ min

G
max
F

f� � �g ð2:21Þ
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where the distribution functions F and G are determined on the boundaries of the
complex form:

0 � v0 � Mbð0Þ 0 � u0 � Mað0Þ
0 � v1 � Mbð1Þ 0 � u1 � Mað1Þ

..

. ..
.

0 � vk�1 � Mbðk� 1Þ 0 � uk�1 � Maðk� 1Þ:

ð2:22Þ

By utilizing the optimality principle and taking into account the dependence
Vk ¼ Vk½Mað0Þ;Mbð0Þ	, we obtain the following functional equation:

Vnþ1½Mað0Þ;Mbð0Þ	

¼ max
F

min
G

ð ð
0�u�Maðn�1Þ
0�v�Mbðn�1Þ

fRðu; vÞ þ Vn½Maðn� 1Þ;Mbðn� 1Þ	g dFðvÞ dGðuÞ
2
4

3
5

¼ min
G

max
F

½� � �	 ð2:23Þ

where

V1½Mað0Þ;Mbð0Þ	 ¼ max
F

min
G

ð ð
0�u�Mað0Þ
0�v�Mbð0Þ

Rðu; vÞ dFðvÞ dGðuÞ
2
4

3
5

¼ min
G

max
F

½� � �	: ð2:24Þ

Finding a solution to these functional equations is difficult. This was the
reason that the so-called curse of dimensionality was introduced. In this chapter we
shall present the solution to some specific cases. However, this is carried out in
more detail by Nitu et al. (2000a). To solve the proposed problem, we shall begin
with a case where the C and R elements are indistinguishable in both systems.
A diagram of the interaction between systems H and N is shown in Figure 2.2.
By taking into account the designations used in this diagram, we obtain the
number of Ca and Cb elements that have reached the Cb and Ca elements of
the opposite system in a one-step operation. They are, respectively,
maxf0; aC �NRbg and maxf0; bC �NRag. Therefore, the numbers of Ca and Cb

elements that are put out of operation on average are maxf0; bC �NRagp1½NRa	
and maxf0; aC �NRbgp2½NRb	. Consequently, after one step of the game there
remain in the system the following numbers of Ca and Cb elements that are
not put out of operation: max½0;Ma �maxð0; bC �NRaÞp1½NRa		p1½NRa	 and
max½0;Mb �maxð0; aC �NRbÞp2½NRb		p2½NRb	. Turning to the multi-step situation,
we introduce the win function (2.16). The aim of system N is to destroy system H
or, more precisely, to put all of the latter’s a elements out of operation. For this
purpose system N cannot use all its Cb elements, since it will then be left defense-
less against the Ca elements. An analogous situation holds true for system H.
After each successive step of the game each system is compelled to release a

2.3 Survivability model 81]Sec. 2.3



certain number of working a and b elements. The magnitude of this payoff is
proportional to the difference Mb � bC �NRb � ðMa � aC �NRaÞ. Now the prob-
lems on both sides become clear. System N must strive to provide such a number
of Cb elements in all directions so as to maintain the maximum value of this
difference. That is, it must provide the largest possible number of elements ma for
the destruction of a elements and thus increase its winnings. However, we shall
also consider the presence of an analogous distribution of Ca elements and provide
sufficient protection for system N through the maximum distribution of Ca

elements. An analogous situation exists for system H. For the ðn� 1Þ moves that
remain before the end of the game, we have:

Maðn� 1Þ ¼ maxf0;MaðnÞ �max½0; bCðnÞ �NRaðnÞp1½NRaðnÞ	gp1½NRaðnÞ	;
Mbðn� 1Þ ¼ maxf0;MbðnÞ �max½0; aCðnÞ �NRbðnÞ	p2½NRbðnÞ	gp2½NRbðnÞ	:

)
ð2:25Þ

The payoff for the entire game according to equation (2.20) will be:

Qk ¼
Xk
n¼1

fMbðnÞ � bCðnÞ �NRbðnÞ � ½MaðnÞ � aCðnÞ �NRaðnÞ	g: ð2:26Þ

The functional equation (2.23) will acquire the following form:

Vnþ1 ¼ max
HB

min
NB

fMbðnþ 1Þ � bCðnþ 1Þ �NRbðnþ 1Þ � ½Maðnþ 1Þ � aCðnþ 1Þ
�NRaðnþ 1Þ	 þQk½MaðnÞ;MbðnÞ	g

¼ min
NB

max
HB

f� � �g: ð2:27Þ
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Since at the end of the game Q0 ¼ 0, we obtain from equation (2.26) for k ¼ 1:

Q1 ¼ Mbð1Þ � bCð1Þ �NRbð1Þ �Mað1Þ þ aCð1Þ þNRað1Þ: ð2:28Þ
From equation (2.28), one step before the end of the game, we obtain the
following optimal strategies:

NRbð1Þ ¼ NRað1Þ ¼ 0; aCð1Þ ¼ bCð1Þ ¼ 0 ð2:29Þ
and the prize of the game is V1 ¼ Mbð1Þ �Mað1Þ. This means that in the last step
of the game both systems direct all their Ca and Cb elements that have remained
from the previous steps towards the destruction of b and a elements, respectively.
Analogously, two steps before the end of the game, we have:

Q2 ¼ Mbð2Þ �Mað2Þ þ aCð2Þ �bCð2Þ þNRað2Þ �NRbð2Þ þ V1½Mað1Þ;Mbð1Þ	 ð2:30Þ
where V1 ¼ Mbð1Þ �Mað1Þ; and
Mað1Þ ¼ maxf0;Mað2Þ �max½0; bCð2Þ �NRað2Þ	p1½NRað2Þ	gp1½NRað2Þ	;
Mbð1Þ ¼ maxf0;Mbð2Þ �max½0; aCð2Þ �NRbð2Þ	p2½NRbð2Þ	p2½NRbð2Þ	:

)
ð2:31Þ

It is obvious at this step of the game that the participants have no pure
strategies. Therefore, solution of this game is impossible analytically, and it can
only be obtained in a concrete case by the numerical method. Modeling of the
game provides some understanding of the nature of its solution. Indeed, with the
aid of a computer it is possible either to construct a model of the game and to
gather statistics or to solve the functional equation (2.23) numerically and, with
the aid of heuristic concepts, to investigate the dependence of strategies on the
initial conditions. Of course, such an approach for a short interval of modeling
cannot give any significant information concerning the solution. Nevertheless, this
is the only possible approach at the present time. The feeling of hopelessness in a
specific situation should not deter us from seeking a solution by analytical
methods. The importance of obtaining analytical solutions is obvious, since they
have an advantage over numerical solutions in that they make possible the
detection of general regularities of the optimal behavior of complex systems in
antagonistic situations. The importance of analytical solutions was pointed out by
Krapivin (1978), who showed that a single numerical solution cannot replace an
analytical solution in which the quantitative description of the phenomenon is
most concentrated. In the case examined here, when the participants have no
information concerning the action of the opponent in the process of the entire
game, the solution of particular cases with the aid of a computer enables us to
obtain the following quantitative description of optimal strategies.

Let MbðnÞ=MaðnÞ ¼ �n. Then if �n � 1, system N in the initial stage of the
game has a pure strategy, but it is more advantageous for system H to adopt a
mixed strategy, using the tactics of deception. During the first steps, system N
destroys only Ca elements and it is only during the last steps that it destroys a
elements. By using the corresponding probability mechanism, system H must
direct all its Ca elements with probability p1 towards the destruction of Cb ele-
ments, with probability p2 towards the defense of its own elements, and with
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probability 1� p1 � p2 towards the attack of b elements. In the case when �n ffi 1,
then at this stage of the game p1 þ p2 ¼ 1, mbðnÞ ¼ 0, and the behavior of the
system becomes symmetrical. During the last steps of the game systems H and N,
independent of the magnitude of �n, change over to the strategies maðtÞ 6¼ 0,
mbðtÞ 6¼ 0, and bC ¼ aC ¼ NRa ¼ NRb ¼ 0 (i.e., to the destruction of working
elements).

Let us consider a particular case where the systems have no protective
elements (i.e., NRa ¼ NRb ¼ 0) and, therefore, p1 ¼ p2 ¼ 1. Then we obtain:

Maðn�1Þ ¼ maxf0;MaðnÞ � bCðnÞg; Mbðn�1Þ ¼ maxf0;MbðnÞ �aCðnÞg: ð2:32Þ
One step before the end of the game, the payoff according to equation (2.31)

is V1 ¼ Mbð1Þ �Mað1Þ and the optimal strategies a�Cð1Þ ¼ b�Cð1Þ ¼ 0; that is, the
systems release all their C elements in an attempt to destroy the a and b elements,
respectively.

Next, by assuming n ¼ 2, according to equations (2.30) and (2.31) we obtain:

Q2½aCð2Þ; bCð2Þ	 ¼

Q21 when bCð2Þ 
 Mað2Þ; aCð2Þ 
 Mbð2Þ;
Q22 when bCð2Þ <Mað2Þ; aCð2Þ 
 Mbð2Þ;
Q23 when bCð2Þ 
 Mað2Þ; aCð2Þ <Mbð2Þ;
Q24 when bCð2Þ <Mað2Þ; aCð2Þ <Mbð2Þ;

8>>>>><
>>>>>:

ð2:33Þ

where Q21 ¼ Mbð2Þ � bCð2Þ �Mað2Þ þ aCð2Þ; Q22 ¼ Mbð2Þ � 2Mað2Þ þ aCð2Þ;
Q23 ¼ 2Mbð2Þ � bCð2Þ �Mað2Þ; and Q24 ¼ 2Mbð2Þ � 2Mað2Þ.

The solution to the game with the win function (2.33) has the following form:

V2 ¼ 2Mbð2Þ � 2Mað2Þ; b�Cð2Þ ¼ Mað2Þ; a�Cð2Þ ¼ Mbð2Þ: ð2:34Þ
Actually, if account is made of the real situation, the optimal strategies of both
systems two steps before the end of the game will be as follows:

a�Cð2Þ ¼ minfMað2Þ;Mbð2Þg; b�Cð2Þ ¼ minfMað2Þ;Mbð2Þg: ð2:35Þ
Therefore at the penultimate step when �2 > 1, system N releases a portion of its
force and system H releases all its forces against the c elements of the other
system.

