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Some Numerical Approaches for Weakly
Random Homogenization

Claude Le Bris

Abstract We overview a series of recent works addressing homogenization prob-
lems for some materials seen as small random perturbations of periodic materials
(in a sense made precise in the body of the text). These recent works are joint
works with several collaborators: Blanc (Paris 6), Lions (College de France), Legoll,
Anantharaman, Costaouec (Ecole Nationale des Ponts et Chaussées and INRIA).
The theory, developed in [C. R. Acad. Sci. Série 1, 343, 717-724 (2006), Journal
de Mathématiques Pures et Appliquées, 88, 34—63 (2007)], is only outlined. Next
a collection of numerical appropriate approaches introduced in [Note aux Comptes
Rendus de I’Académie des Sciences (2009), These de 1’ Université Paris Est, C.
R. Acad. Sci. Série I, 348, 99-103 (2010)] is presented. The theoretical considera-
tions and the numerical tests provided here show that for the materials with only a
small amount of randomness that are considered, a dedicated approach is far more
efficient than a direct, stochastic approach.

1 Introduction

Multiscale approaches are increasingly popular in computational materials science.
Although much effort has been devoted lately to the development of appropriate,
computationally efficient approaches, there is still room for improvement, given the
enormous variety of the field.

The motivation for the works summarized in the present review is contained in
the following four-fold observation:

1. A new feature that becomes ubiquitous in computational materials science is
randomness. Most of the simulations performed in the past decades, including
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the most recent development along the multiscale paradigm, consider idealized
materials. Such materials are flawless, and most of the time perfectly periodic. In
sharp contrast, real materials have defects, and have several characteristic length-
scales that differ from one another by orders of magnitude. Their qualitative and
quantitative response to environment might therefore differ a lot from the ide-
alized scenario. Think for instance of solid materials consisting of grains, each
grain being a particular assembly of monocrystals, each of them in turn possibly
separated by interfaces and possibly embedding dislocations.

2. Multiscale simulations, already computationally expensive per se may admittedly
become prohibitively expensive in the presence of randomness. A good exam-
ple (the topic of the present review article) is random homogenization, which
is infinitely more expensive than periodic homogenization (basically because it
requires solving corrector problems posed on the entire space, see (2) and (14)
below). Alternative approaches are thus interesting.

3. The very definition of a random material is still mostly vague. Given a micro-
scopic picture of a material, it is indeed unclear to decide whether the microstruc-
tures are periodically repeated, whether some type of stationary ergodic character
is encoded in the microstructures, or whether a much more general type of mod-
eling should be adopted. Defining the geometric assumption that will allow to
efficiently simulate the material computationally is a challenge in its own rights.

4. In many practical situations, the random material under consideration is not far
from being a periodic material. At zero order of approximation, the material can
be considered periodic, and it is only at a higher order that randomness plays
arole. A good example is provided by materials that are industrially produced,
where the defect of periodicity typically owes to failures in the synthesis pro-
cess. See Fig. 1. Despite its smallness, the microscopic amount of randomness
might affect the macroscale at order one, and it is indeed the interesting issue to
quantitatively model this effect.

Considering the above, our purpose here is to outline a modeling strategy that
accounts for the presence of randomness in a multiscale computation, but specifi-
cally addresses the case when the amount of randomness present in the system is
small, in a sense to be made precise below. The weakly random material is thus
considered as a small perturbation of a periodic material. Based on this interpreta-
tion, an efficient numerical strategy is then devised. It only aims at computing an
approximation of the response of the material, given that the randomness is weak.
But, as shown in the sequel, the strategy is computationally much less expensive
than a direct stochastic approach.

The context in which we develop our approach is homogenization theory, and
more precisely homogenization of simple, second order elliptic equations in diver-
gence form with highly oscillatory coefficients. This particular case is to be thought
of as a prototypical case. Although we have not developed our theory and compu-
tations for other, more general equations and settings, we are convinced that the
same line of approach (namely small amount of randomness as compared to a ref-
erence periodic setting, plus expansion in the randomness amplitude, and simplified
computations) can be useful in many contexts.
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Fig. 1 Composite material (extracted from [18], reproduced with permission of the author): it is
evident from the picture (a two-dimensional cut of a three-dimensional material) that the cross
section of the fibers of the materials are not arranged periodically. On the other hand, it would
not be fair to say that the material is entirely disordered. Some types of ordering, at different
lengthscales, can be identified on the picture

The article is articulated as follows. Section 2 recalls some basics of the theory of
periodic and stochastic homogenization, and introduces some elements on a variant
recently studied by the author and collaborators. Section 3 first presents the bottom
line of the approach: Taylor expanding the corrector and the homogenized matrix
with respect to the small parameter measuring the amount of randomness in the sys-
tem. The approach is then applied, under two different variants, to some academic
cases which we hope to be representative of generic practical situations. The article
concludes with Sect. 4 briefly discussing related problems and techniques.

2 Some Elements of Homogenization Theory

2.1 Periodic Homogenization

To begin with, we recall some basic ingredients of elliptic homogenization theory
in the periodic setting. We refer e.g., to the monographs [4, 8, 12] for more details
on homogenization theory.

We consider, in a regular domain & in ]Rd, the problem

—div [Aper (%) Vus] =f in 9,
u* =0 on 09,

ey

where the matrix A ., is symmetric and 7.4 -periodic. We manipulate for simplicity
symmetric matrices, but the discussion carries over to non symmetric matrices up to
slight modifications.
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The corrector problem associated to (1) reads, for p fixed in R4,

—div(A per Vwp)) = 0,
{ V(Aper(¥)(p + Vwp)) @

w is Z4-periodic.

It has a unique solution up to the addition of a constant. Then, the homogenized
coefficients read

Ay = /Q (e + Ve, DT Aper (1) (e + T, (1)dy

- [Q (ef + Ve () Aper (e dy, 3)

where Q is