Through analogous reasoning, we can see that n steps before the end of the
game the strategies of systems H and N will be:

a�CðnÞ ¼ minfMaðnÞ;MbðnÞg; b�CðnÞ ¼ minfMaðnÞ;MbðnÞg: ð2:36Þ
If in the process of the game C elements are clearly not replaced in systems H

and N, then it follows from equations (2.35) and (2.36) that it makes sense to
conduct the game in two steps; and the two following cases are distinguishable:

(1) when Mað0Þ ¼ Mbð0Þ, both systems release all their C elements into battle
against theC elements of the other system, but in so doing the systems themselves
survive;
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(2) when Mað0Þ >Mbð0Þ, system N releases all the elements into battle against Ca

elements, and system H releases Mbð0Þ of Ca elements into battle against Cb

elements, and Mað0Þ �Mbð0Þ of Ca elements into battle against b elements.
Consequently, system H survives in every case, while system N survives only
when Mað0Þ �Mbð0Þ < �bNbð0Þ.

Now, let us consider the case in which Ca and Cb elements are mutually
indifferent. In this case, by supposing r ¼ 
 ¼ 0 in equations (2.17) and (2.18), we
obtain:

NRaðnÞ ¼ NRað0Þ �
Xn�1

i¼0

mRaðiÞp1½NRaðiÞ	;

NRbðnÞ ¼ NRbð0Þ �
Xn�1

i¼0

mRbðiÞp2½NRbðiÞ	

9>>>>>=
>>>>>;

ð2:37Þ

and Xk�1

n¼0

½maðnÞ þmRaðnÞ	 ¼ Mbð0Þ;
Xk�1

n¼0

½mbðnÞ þmRbðnÞ	 ¼ Mað0Þ: ð2:38Þ

The solution to the game of the two systems, H and N, with the win function
as shown in equation (2.16) and under conditions as expressed in equations (2.37)
and (2.38), is reduced to the problem of maximizing two functions:

Q1 ¼
Xk�1

n¼0

maðnÞp1½NRaðnÞ	 ¼ max
Ra

ð2:39Þ

Q2 ¼
Xk�1

n¼0

mbðnÞp2½NRbðnÞ	 ¼ max
Rb

ð2:40Þ

From equations (2.39) and (2.40) it is evident that the optimal strategies of both
sides consist in destroying a and b elements when p1½NRaðnÞ	 ¼ p2½NRbðnÞ	 ¼ 1. If
the C elements act independently of one another, and the probability of putting
the C elements out of operation by a single R element is equal to a constant value
Da and Db for the H and N systems, respectively, then

p1½NRaðnÞ	 ¼ exp½�daNRaðnÞ	; p2½NRbðnÞ	 ¼ exp½�dbNRbðnÞ	; ð2:41Þ

where, da ¼ ��1 lnð1�DaÞ, db ¼ ��2 lnð1�DbÞ are the effectiveness coefficients of
the Ra and Rb elements; and �1 and �2 are the density of the location of elements
in the H and N system, respectively.

When k ¼ 1, the optimal strategies of the behavior of the systems will be
m�

að0Þ ¼ Mbð0Þ and m�
bð0Þ ¼ Mað0Þ. This is natural since in the last step it makes

no sense to destroy protective elements. When k ¼ 2, from equations (2.37)–(2.40)
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we obtain the optimal strategies in the form:

m�
að0Þ ¼ m�

bð0Þ ¼ m�
Rað1Þ ¼ m�

Rbð1Þ ¼ 0; m�
að1Þ ¼ d�1

a exp½daNRað0Þ	;
m�

bð1Þ ¼ d�1
b exp½dbNRbð0Þ	; mRað0Þ ¼ Mbð0Þ � d�1

a exp½daNRað0Þ	;
mRbð0Þ ¼ Mað0Þ � d�1

b exp½bbNRbð0Þ	:

9>>=
>>; ð2:42Þ

The cost of the game is:

V2 ¼ d�1
a expf�1þ daMbð0Þ exp½�daNRað0Þ	g

�d�1
b expf�1þ dbMað0Þ exp½�dbNRbð0Þ	g: ð2:43Þ

From equation (2.43) it is evident that for system N to destroy system H it is
necessary that the following inequality holds:

daMbð0Þ exp½�daNRað0Þ	 
 ln½daeð1� �aÞNað0Þ	 ð2:44Þ
from which we have:

Mbð0Þ 
 d�1
a exp½daNRað0Þ	f1þ ln½dað1� �aÞNað0Þ	g: ð2:45Þ

Similarly, we obtain the condition for system H:

Mað0Þ 
 d�1
b exp½dbNRbð0Þ	f1þ ln½dbð1� �bÞNbð0Þ	g: ð2:46Þ

Thus, for system N to destroy system H it is necessary that inequality (2.45)
holds. Analogously, for system H it is necessary that inequality (2.46) holds. The
number of a and b elements, as a rule, is fixed, as follows from considerations
related to the work of the system. The number of R elements, which perform
protective functions, can be best selected when certain physical parameters in the
problem are fixed and when a priori information concerning the number of C
elements of the opposite system is available. For example, if the effectiveness of all
R elements is constant independent of their number, then in order for system H to
survive, the necessary number of protective elements must satisfy the inequality:

NRað0Þ 
 daMbð0Þln=fdað1þ ln½dað1� �aÞNað0Þ	Þg: ð2:47Þ
When the number of Cb elements is constant and the survivability of system

H decreases, the necessary number of protective elements clearly increases rapidly.
In this case, the greater their effectiveness, the smaller the number of protective
elements required for carrying out one and the same task. With an increase in
survivability the necessary number of protective elements can be decreased.

Now, let systems H and N have a fixed amount Ea and Eb of a certain sub-
stratum (e.g., energy) and be able to distribute it evenly between their protective
elements, so that for each fraction of Ra and Rb elements there is E1a ¼ Ea=NRað0Þ
and E1b ¼ Eb=NRbð0Þ, respectively. Then the efficiency coefficients of the protective
elements must increase as the E1a and E1b portions increase, since in this case the
probabilities of Da and Db increase. Therefore, let Da ¼ 1� expf�FaF

�
1ag,

Db ¼ 1� expf�FbF
�
1bg, where Fa, Fb, �, and � are independent of the number of

protective elements. This then gives the following expressions for the coefficients of
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effectiveness of the protective elements:

da ¼ ��a lnð1�DaÞ ¼ ��aFaE
�
1a ¼ GaN

��
Ra ð0Þ;

db ¼ ��b lnð1�DbÞ ¼ ��bFbE
�
1b ¼ GbN

��
Rb ð0Þ;

)
ð2:48Þ

where Ga ¼ �aFaE
�
a , Gb ¼ �bFbE

�
b . From equations (2.47) and (2.48) we obtain

the following transcendental equations for the number of necessary protective
elements in systems H and N:

NRað0Þ ¼ N�
Rað0ÞG�1

a fln½GaMbð0Þ=f1	 � � lnNRað0Þg; ð2:49Þ
NRbð0Þ ¼ N�

Rbð0ÞG�1
b fln½GbMað0Þ=f2	 � � lnNRbð0Þg; ð2:50Þ

where

f1 ¼ ln½eGað1� �aÞNað0ÞN��
Ra 	; f2 ¼ ln½eGbð1� �bÞNbð0ÞN��

Rb ð0Þ	:
Close study of equations (2.49) and (2.50) reveals that in this case the number

NRað0Þ is very sensitive with respect to changes in the quantity ln½ð1� �aÞNað0Þ	.
What is more, this is natural, since with the increase in the number of Ra elements
their effectiveness sharply decreases. It is clear that there exists a certain optimal
level for the number of protective elements. This level is defined by the assigned
survivability of the system. It is better to have a small number of Ra elements of
high effectiveness than a large number of Ra elements of low effectiveness. When
k ¼ 3, from equations (2.37)–(2.39) we have:

Q1 ¼
X3
i¼1

maði � 1Þ exp½��NRaði � 1Þ	; ð2:51Þ

where

NRað1Þ ¼ NRað0Þ �mRað0Þ exp½�daNRað0Þ	;
NRað2Þ ¼ NRað0Þ �mRað0Þ exp½�daNRað0Þ	 �mRað1Þ exp½�daNRað1Þ	

�mað1Þ þmað0Þ þmað2Þ þmRað1Þ þmRað0Þ þmRað2Þ
¼ Mbð0Þ:

9>>>>>=
>>>>>;

ð2:52Þ

Equations (2.51) and (2.52) show that the function Q1 reaches its maximum value
when m�

að0Þ ¼ m�
Rað2Þ ¼ m�

Rað1Þ ¼ 0 with this maximum value being independent
of the distribution of Ca elements during the last two steps. In this case,
Q�

1ð3Þ ¼ Q�
1ð2Þ. An analogous result is also obtained for system N.

Thus, for an identical game, say system N can for instance destroy at the most
Q�

1ð2Þ ¼ Mbð0Þ exp½�daNRað0Þ	 of a elements; when the number of steps is greater
than 2, system N can destroy no more than Q�

1ð2Þ ¼ ðedaÞ�1 exp½daQ�
1ð1Þ	 of a

elements. Therefore, by comparing Q�
1ð1Þ with Q�

1ð2Þ we can see that in the ana-
lyzed antagonistic situation the best strategy for both systems is to carry out all
allowable operations in two steps. During the first step the action of a portion of
each system’s C elements is to be set against the protective elements of the
opposite system, and during the second step the action of the remaining force is
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to be set against the working elements of the opposite system. This conclusion
completely agrees with the conclusions reached by Krapivin (1978), which were
obtained using different methods.

In the models of the interaction of the two systems that have just been
examined, it was assumed that the effectiveness of protective elements does not
change with respect to time. However, this assumption in many real situations
must be withdrawn. Let us consider a case where both systems can vary the effec-
tiveness of protective elements from step to step, so that at each step the
effectiveness is independent of the number of protective elements. Let the effective-
ness of Ra and Rb elements be equal to d1a and d1b, respectively, during the first
step in the two-step case. Similarly, during the second step the effectiveness
acquires values d2a and d2b so that d1a þ d2a ¼ 2da; d1b þ d2b ¼ 2db; that is, the
summed value of the effectiveness does not exceed a constant value. As a result,
we obtain the following matrix game:

d1a ¼ d2a d1a < d2a d1a > d2a

d1b ¼ d2b Q11 Q12 Q13

d1b < d2b Q21 Q22 Q23

d1b > d2b Q31 Q32 Q33

;

where

Q11 ¼ ðedaÞ�1expfMbð0Þda exp½�daNRað0Þ	g�ðedbÞ�1expfMað0Þdbexp½�dbNRbð0Þ	g;

Q22 ¼ Q33¼Q23¼Q32¼ðed2aÞ�1expfðd1a � d2aÞNRað0Þ þ d2aMbð0Þexp½�d1aNRað0Þ	g

� ðed2bÞ�1 expfðd1b � d2bÞNRbð0Þ þ d2bMað0Þ exp½�d1bNRbð0Þ	g;

Q12 ¼ Q13 ¼ ðed2aÞ�1 expfðd1a � d2aÞNRað0Þ þ d2aMbð0Þ exp½�d1aNRað0Þ	g

� ðedbÞ�1 expfMbð0Þdb exp½�dbNRbð0Þ	g;

Q21 ¼ Q31 ¼ ðedaÞ�1 expfMað0Þda exp½�daNRað0Þ	g

� ðed2bÞ�1 expfðd1b � d2bÞNRbð0Þ þ d2bMbð0Þ exp½�d1bNRbð0Þ	g:

9>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>;

ð2:53Þ

The matrix of this game has a saddle-shaped point under the following
conditions Mað0Þ � NRbð0Þ exp½dbNRbð0Þ	, Mbð0Þ � NRað0Þ exp½daNRað0Þ	 and that
it takes place in the real system.

Thus, for both systems it is advantageous during the first step to provide
protective elements with a small amount of effectiveness and to increase their effec-
tiveness during the second step. This is natural, since it is better to lose a greater
number of protective elements during the first step, thus securing a reliable defense
of the working elements during the second step of the game.
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From equation (2.53) it follows that the losses of a and b elements by systems
H and N, respectively, will amount to:

Q1� ¼ expf�1þ ðd1a � d2aÞNRað0Þ þ d2aMbð0Þ exp½�d1aNRað0Þ	g=d2a;
Q2� ¼ expf�1þ ðd1b � d2bÞNRbð0Þ þ d2bMað0Þ exp½�d1bNRb	g=d2b:

)
ð2:54Þ

In order to determine the optimum value of the effectiveness of the Ra and Rb

elements for each step of the game, we must find:

min
ðd1a;d2aÞ

Q1� ðd1a; d2aÞ and min
ðd1b;d2bÞ

Q2� ðd1b; d2bÞ:

From equation (2.54) we obtain:

@Q1�

@d1a
¼ 1þ ð2da � d1aÞf2NRað0Þ �Mbð0Þ½1þNRað2da � d1aÞ	

� exp½�d1aNRað0Þ	g ¼ 0; ð2:55Þ
@Q2�

@d1b
¼ 1þ ð2db � d1bÞf2NRbð0Þ �Mað0Þ½1þNRbð0Þð2db � d1bÞ	

� exp½�d1bNRbð0Þ	g; ð2:56Þ
From equation (2.55) it is evident that if the equation

fð2da � d1aÞ=ðda � d1aÞg exp½�d1aNRað0Þ	 ¼ 0:5NRað0Þ=Mbð0Þ ð2:57Þ
has a real root 0 � d �

1a � 2da then system H, by utilizing this root for its own
optimum strategy, can guarantee the average losses of elements not exceeding
Q�

1 ¼ ½eð2da � d �
1aÞ	�1. If equation (2.57) does not have a root in the interval

½0; 2da	, the optimum strategy is then determined either by the root of equation
(2.55) or by d �

1a ¼ 0. In particular, when Mbð0Þ ¼ NRað0Þ, then d �
1a ¼ 0.

Similar calculations are carried out for equation (2.56).

2.4 STABLE STRATEGIES WITHIN THE SURVIVABILITY MODEL

The task of equations (2.11)–(2.13) is solved by means of game theory algorithms.
There are many models that simulate the above situations describing the system
interaction. Below the two-player antagonistic game is considered.

In game GðM; ½0; 1	Þ with gain function Mðx; yÞ (0 � x; y � 1) player I can
receive no fewer than

v1 ¼ max
F

min
G

ð1
0

E1ðFÞ dGðyÞ ¼ max
F

min
y

E1½FðyÞ	;

where F and G are strategies of the first and second players, respectively:

E1½F 	 ¼
ð1
0

Mðx; yÞ dFðxÞ:
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Similarly, player II can receive no more than

v2 ¼ min
G

max
F

ð1
0

E2ðGÞ dFðxÞ ¼ min
G

max
x

E2½GðxÞ	;

where

E2½G	 ¼
ð1
0

Mðx; yÞ dGðyÞ:

Obviously if there exist F � and G� such that

E1½F �	 ¼ E2½G�	 ¼ v1 ¼ v2 ¼ v ð2:58Þ
then the functions F � and G� are the optimal strategies of the players.

Let us consider the game with the gain function:

Mðx� yÞ ¼ �kþ1 for x� y � �
Xk
j¼1

"j;

Mðx� yÞ ¼ �i for �
Xi
j¼1

"j < x� y � �
Xi�1

j¼1

"j ði ¼ 1; kÞ;

Mðx� yÞ ¼ �j for
Xj�1

i¼1

�i < x� y �
Xj
i¼1

�i ð j ¼ 1; sÞ;

Mðx� yÞ ¼ �sþ1 for x� y >
Xs
i¼1

�i;

9>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>;

ð2:59Þ

where �i and �j are arbitrary real numbers; "j and �i are positive quantities
representing the step lengths of function M; and k and s are natural positive
numbers. The number of steps for function M is kþ sþ 2.

Let players I and II choose arbitrary values x and y from ½0; d	, respectively.
The next theorem is valid.

Theorem 2.1 If equation

Xk
i¼1

ð�iþ1 � �iÞ�� i þ
Xs
j¼1

ð�j � �jþ1Þ��j ¼ �1 � �1 ð2:60Þ

where

 i ¼
Xi
j¼1

�j ; �j ¼
Xj
i¼1

�i

has at least one root �� ¼ 
 expði!Þ such that ! � �=ðl þ rÞ, then stable strategies
exist in the game with gain function (2.59) and they are optimal. Under this the
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game solution has the form:

F �ðxÞ ¼ ð
0Þx½C1 cosð!0xÞ þ C2 sinð!0xÞ	 þ B; �r � x � l;

G�ðyÞ ¼ D½1� ð
0Þy cosð!0yÞ	; 0 � y � n;

v ¼ ½�sþ1ð
0Þn � �kþ1 cosð!0nÞ	=½ð
0Þn � cosð!0nÞ	;
where the root of equation (2.60) �� ¼ 
0 expði!0Þ has minimal argument and
maximal module; r, l, and n are minimal natural numbers that are greater than  k,
d þ �s, and d, respectively:

D ¼ ð�0Þn=½ð
0Þn � cosð!0nÞ	;
B ¼ cosð!0nÞ½cosð!0nÞ � ð
0Þn	�1;

C1 ¼ ½ð
0Þn�1 sinð!0rÞ þ ð
0Þn�r cosð!0nÞ sinð!0lÞ	=fsin½ðrþ lÞ!0	½ð
0Þn � cosð!0nÞ	g;
C2 ¼ ½ð
0Þn�rcosð!0rÞ�ð
0Þl cosð!0nÞcosð!0lÞ	=fð
0Þl�rsin½ðrþlÞ!0	½ð
0Þn�cosð!0nÞ	:

The proof of the theorem is based on solving equation (2.58) under function
(2.59).

Let us now consider the game with gain function Mðx� yÞ. In analogy with
(2.58), we have: ð1

0

Mðx� yÞp1ðxÞ dx ¼
ð1
0

Mðx� yÞp2ðyÞ dy ¼ v ð2:61Þ

where dFðxÞ ¼ p1ðxÞ dx; and dGðyÞ ¼ p2ðyÞ dy.
Equations (2.61) are solved by means of the Fourier transform:

R2ð�p2Þv ¼ R1ð�p2Þp1ðyÞ ð2:62Þ
R2ð�p2Þv ¼ R1ð�p2Þp2ðxÞ ð2:63Þ

where R1ð!2Þ and R2ð!2Þ are polynomials with real coefficients defined from
equations (2.61).

Theorem 2.2 If the solution �pp1ðxÞ 
 0 of equation (2.62) exists, the game with gain
function Mðx� yÞ has optimal stable strategies p�1ðxÞ and p�2ðyÞ such that

p�1ðxÞ ¼ p�2ðxÞ ¼ K�pp1ðxÞ þ
X1
i¼1

½Ai�
ði�1ÞðxÞ þ Bi�

ði�1Þðx� 1Þ	;

where �ðxÞ is the delta function; and the constants K, Ai, and Bi are determined from
(2.61) and the conditions: ð1

0

p�1 dx ¼
ð1
0

p�2 dy ¼ 1:
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Example 2.1. Let us pay attention to the game GðM; ½0; 1	Þ with gain function
Mðx� yÞ ¼ a½�ðx� yÞ þ d expf�bjx� yjg	, where a, b, and d are arbitrary
constants.

It is easy to see that Theorem 2.2 gives the following solution to this game:

p1ðxÞ ¼ p2ðxÞ ¼ vb2ð1þ A expf�xg þ B expf��xgÞ½a�2	�1;

v ¼ a�2b�2½1þ Aðe� � 1Þ=� � Bðe�� � 1Þ=�	�1;

where �2 ¼ b2 þ 2db,

A ¼ ð� � bÞb�1½ð� þ bÞ2 � ð�2 þ b2Þe�� 	½ð� þ bÞ2e� � ð� � bÞ2e�� 	�1;

B ¼ �ð� þ bÞb�1½ð�2 þ b2Þe� � ð� � bÞ2Þ	½ð� þ bÞ2e� � ð� � bÞ2e�� 	�1:

Example 2.2. It is easy to find the solution to game GðM; ½0; 1	Þ with gain function

Mðx� yÞ ¼
Xn
i¼1

ai expð�bijx� yjÞ:

From Theorem 2.2 it follows that

p1ðxÞ ¼ p2ðxÞ ¼ v a½�ðxÞ þ �ðx�1Þ	þ
Xn�1

j¼1

cj ½expð�bjxÞþexpf�bjð1�xÞg	þ�2n=
2n
( )

v ¼ 2aþ
Xn�1

j¼1

2aj½1� expð�bjÞ	=bj þ �2n=
2n

( )
�1

;

where a is an arbitrary root of R2ð!2Þ; and cj ( j ¼ 1; . . . ; n) are roots of R1ð!2Þ.

Example 2.3. Let us consider the game with gain function:

Mðx; yÞ ¼
1 for ðx; yÞ 2 G1;

a for ðx; yÞ 2 Ga;

b for ðx; yÞ 2 Gb;

8><
>:

where x 2 X , y 2 Y , G1 yGa yGb ¼ X � Y , G1 ¼ fðx; yÞ : 
ðx; yÞ < ";x 2 Kmg,
Ga ¼ fðx; yÞ : 
ðx; yÞ 
 "g, Gb ¼ fðx; yÞ : 
ðx; yÞ < ";x 2 X n Kmg; " is an arbitrary
value; X and Y are m-dimensional bit cubes; Km is an arbitrary set having volume
0.5; 
ðx; yÞ is the distance between x and y; and a ¼ k"m.

It is obvious that

p�1ðxÞ ¼ p�2ðxÞ ¼
2=ð1þ �Þ for x 2 Km;

2�=ð1þ �Þ for x 2 X n Km;

(

v ¼ "mð2�b�0:5mGðm=2Þð1þ �Þ�1 � kbÞ þOð"mÞ;
where � ¼ ð1� aÞ=ðb� aÞ and Gðm=2Þ is a gamma function.
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2.5 BIOCOMPLEXITY RELATED TO ECOSYSTEM SURVIVAVILITY

The interaction of various elements and processes in the global nature–society
system (NSS) has recently attracted the attention of many scientists. Attempts
to estimate and predict the dynamics of this interaction have been made in
different scientific spheres. One of these attempts is the Biocomplexity Program set
up in the U.S.A. by the National Scientific Foundation, within which plans to
study and understand relationships between the dynamics of complexity of
biological, physical, and social systems and trends in changes of the present
habitat. Within the framework of this program, the complexity of the system inter-
acting in some way or another with the environment is connected with phenomena
appearing as a result of global-scale contact of a living system with the environ-
ment.

Biocomplexity is a derivative of the biological, physical, chemical, social, and
behavioral interactions of environmental subsystems, including living organisms
and global population. As a matter of fact, the notion of biocomplexity in the
environment is closely connected with the rules of biosphere functioning as a
combination of its forming ecosystems and natural-economic systems of different
scales, from local to global. Therefore, to determine biocomplexity and to estimate
it, a combined formalized description is needed of the biological, geochemical,
geophysical, and anthropogenic factors and processes taking place at a given level
of the spatiotemporal hierarchy of units and scales.

Biocomplexity is a characteristic feature of all systems of the environment
connected with life. Elements of this manifestation are studied within the frame-
work of the theory of stability and ecosystem survivability. Note should be taken
here that biocomplexity includes indicators of the degree of mutual modification
of interacting systems, and this means that biocomplexity should be studied
considering both the spatial and biological levels of organization. The difficulty
lies in the complicated behavior of the object under study, especially if the human
factor is considered, as a result of which the number of stress situations in the
environment is constantly growing.

Humankind has accumulated a great deal of knowledge about environmental
systems. Use of this knowledge to study biocomplexity is possible within the
framework of synthesizing a global model that reflects the laws of interactions
between environmental elements and permits assessing just how efficienct it is at
constructing different scenarios in the development of human society, based on the
actual data of ground and satellite measurements. It it this problem that serves the
basis of all questions set forth by the Biocomplexity Program.

Studies of the interaction process are aimed as a rule at understanding and
assessing the consequences of a given interaction. The reliability and accuracy of
these assessments depend on criteria that serve as the basis for expert examination
and recommendations. At present, there is no agreed method to select such
criteria for lack of a single scientifically substantiated approach to ecological
normalization of economic forcings on the environment. The choice of such
criteria determines the accuracy of the ecological expertise made available to
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those making decisions about existing and planned human activities and the
representativeness of global geoinformation monitoring data.

The processes taking place in the environment can be represented as the
totality of interactions between its subsystems. Since a human is one of its
elements, it is impossible to definitely divide the environment, for instance, into
the biosphere and society: everything on the Earth is correlated and inter-
connected. The point is to find mechanisms to describe such correlations and
interdependences that would reliably reflect the environmental dynamics and
answer the questions formulated in the Biocomplexity Program:

1. How does the complexity of biological, physical, and social systems in the
environment manifest themselves and change?

2. What mechanisms lie behind the spontaneous development of numerous
phenomena in the environment?

3. How do systems of the environment with living components, including those
created by humans, react and adjust themselves to stress situations?

4. In what ways do information, energy, and matter move within the systems of the
environment and though their levels of organization?

5. Is it possible to predict the system’s adaptability and to give prognostic estimates
of its changes?

6. How does humankind affect and respond to biocomplexity in natural systems?

One can add many other, no less important questions. For instance, up to
what level of complexity should spaceborne observation systems be improved so
that their information was of a sufficiently high standard to reliably estimate the
state of the environment, if only at the moment of receiving this information? No
less important is the question about optimal allocation of the means of geoinfor-
mation monitoring at different levels of its organization. Finally, one of the main
questions in modern environmental science is estimation of biosphere survivability
under conditions of increasing anthropogenic impact. In our opinion such an esti-
mation can be brought about by using the global NSS model and by applying a
biocomplexity index. This chapter proposes an approach to resolving this. The
general idea is in the combined use of biological complexity and survivability as
indicators of the NSS state. Using state-of-the-art simulations, the results
presented in this chapter provide an evaluation of the NSS capability to survive
under different scenario realizations.

2.5.1 Biocomplexity and survivability indicators

Processes that have their origin in the environment can be presented as the
combination of interactions between its subsystems. The human subsystem is a
part of the environment and it is impossible to divide the environment into separ-
ate subsystems such as biosphere and society. The problem is to search for
methodologies to describe existing feedbacks between nature and humanity and to
simulate dynamic tendencies in the NSS reliably. Unfortunately, the part of the
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NSS that is responsible for the quality of modeling climatic processes introduces
instability in the modeling results. This is the reason that we suppose below that
the NSS climatic component can be replaced by a scenario describing stable
climatic trends during the time interval of investigation. What is actually studied
is the NSS.

Let us introduce the scale symbol X of biocomplexity ranging from the state
where all interactions between environmental subsystems are broken to the state
where they correspond to natural evolution. In this case, we have an integrated
indicator of the environmental state including bioavailability, biodiversity, and
survivability. It reflects the level of all types of interactions among environmental
subsystems. In reality, specific conditions exist where these interactions are
changed and transformed. For example, under the biological interaction of
consumer/producer type or competition-for-energy-resource type there exists some
minimal level of food concentration where contacts between interacting
components cease. Physical, chemical, and other types of interactions in the
environment commonly depend on specific critical parameters. Environmental
dynamics is regulated by these parameters and the main task is its parametrical
description. Biocomplexity reflects these dynamics.

All of this corroborates the fact that biocomplexity is related to categories
that are difficult to measure empirically and to express quantitatively. However,
we will try to transfer truly verbal tautological reasoning to formalized quantita-
tive definitions. For the transition to gradations of the scale X with quantitative
positions it is necessary to postulate that relationships between two values of X
are of the type X1< X2, X1> X2, or X1� X2. In other words, there always exists a
value of the scale 
 that defines a biocomplexity level X ! 
 ¼ f ðXÞ, where f is a
certain transformation of the biocomplexity concept to a number. Let us attempt
to search for a satisfactory model to simulate the verbal biocomplexity image in
constructive terms, subordinating it to formal description and transformation.
With this purpose in mind m subsystems of the NSS are selected. The correlations
between these subsystems are defined by the binary matrix function X ¼ kxi jk,
where xi j ¼ 0, if subsystems Bi and Bj do not interact, and xi j ¼ 1, if subsystems
Bi and Bj are interacting. Then, any one point � 2 X is defined as the sum

� ¼
Xm
i¼1

Xm
j>i

xi j. Of course, there arises the need to overcome uncertainty for which

it is necessary to complicate the scale X (e.g., by introducing weight coefficients for
all NSS subsystems). The origin of these coefficients depends on the type of sub-
system. This is the reason three basic subsystem types are selected: living,
nonliving, and vegetation. Living subsystems are characterized by their density,
determined by the number of their elements or by biomass value per unit area or
volume. Vegetation is characterized by the type and portion of occupied territory.
Nonliving subsystems are measured by their concentration per unit area or volume
of the environment. In the common case, certain characteristics fkig, correspond-
ing to the significance of subsystems fBig, are assigned to every subsystem Bi

(i ¼ 1; . . . ;m). As a result we obtain a better definition of the formula to move
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from the biocomplexity concept to the scale X of its indicator:

� ¼
Xm
i¼1

Xm
j>i

kjxi j: ð2:64Þ

It is clear that � ¼ �ð’; �; tÞ, where ’ and � are the geographical latitude and
longitude, respectively, and t is the current time. For the territory O the
biocomplexity indicator is defined as the mean value:

�OðtÞ ¼ ð1=�Þ
ð
ð’;�Þ 2O

�ð’; �; tÞ d’ d�

where � is the area of O.
Thus, the indicator �OðtÞ is the characteristic of integrated NSS complexity

that reflects the individuality of its structure and behavior at each time t in space
O. According to the laws of natural evolution a decrease (increase) in �OðtÞ will
correspond to an increase (decrease) of biocomplexity and the survivability of the
nature–anthropogenic systems. Since a decrease in biocomplexity disturbs biogeo-
chemical cycles and leads to a decrease in stress on the nonrenewal of resources,
then the binary structure of the matrix X changes direction to intensify resource
impoverishment technologies. The vector of energy exchange between NSS subsys-
tems is moved to a position where the survivability level of the NSS is reduced.

The global simulation model is constructed with the spatial resolution of the
Earth’s surface in which D’ represents latitude and D� longitude. In other words,
the NSS space O is divided into a set of pixels Oi j (O ¼ w Oi j; Oi j ¼ fðð’; �Þ;
’i � ’ < ’iþ1; �j � � < �jþ1; i ¼ 1; . . . ;N; j ¼ 1; . . . ;M; N ¼ ½180=D’	;
M ¼ ½360=D�	g). Each cell Oi j has its own biocomplexity indicator value:

�Oði; j; tÞ ¼ ð1=�i jÞ
ð
ð’;�Þ 2Oi j

�ð’; �; tÞ d’ d�: ð2:65Þ

The value �Oði; j; tÞ calculated by formula (2.65) reflects the topological structure
of the matrix Xði; j; tÞ. Consequently, there exist n ¼ N �M matrixes and biocom-
plexity indicators to characterize NSS biocomplexity. As part of the computer
experiment there arises a set of numerical characteristics of NSS biocomplexity
distributed in space and time. Integrated NSS biocomplexity indicators can be
calculated for any arbitrary area ! 2 O:

�!ðtÞ ¼ ð1=�!Þ
X

ð’i ;�jÞ 2!
�Oði; j; tÞ: ð2:66Þ

This can be average NSS biocomplexity by longitude or latitude zone, by ocean or
sea aquatory, by country or state territory, etc.

NSS survivability is closely connected with biocomplexity. In the common
case the behavior of any system is determined by the values characterizing the
state of the system, which can take different terms. Upon interaction with an
external medium and, in particular, with other systems, the values of these terms
can vary in one way or another. For any technological or biological system, it is
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always possible to show the field of change of the characteristic parameters,
wherein the system can be considered to be functioning. Outside this field the
system does not exist. Thus, one can substitute the complex behavior of a system
by depicting this system as a point in the phase space of the characteristic param-
eters. If the change of any coordinate leads to the disappearance of the depicting
point from the allowable field, the system collapses (the organism as a whole
perishes).

Let us restate what we said in the introduction to this chapter (Section 2.1)
about significant variables not being identical regarding the degree of threat they
pose to the system. Such variables as the oxygen content of blood or the structural
integrity of the medulla oblongata cannot tolerate any significant changes, since
such changes would almost invariably lead to immediate death. However, there
are changes, such as in the temperature of individual areas of the skin where sharp
fluctuations do not necessarily lead to such an eventuality. Separating all variables
characterizing the state of the system into significant variables makes it possible
to simplify the behavioral strategy of a system as it interacts with an external
environment or other systems. A most constructive approach to describing the
global environment was proposed by Gorshkov et al. (2000). They consider that a
different path of development compatible with long-term environmental safety lies
through conservation and restoration of a substantial part of the Earth’s biosphere
to its natural nonperturbed state, bearing in mind the stabilizing potential of the
natural biota of Earth with respect to the global environment. The problem of
biosphere survivability really does correlate with the mechanisms of biotic
regulation, physical and biological stability, the sensitivity of biota, ecological lim-
itations, and other basic principles of biology. In general, each living organism
clearly plays a role in global change. The problem lies in describing this role to
estimate the significance of interactions between the hierarchy of biospheric
elements having various spatial scales and different influences on the levels of
biological organization.

Following Krapivin (1978, 1996) a survivability indicator can be taken from
trophic relations between ecosystem components and represented by the equation:

	ðtÞ ¼

Xm
i¼1

ð ð
ð’;�Þ 2O

ðz0
0

Bið’; �; z; tÞ d’ d� dz

Xm
i¼1

ð ð
ð’;�Þ 2O

ðz0
0

Bið’; �; z; t0Þ d’ d� dz

;

where Bi is the i th element of the NSS.
Indicators such as these and others help to determine the state of an

environmental subsystem based on restricted information. Remote sensing of the
environment is characterized by a series of such indicators as NDVI, LAI, and
SIL, which are used widely in many studies. Of the important problems that are
the subject of many international environmental programs the study of forest
ecosystems is arguably the most pressing.
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Anthropogenic and natural biomass burning has become an ordinary event in
the world. The development of an effective technology for atmosphere pollution
control by means of satellite system is long overdue. However, there exist
difficulties connected with spatial resolution, the temporal frequency of satellite
overpasses, and cloudiness. The temporal dynamics of fire cannot be correlated
with the interval between two consequent satellite overpasses over the area that is
ablaze. Boschetti et al. (2003) proposed a methodology of using data acquired by
the European Meteosat and the Japanese GMS to detect burned areas in different
tropical environments. The methodology is based on a multiple threshold
approach applied to thermal radiance and to a spectral index specific to burned
surfaces.

Of the informational indexes available, the Simple Index for Burned Areas
(SIBA) is the best for adaptation to observational conditions. It allows various
features of the burned area to be enhanced:

. low albedo;

. high temperature;

. temperature higher than the surrounding pixels in a window large enough to
encompass the burned areas.

SIBA can be described as a normalized function:

SIBAi j ¼ Ii j=ðIi j þ 1Þ;
where

Ii j ¼
ðTij � aÞðTij � bÞ
c
TOAi j

ðT̂Ti j � bÞ

" #
2

;

Ti j is the surface temperature (K) of pixel Oi j; T̂Ti j is the mean surface temperature
(K) in a window of 60� 60 pixels around pixel Oi j; a ¼ 248, b ¼ 273, c ¼ 300; and

TOAi j

is the top-of-atmosphere reflectance of pixel Oi j.
Numerous calculations made by Boschetti et al. (2003) show that SIBA

behaves differently in some significant cases: water bodies, clouds, and burnt
surfaces. SIBA maintains the capability to detect burned areas in different areas
and under different conditions. This capability depends on the sensor type.

The introduction of integral characteristics for use as indicators of the state of
the environmental subsystem (as demonstrated by many authors) allows satellite
monitoring of soil–plant formations. The most appropriate index here is the
Scattering Index over Land (SIL), which permits different surfaces to be
distinguished:

SIL ¼ 451:9� 0:44Tbð19 GHzÞ � 1:755Tbð22 GHzÞ þ 0:00575T 2
bð22 GHzÞ

� Tbð85 GHzÞ;

SIL ¼
10 K precipitation area;

13 K snow cover;

15 K desert or semidesert territory.

8<
:
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SIL facilitates solution of a precipitation problem:

RRðmm/hÞ ¼ 0:00513 � SIL1:9468:

There exist other correlations as functions of integral indexes. For example,
low atmospheric temperature can be estimated by means of the following formula:

TðKÞ ¼ 58:08� 0:39Tbvð19 GHzÞ þ 1:21Tbvð22 GHzÞ � 0:37Tbvð37 GHzÞ
þ 0:36Tbvð85 GHzÞ:

According to this, when T > T � precipitation is possible, where

T � ¼ 242:5þ 5 cos � for Tbð53:6 GHzÞ � 248 K;

0:667½Tbð53:6 GHzÞ � 248	 þ 252þ 6 cos � for Tbð53:6 GHzÞ > 248 K;

�
where � is the satellite zenith angle.

The NDVI and LAI indexes help to assess the water content of vegetation
(kilograms per square meter):

m	 ¼ 1:9134ðNDVIÞ2 � 0:3215ðNDVIÞ when NDVI� 0:5;

4:2857ðNDVIÞ2 � 1:5429 when NDVI> 0:5.

(

All these correlations help to form (as part of the GIMS) an effective algo-
rithm to assess forest conditions that may be susceptible to fire. Maki et al. (2004)
proposed the following procedure to predict fire outbreak and propagation. The
prediction of fire outbreak, propagation, and scale in forested areas depends
mainly on wind direction, vegetation water status, topography, but other factors
are involved. Vegetation water status is the most important parameter determining
the risk of fire. Maki et al. (2004) calculated the vegetation water status at ground
level by means of three definitions:

(i) fuel moisture content (FMC);
(ii) equivalent water thickness (EWT);
(iii) relative water content (RWC).

FMC is defined as the ratio between the quantity of water in vegetation and
either the fresh or dry weight of vegetation:

FMC ¼ FW�DW

FW (or DW)
� 100ð%Þ:

EWT is the ratio between the quantity of water and the area �:

EWT ¼ FW�DW

�
ðg=cm2Þ:

RWC is calculated by means of the following formula:

RWC ¼ FW�DW

TW�DW
;

where FW is the full weight; DW is the dry weight; and TW is the turgid weight.
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2.5.2 The nature–society system biocomplexity model

The NSS consists of subsystems Bi (i ¼ 1; . . . ;m) whose interactions are built up
over time as a result of the functions of many factors. NSS biocomplexity
indicates the structural and dynamic complexity of its components. In other
words, NSS biocomplexity is formed under the interaction of its subsystems fBig.
Over the course of time, subsystems Bi can change their state and, consequently,
change the topology of the relations between them. The evolutionary mechanism
of adaptation of subsystem Bi to the environment allows the hypothesis that each
subsystem Bi, independent of its type, has structure Bi;S, behavior Bi;B, and goal
Bi;G such that Bi ¼ fBi;S;Bi;B;Bi;Gg. The strivings of subsystem Bi to achieve
certain preferable conditions are represented by its goal Bi;G. The expedience of
structure Bi;S and the purposefulness of behavior Bi;B for subsystem Bi are
estimated by the effectiveness with which goal Bi;G is achieved.

As an example, let us consider the process of fish migration. The
investigations of many authors have revealed that this process is accompanied by
purposeful behavior. From these investigations it follows that fish migrations are
subordinated to the principle of complex maximization of effective nutritive
rations, subject to favorable environmental conditions (temperature, salinity, dis-
solved oxygen, pollution level, depth). In other words, the travel of migrating
species takes place at characteristic velocities toward the maximum gradient of
effective food, subject to ecological restrictions. This is the reason we can formu-
late that goal Bi;G of the fish subsystem is toward increasing its food supply and
that behavior Bi;B consists in finding the optimum route to attain goal Bi;G.

Since the interactions of subsystems Bi (i ¼ 1; . . . ;m) are connected with
chemical and energy cycles, it is natural to suppose that each subsystem Bi accom-
plishes the geochemical and geophysical transformation of matter and energy to
remain in a stable state. The formal approach to this process consists in supposing
that interactions between NSS subsystems are represented as a process whereby
the systems exchange a certain quantity V of resources spent in exchange for a
certain quantity W of resources consumed. We shall call this process ‘‘(V ;W)
exchange’’.

The goal of subsystem Bi is the most advantageous (V ;W) exchange (i.e., it
tries to get maximum W in exchange for minimum V). The quantity W is a
complex function of the structure and behavior of interacting subsystems,
W ¼ WðV;Bi; fBk; k 2 KgÞ, where K is the set of subsystem numbers interacting
with subsystem Bi.

Let us designate BK ¼ fBk; k 2 Kg. Then, the following (V ;W) exchange is
the result of interactions between subsystem Bi and its environment BK :

Wi;0 ¼ max
Bi

min
BK

WiðVi;Bi;BKÞ ¼ WiðVi;Bi;opt;BK;optÞ

WK ;0 ¼ max
BK

min
Bi

WKðVK ;Bi;BKÞ ¼ WKðVK ;Bi;opt;BK ;optÞ:

Hence, it follows that some range of the goal of subsystem Bi exists which
defines the levels of Vi and VK . Since limiting factors are defined by nature, then
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it is natural to suppose in this case that some level Vi;min exists when subsystem Bi

ceases to spend its energy resources on external resources (i.e., if Vi � Vi;min, sub-
system Bi concentrates on regenerating its internal resources). In other words,
when Vi � Vi;min, any decrease in the biocomplexity indicator �OðtÞ takes place at
the expense of breaking off interactions between subsystem Bi and other sub-
systems. Commonly, the structure of Vi;min is checkered (i.e., the changeover of xi j
from state xi j ¼ 1 to state xi j ¼ 0 is not realized for all j at the same time).
Actually, in any trophic pyramid of living subsystems producer/consumer-type
relationships cease when the consumer biomass concentration falls below some
critical level. In other cases the interactions between subsystems fBig can be
stopped at the expense of various combinations of its parameters. The
parametrical description of possible situations of interactions between subsystems
fBig can be realized in the NSS simulation model.

2.5.3 Simulation experiments

2.5.3.1 The Okhotsk Sea ecosystem case

The Okhotsk Sea ecosystem (OSE) is a significant element of the biosphere whose
evaluation requires development of a common criterion. The OSE Biocomplexity
Index helps to explain many processes regulating the interactions between biotic
components, hydrodynamic effects, and energy fluxes. Traditional estimates of the
contributions from different processes within the OSE deal with the study of local
or special parameters. This makes understanding correlations between OSE
components and forecasting their dynamics impossible. Moreover, a simple index
would make it possible to evaluate the state of the OSE by means of ordinary
calculations.

The OSE has a trophic graph showing interactions at many levels between
biological, chemical, and physical processes. OSE biocomplexity consists of
numerous sets of biotic regulations determining the fundamental properties of
living objects. An important property of OSE living components is that all
biological species exist in the form of populations. All processes and phenomena
observed in the OSE are characterized by a certain degree of physical and
biological stability, which is a function of external and internal fluxes of energy.
External fluxes of energy are defined as solar irradiation, the influence of the
Pacific Ocean, and anthropogenic interventions. In the absence of an external flux
of energy, the OSE tends toward a state of thermodynamic equilibrium, which is
characterized by the maximum degree of chaos possible in a given system
(Gorshkov et al. 2000).

In any event, OSE dynamics is a complex function of many parameters
having different chemical, physical, and biological character. A biocomplexity
index has to reflect this and to characterize the biological stability of the whole
aquageoecosystem.

The Okhotsk Sea is a typical highly productive sea whose ecosystem has to
function under severe climatic conditions. The spatiotemporal structure of the
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basic hydrological and ecological characteristics of the Okhotsk Sea is hetero-
geneous. The chemical, physical, and biological processes occurring in seawater
have been studied by many authors to assess their bioproductivity. According to
the investigations made by Terziev et al. (1993), the following structural discretiza-
tion of the Okhotsk Sea geoecosystem can be realized. Five ecological layers exist.
Layer 1 is where photosynthesis is greatest. It is situated above the thermocline
and lies at depths of 20–30m. It corresponds to the wind-mixed layer. Layer 2
occupies depths from 30 to 150m. It has a low temperature and oxygen saturation
of about 80–90%. Layer 3 is characterized by low oxygen saturation (15–20%). It
lies at depths of 150–750m. Layer 4 extends from 750m down to a depth of
1,500m. This layer has the lowest oxygen saturation (10–15%). Lastly, layer 5 is
located deeper than 1,500m. It is characterized by oxygen saturation of 25–30%.

The Okhotsk Sea aquatory is divided into zones having specific ecological
features (Suzuki, 1992). The spatial distribution of fish depends on seasonal con-
ditions and to a great extent correlates with the layers just mentioned. The use of
the sea’s biological resources is a function of this distribution. Fishing intensity
essentially depends on knowledge of the biomass distribution in zones that have
their own specific environmental conditions. Various authors (Aota et al., 1992;
Nitu et al., 2000b; Plotnikov, 1996) have tried to resolve this by using models that
simulate ecosystem dynamics. However, the modeling results have not always
turned out to be sufficiently representative and to reflect the classification of sea
zones according to their productivity. The biocomplexity indicator is one such
simple form capable of identifying these zones. It has been shown by many
investigators that highly productive Okhotsk Sea zones are characterized by a
complex multilevel trophic graph (Terziev et al. 1993). However, this effect is not
universal. For instance, the ecosystem of the Peruvian Current is highly productive
in zones where the trophic graph is short (Krapivin, 1996). These situations can be
distinguished by migration processes. Hence, the biocomplexity of ecosystems can
be formed in various ways.

Let us consider the following components of the Okhotsk Sea ecosystem
(Table 2.1). The trophic pyramid X ¼ kxi jk, where xi j is a binary value equal to
‘‘1’’ or ‘‘0’’ under the existence or absence of nutritive correlations between the ith
and jth components, respectively. Let us define the biocomplexity function as:

�ð’; �; z; tÞ ¼
X20
i¼1

X19
j¼1

xi jCi j; ð2:67Þ

where ’ and � are the geographical latitude and longitude; t is current time; z is
depth; xi j ¼ 1 if Bm 
 Bm;min and 0 if Bm < Bm;min where Bm;min is the minimal
biomass of the mth component consumed by other trophic levels;
Cij ¼ kjiBi;�=

P
j;þ is the nutritive pressure placed by the j th component on the ith

component;
P

i;þ ¼Pm2Si
kimBm is the real store of food available to the ith

component; Bm;� ¼ maxf0;Bm � Bm;ming; kim ¼ kimðt;TW ;SW Þ (i ¼ 1; . . . ; 17) is the
satisfaction index of the nutrition requirements of the ith component at the
expense of the biomass of the mth component; kim (i ¼ 18; 19) is the trans-
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formation coefficient from the mth component to the ith component; ki;20
represents anthropogenic influence on the ith component; Si ¼ fi : xi j ¼ 1;
j ¼ 1; . . . ; 19g is the food spectrum of the ith component; TW is water tempera-
ture; and SW is water salinity.

Let us designate the aquatory of the Okhotsk Sea by O ¼ fð’; �Þg. The value
of the biocomplexity indicator for any area ! 2 O is determined by the formula:

�!ðz1; z2; tÞ ¼ ð1=�!Þ
ð
ð’;�Þ 2!z1

ðz2
z1

�ð’; �; z; tÞ d’ dz;

where ½z1; z2	 is the water layer located between the depths of z1 and z2.
The maximum value of � ¼ �max (
 20) is reached during the spring–summer

when nutrition relationships in the OSE are extended, the intensity of energy
exchanges is increased, and horizontal and vertical migration processes are stimu-
lated. In winter the value of � approaches �min (
 8). The spatial distribution of �
reflects the local variability of the food spectrum for the various components.
Figure 2.3 and Table 2.2 show examples of such a distribution. Comparison of
this distribution with that of zones with industrial fish accumulations (Terziev et
al., 1993) shows that there is a correlation between these distributions.

The indicator � reflects the level of complexity of the OSE. A change in � is a
consequence of migration processes and the variability of nutritive interactions. In
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Figure 2.3. Spatial distribution of the biocomplexity indicator �� ¼ �=�max for the spring–

summer.



these processes subsystem B20 plays the role of an external source of change in
other components. These changes are interpreted in terms of fishing and impacts
causing variations in component biomass.

Calculations show that basic variability in �� ¼ �=�max is caused by migration
processes. Under these conditions, there occurs a quick redistribution of the inter-
ior structure of matrixes X and kCijk. For instance, according to Terziev et al.
(1993) many fish during spring migrate to the shelf zone and during winter they
move to the central aquatories of the sea. Therefore, the value of �� ! 1 during
spring and �� ! 0:6 during winter for the shelf zone. This means that the biocom-
plexity of the Okhotsk sea ecosystem in the shelf decreases by 40% in winter in
comparison with spring. For the central aquatories the value of �� varies near 0.7
throughout the year. Such stability of the biocomplexity indicator is explained by
the balance between nutrition correlations and productivity during spring,
summer, and winter.

It has been established that variability in �� stimulates changes in fish
concentrations that are controlled by environmental conditions. Specifically,
during spring time the larval Pacific hering (Clupea pallasi) occupies the area with
TW < 5�C. Other fish have an elective depth for feeding and spawning (Terziev et
al., 1993). All these processes influence the variability of ��. More detailed investi-
gation of correlations between the value of �� and the structural and behavioral
dynamics of the Okhotsk Sea ecosystem requires additional studies.

This section has introduced a means of moving from a verbal description of
biocomplexity to a numerical scale. In future studies it will be necessary to take
into consideration various factors such as bottom relief, climate trends, ice field
dynamics, detailed components of the trophic pyramid, bottom sediments, and
current structure. Moreover, it is necessary to add members describing anthropo-
genic impacts on the ecosystem considered socioeconomically to formula (2.67).

2.5.3.2 Upwelling ecosystem case

It is known that upwelling zones characterized by vertical water motions have high
productivity. An upwelling zone is the result of many phenomena: water removal
from the coastline by the wind, changes in ocean currents, etc. Water velocity and
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Table 2.2. Estimates of the biocomplexity indicator �� for different

layers in spring–summer and in winter.

Season Layer

1 2 3 4 5

Spring–summer 0.89 0.93 0.62 0.34 0.21

Winter 0.31 0.49 0.71 0.39 0.22



the stability of an upwelling zone are determined by a set of synoptic parameters.
The most specific value for the vertical speed of water in an upwelling zone is
0.77 � 10�3 cm � s�1. The depths at which water flows start vary within 200m.

Let us proceed from the concept of successive development of a community
from the time of its origin in a region invaded by deep water until its climax in
the oligotrophic convergence region. In between these times the system develops
and moves along with the water flow. In addition, the total energy of the system
and its structure (spatial, trophic, and specific) are changed. The observed general
characteristics of these changes occurring in time and space are now available, and
one of the major criteria determining the adequacy of the model is its agreement
with the actual picture observed in the oceans.

Let us suppose ecosystem motion from the upwelling zone is homogeneous in
the horizontal plane. The ecosystem state is characterized by depth z with step Dz
(
10m) and by time t with interval Dt (daily). The horizontal speed of the water
current from the upwelling zone is V ¼ V’ ¼ V�, so that the distance of the water
volume from the upwelling zone equals Dr ¼ ðD’2 þ D�2Þ ¼ V � Dt.

The ecosystem state at each layer z ¼ const is determined by light intensity
Eðz; tÞ, by nutrient salt concentration nðz; tÞ, and by the biomass of detritus
dðz; tÞ, phytoplankton pðz; tÞ, bacterioplankton bðz; tÞ, protozoa Z1ðz; tÞ, microzoa
Z2ðz; tÞ, small-sized herbivores Z3ðz; tÞ, large-sized herbivores Z4ðz; tÞ, small
predators like Cyclopodia Z5ðz; tÞ, intermediate predators like Calanoida Z6ðz; tÞ,
and large predators like Chaetognatha and Polychaeta Z7ðz; tÞ. The protozoa
include infuzorii and radiolarii. The microzoa include the nauplii stages of
copepods. Based on plankton-feeding studies made by many authors (Vinogradov
et al., 1972) the small-sized herbivores are now believed to include, apart from
the protozoa and nauplii, young copepod stages of Calanoida and adult
copepods whose size does not reach 1.0mm such as Clausocalanus, Acrocalanus,
Paracalanus, Calocalanus, etc. The group of large-sized herbivores consists of
animals whose size exceeds 1.0mm such as Undinula, Eucalanus, Rhincalanus,
Neocalanus, Lucicutia, juveniles of Euphausiacea, etc. The group of omnivores
includes Centropages, Pleuromamma, Scolecithrix, Undeuchaeta, Conchoecia, etc.,
while Chaetognatha, Candacia, Euchaeta, Cyclopodia, etc. are grouped with the
carnivores.

It is accepted that 30% of the bacterioplankton biomass is held in natural
clots of size greater than 3–5 mm, which can be consumed by the herbivores (Z3

and Z4). The microzoa (Z2), protozoa (Z1), and small-sized herbivores (Z3) can
consume unclotted bacterioplankton as well.

The trophic relations between the components are described by means of the
energetic principle (Figure 2.4). Biomass, production, respiration, mortality, and
rations are measured by the energy scale in calories per cubic meter or calories per
square meter.

When estimating changes in the system over time, it was assumed that water
takes more than 60 days to cover the distance from the upwelling zone to the
oligotrophic zone of planetary convergence. Figure 2.5 gives a representation of
the changes in biomasses as functions of time. We see that the phytoplankton
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biomass increases most rapidly here, reaching its maximum (
 4,500 cal �m�2) on
the 5th to 10th day of the existence of the system. After this, the phytoplankton
biomass decreases. The peak bacterioplankton biomass is reached on the 10th to
15th day. Small-sized herbivores lag somewhat behind phytoplankton in develop-
ment, and their biomass reaches its peak only on the 30th day. Nevertheless, its
influence along with that of nutrient salt decrease leads to a sharp drop in
phytoplankton and bacterioplankton biomasses. Namely, inverse chains of the
community give weak contributions to Rp and Rb. After the 40th day, the phyto-
plankton biomass mainly functions at the expense of biogenic elements arriving in
the eutrophic zone across the thermocline from deeper layers. Subsequently, the
phytoplankton biomass decreases relatively slowly. This is the time that stability
factors begin to influence the community at the expense of exterior energy flows.

The carnivores prove to be even more inertial than the herbivores as their
biomass attains its peak only on the 35th to 50th day. This is the time (i.e., the
50th to 60th day) that the system reaches its quasistationary state characterized by
low concentrations of all living components.
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Figure 2.4. Scheme of the trophic interactions between components of the upwelling ecosystem.

The values of coefficients Cij are shown on the arrows’ shafts.



2.6 COMPUTER SIMULATION OF ACID RAIN

Key to understanding the state of today’s global ecodynamics and ecosystem
survivability is the study of conditions for acid rain formation and their predic-
tion. For the first time, this problem was widely discussed at the 28th General
Assembly of the International Unit on Theoretical and Applied Chemistry held in
Madrid in September 1975. Subsequent conferences and various international pro-
grams have made it possible to accumulate data and knowledge in this sphere.
Consequently, we now know that sulfur compounds emitted to the atmosphere
from natural and anthropogenic sources are an important precursor of acid rain,
which seriously damages the environment. Sulfur resides in the atmosphere mainly
in the form of gas-phase SO2 and H2S as well as sulfate ion SO2�

4 .
Sulfur dioxide is a basic precursor of acid rain. Its concentration at the surface

level is estimated at 1 mgm�3. The participation of SO2 in acid rain formation
takes place in two ways: through dry deposition onto a wet surface and formation
of H2SO4 directly in the atmosphere with subsequent deposition either onto land
surfaces or in water basins. Sulfur dioxide reacts with water to give sulfuric acid:
SO2 þH2Oþ 1

2
O2 ! H2SO4. These processes are shown in Figure 2.6. SO2

residence in the atmosphere depends strongly on the means of its removal. As a
result of dry deposition, SO2 is removed from the atmosphere in 7.6 days and its
transformation to SO2�

4 in 13 days. The rate of dry deposition depends on the
type of surface and many other environmental parameters. This rate averages
2 cm � s�1 over land and 0.9 cm s�1 over the ocean. As a result of the combination
of the processes of SO2 removal from the atmosphere its residence can shorten to
4.8 days.
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ecosystem in the 0–200m water layer.



A simplified formula for acid rain is: acid rain¼H2Oþ SO2 þNO2. Natural
and anthropogenic emissions of SO2 to the atmosphere are responsible for 60 to
70% of acid rain globally. Deposition from the atmosphere of excessive sulfate is
estimated at 360Tg � yr�1 at an average emission rate to the atmosphere of
110Tg � yr�1, with 31% of excessive sulfate in rain water being anthropogenic in
origin. On the whole, anthropogenic sources emit to the atmosphere >90% S.
These sources are:

. coal burning (coal contains 2–3% S and its burning gives SO2);

. oil burning and refining (the power of sulfur sources is four to five times lower
than that of coal burning);

. ore melting to obtain metals such as copper, nickel, and zinc;

. volcanic eruptions;

. organic decomposition;

. weathering of sulfur-containing rocks (�15Tg � yr�1);
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Figure 2.6. A conceptual scheme of the impact of anthropogenic sulfur emissions on the quality

of the aquatic medium. Notation: RL, reactions with limestone minerals; RS, reactions with

aluminum-containing silicate minerals.



. input of sulfur to the atmosphere with sea spray (�45Tg � yr�1);

. sulfate fertilizers and their subsequent input to the atmosphere with dust
(�10Tg � yr�1);

. aviation and car engines.

Natural sources of sulfur compounds in the form of hydrocarbons,
dimethylsulfide, carbonylsulfide, and methylmercaptan include soils, marshes,
forests, volcanoes, the hydrosphere, and agricultural soils. Dimethylsulfide from
the surface of the World Ocean reaches the atmosphere and is rapidly oxidized to
give sulfates that reside in the atmosphere for no more than 5 days. Available
estimates put the sulfur emission of volcanoes annually to the atmosphere from 4
million to 16 million tonnes of sulfides (recalculated for SO2). Sulfur-containing
compounds also form as a result of geothermal activity and the activity of living
organisms on land and in water. Rivers bring sulfur to seas and oceans at the rate
of �100 Tg � yr�1. Natural sources of sulfur are rather small. For instance, in the
U.S.A. and Canada the emissions of sulfur products from natural sources
constitute, respectively, no more than 4 and 18% of total sulfur emissions.

The spectrum of anthropogenic sources of sulfur compounds is diverse and
variable because it is present in many minerals such as coal, oil, iron, copper, and
other ores. Humankind’s use of these minerals leads to sulfur emissions to the
atmosphere despite the use of purification devices. The main by-product of
industrial processes and fossil fuel burning is sulfur dioxide. For instance, in the
U.S.A., SO2 emissions can be traced to electric power stations 67%, fossil fuel
burning 3%, industrial enterprises 15%, transport 7%, and other sources 8%.
Globally, these indicators vary strongly both in space and time. For example, in
contrast to the U.S.A., electric power stations in Canada emit 20% SO2, whereas
non-ferrous metallurgy emits 43% SO2. On the whole, in Canada industrial enter-
prises are the main source of SO2 (74%). It should be noted that the sources of
sulfur in the U.S.A. are responsible for more than 50% of acid rain in Canada,
and territories bordering Quebec province get up to 75% of acid rain as a result
of SO2 emissions in the U.S.A. Available estimates put the trans-boundary
transport of SO2 from the U.S.A. to Canada at 3.5 million to 4.2 million tonnes
per year.

In most countries, as a consequence of the intense use of petroleum, the
problem of acid rain has caused economic problems. Petroleum in the recent past
contained sulfur ranging from 150 to 600 ppm. Economic losses because of acid
rain forced developed countries to find technologies to reduce the content of sulfur
in petroleum. The expected level of 30–50 ppm targeted for 2005 was reached.

The structure of sulfur dioxide emissions is similar in most countries. In
Germany, power stations contribute about 90% of the total emissions of sulfur
dioxide, while industrial enterprises and transport contribute only 7.5% and 2.5%,
respectively. Emissions of sulfur compounds to the atmosphere at high latitudes
are clearly seasonal in nature. On reaching the atmosphere from different sources
in a given territory, sulfur compounds can be transported by air masses for long
distances and deposited in other territories. Knowledge of the spatial distribution
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of the concentration of sulfur compounds together with meteorological
information should make it possible to predict acid rain.

An expert system that takes into account the totality of models of atmospheric
transport of pollutants, and at the same time includes a model of the sulfur cycle
in the environment as an independent unit, would make such predictions possible.
Of course, there are difficulties here as a result of a limited global database and
the absence of some functional descriptions. These difficulties can be overcome
using a global simulation model within which the sulfur cycle is parameterized
with due regard to the role of the many subsystems of the biosphere and
anthropogenic processes. Moreover, inclusion of the sulfur unit in a GSM would
broadens its functions, since it is dictated by the dependence of biotic processes on
the content of sulfur in biospheric compartments. Available data on the supplies
and fluxes of sulfur compounds in the atmosphere, soils, vegetation cover, and
hydrosphere would enable mathematical relationships to be formulated to simulate
the global sulfur cycle.

Globally, the sulfur cycle is a mosaic of local fluxes of its compounds carried
by other elements as a result of water migration and atmospheric processes. The
conceptual schemes of global and regional sulfur cycles have been described in
detail by many authors (Kondratyev et al., 2006; Krapivin and Kondratyev, 2002;
Nitu et al., 2004). However, the available models have been designed for autono-
mous functioning and application, which does not facilitate their inclusion in a
GSM without substantial changes in their parametric spaces. We now offer a
solution to this problem.

Sulfur in its non-metallic state is widespread in nature and is a component of
global biogeochemical cycles. From the human perspective, sulfur belongs to the
group of elements that can negatively affect vital media. The harmful impact of
sulfur on the environment is manifested mainly through acid rain. Water basin
acidity due to acid rain and subsequent transport of sulfur compounds with the
runoff from adjacent lands are manifestations of this impact.

Processes causing the acidification of water basins are mainly connected with
anthropogenic sources of sulfur and, of course, other chemical elements such as
nitrogen. In the pre-industrial period, the acidity of inland water basins never
dropped below pH¼ 8. With the growing anthropogenic impact on the environ-
ment, water basin acidity increased with many basins dropping to pH¼ 5.7 in the
middle of the last century. At present, in highly industrialized areas natural water
basin acidity is about pH< 5. The increasing trend of acidity causes serious prob-
lems for fish reserve control. Many lakes and rivers in North America and Europe
have been excessively acidified, resulting in the aquatic biota in them suffering
irreversible changes. For instance, in the U.S.A. (Stoddard et al., 2003) about
4.2% of lakes and 2.7% of river systems are in such a state that their capability
to neutralize high acidity naturally is non-existent. The chronic excess of acidifica-
tion of water basins (pH< 5.2) leads to irreversible changes in ecosystems and to a
decrease in their survivability.

As seen in Figure 2.6, many factors affect the composition of water, the most
important of which being vegetation cover and soil type in the aquatic system’s
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basin. Therefore, acidity regulation can only be brought about by considering all
the factors involved as a complex, which is only possible using numerical models.
Experimental technologies cannot be used for this purpose due to the unique
character of natural systems. Acid rain is a serious cause of forest damage,
especially coniferous forests. As a rule, forests grow in regions that have
sufficiently high rainfall and, hence, can get large doses of harmful elements when
rainfall turns acid damaging leaves and pine needles and changing the soil
composition. At pH2 ½2; 2:6	 vegetation productivity drops drastically and at
pH� 2 young shoots wither. On the whole, at pH2 ½0:5	 there is a danger of acid
rain and changes to the parameters involved in soil–plant formation. The degree
of danger depends on the climatic zone and the type of soil–plant formation. At
pH
 5:6, precipitation is not a threat to the environment.

The soils of most forests have pH2 ½3:2; 5:5	. The stability of ion exchange
processes in the soil is the reason for this interval. It is this stability that preserves
the living conditions for the root systems of trees. An excess of cations Hþ in the
soil affects the leaching of nutrients while the conversion of insoluble aluminum
compounds to soluble ones leads to ion-forming centers being substituted and, as
a consequence, external conditions for the root system get seriously compromised.

For global assessment of the role acid rain plays in the environment, a
database is needed that can characterize regional pH levels and give the structure
of pH-forming processes. Partial databases have been formed in many developed
countries, but they are not up to the task of parameterizing the global pattern of
acid rain formation. As shown by Safai et al. (2004), such data have been collected
for India. Using observational data of the rain composition in India for the period
1984–2002, Safai et al. (2004) found the content of SO4 and NO3 in rain water in
the rainy season steadily growing over many regions of India, but the pH level
remaining within the alkalinity range. Such data and knowledge of trans-boundary
fluxes of sulfur make it possible to calculate pH levels with due regard to the
growth of industrial production and development of transport. Another example
of database accumulation for acid rain control is an analysis of trends in changes
of SO2 and SO2�

4 concentrations in the atmosphere over urban territories of the
western and mid-Western regions of the U.S.A. for the period 1990–1999. The
important thing here is assessment of the spatial variability of these concentrations
(30–42%), which makes it possible to more reliably calculate the parameters of the
respective equations in the biogeochemical units of models of atmospheric aerosol
transport.

The model of the global sulfur cycle (MGSC) proposed here is a unit of the
GSM whose inputs and outputs are compatible with other units of the global
model. In contrast to hydrogen, sulfur compounds cannot be attributed to long-
lived elements of the biosphere. Therefore, the spatial digitization of the sulfur
unit’s natural and anthropogenic reservoirs should be planned to reflect the local
distributions of sulfur in the vicinity of its sources in such a way as to enable
estimation of the intensities of inter-regional fluxes of sulfur compounds. The
version of the sulfur unit proposed here, in contrast to known hydrodynamic
models of long-distance transport, takes into account the fluxes of sulfur com-
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pounds between the hydrosphere, atmosphere, soil, and biota. The model does not
consider vertical stratification of the atmosphere. The characteristics of sulfur
fluxes over land and oceans averaged vertically are calculated. The spatial digitiza-
tion of the biosphere and the World Ocean corresponds to a criterion inherent in
the GSM. A block scheme of the model of the biogeochemical cycle of sulfur is
shown in Figure 2.7, and a description of the fluxes of sulfur compounds is given
in Table 2.3. This scheme can be applied to every cell Oi j of the Earth’s surface
and every compartment Oi j k of the World Ocean. The interaction between cells
and compartments is organized through the climate unit of the GSM. Therefore,
the equations of the sulfur unit lack terms reflecting the dynamic pattern of the
spatial transformation of sulfur reservoirs. With due regard to notations assumed
in Figure 2.7 and in Table 2.3, the equations describing the balance relationships
between the reservoirs of sulfur compounds are written in the form of ordinary
differential equations (Krapivin and Kondratyev, 2002).

2.6 Computer simulation of acid rain 113]Sec. 2.6

Figure 2.7. The scheme of sulfur fluxes in the environment considered in the MGSC. Notation

is given in Table 2.3.
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Table 2.3. Characteristics of land and hydrospheric fluxes of sulfur shown in Figure 2.7.

Assessments of fluxes (mgm�3 day�1) obtained by averaging over the respective territories.

Sulfur flux Land Hydrosphere

Identifier Estimate Identifier Estimate

Volcanic eruptions

H2S C1 0.018 H3 0.0068

SO2 C5 0.036 H5 0.0073

SO2�
4 C20 0.035 H9 0.0074

Anthropogenic emissions

H2S C2 0.072 H1 0.00076

SO2 C6 0.92 H6 0.038

SO2�
4 C10 0.47

Oxidation of H2S to SO2 C4 1.13 H2 0.3

Oxidation of SO2 to SO2�
4 C9 1.35 H8 0.16

Dry sedimentation of SO2�
4 C12 0.37 H11 0.11

Fallout of SO2�
4 with rain C11 1.26 H10 0.38

Biological decomposition and emission C3 1.03 H4 0.31

of H2S into the atmosphere

Assimilation of SO2�
4 by biota C15 0.41 H13 1.09

Biological decomposition and C16 1.13 H17 (H23) 0.43 (0.12)

formation of SO2�
4

Sedimentation and deposits C18 0.22 H15 (H25) 0.98 (0.036)

C19 0.11 H16 (H19) 0.55 (0.0076)

Wind-driven return to the atmosphere C13 0.25 H12 0.33

Replenishing sulfur supplies due to C17 0.86 H14 1.1

dead biomass

Assimilation of atmospheric SO2 C7 0.46 H7 0.18

Washing out SO2 from the atmosphere C8 0.27 H24 0.061

River runoff of SO2�
4 to the ocean C14 1.17

Transformation of gas-phase H2SO4 C21 0.018 H26 0.0076

to H2S

Assimilation of the washed-out part of C22 0.036 H27 0.015

atmospheric SO2 by biota

Oxidation of H2S to SO2 in water H18 (H22) 0.045 (0.19)

medium

Advection of SO2 H20 0.38

Advection of H2S H21 0.37



The parameterization accuracy of the GSM sulfur unit, like all units of
biogeochemical cycles, is similar to that of other GSM units, and therefore there
is no deregulation of the global model, and the stability of results of simulation
experiments is ensured. To check this stability, we have undertaken some numer-
ical experiments, taking the parameters of the sulfur unit from Kondratyev et al.
(2006) and assuming D’ ¼ 4�, D� ¼ 5�, Dz1 ¼ 10m, Dz2 ¼ 100m. As follows from
Figure 2.8, any enhancement of sulfur supplies affects the system’s dynamics
during the first 2 years, whereas a decrease delays the system’s return to a
stationary regime for 5 years.

The curves in Figure 2.9 characterize acid rain’s dependence on the level of
anthropogenic activity. Calculations have shown that the pH value of precipitation
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Figure 2.8. Dependence of the dynamics of sulfur concentrations QðtÞ=Qðt0Þ, normalized to

initial conditions, averaged over O on initial conditions: 1—initial conditions correspond to

standard data; 2—reduced by 50%; 3—increased by 50%; 4—reduced by 70%; 5—increased by

70%.



stabilizes, on average, within 30 days from the moment at which anthropogenic
emissions of sulfur change. The spatial distribution of the pH of rain with an even
increase in fluxes of C2, C6, C10, H1, and H6 by 0.2% yr�1 does not markedly
change for 3 years. The ratio of acid rain rates between latitudinal bands
70�–90�N and 70�–90�S remains, on average, at a level of 2.5.

Let us now estimate the contribution of various regions to Arctic pollution.
With the stable state of the mean annual concentration of gas-phase H2SO4 in the
Arctic atmosphere assumed to be 100%, the contributions of countries or terri-
tories to the formation of this level are as follows: the U.S.A. 17%, Canada 21%,
Europe 37%, and the eastern territory of Russia 25%. These estimates correlate
with anthropogenic sulfur fluxes as a result of anthropogenic activity as deter-
mined by the relationship of all parameters of the global sulfur cycle. As seen
from Figure 2.10, the intensity of biological decomposition in water is distributed
non-uniformly, and this means that hydrocarbon production in the oceans is a
function of the vertical structure of their ecosystems. For instance, in the Indian
Ocean there are two distinct maxima of H2S production. A weak second
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Figure 2.9. Dependence of the average acidity of rain on anthropogenic sulfur fluxes. Change in

anthropogenic activity is assumed to be homogeneous in all territories. The curves are labeled

with the time that has elapsed since the beginning of the experiment. pH is calculated with the

formula pH ¼ lgHþ.



maximum of hydrocarbon production appears at depths of �1.5 km in the
Atlantic Ocean. In other oceans, there is a single maximum of the vertical
distribution of H2S.

Numerical modeling as outlined above shows that reliable assessment of the
spatial distributions of pH levels depends on many factors including the accuracy
of parameters in equations of the MGSC unit and the form in which the GSM is
referenced. To increase the reliability of acid rain forecast, it is necessary to
further improve the MGSC unit by including the biogeochemical cycles of other
chemicals, such as carbon bisulfide and sulfurous anhydride. By restricting consid-
eration to sulfur dioxide, sulfates, and hydrocarbons in the models of the global
sulfur cycle limits the accuracy of these models. Unfortunately, most international
and national programs studying the sulfur cycle are confined to these elements.
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Figure 2.10. Average production of H2S (mgm�3 day�1) in the oceans: 1, Arctic Ocean;

2, Pacific Ocean; 3, Indian Ocean; 4, Atlantic Ocean.


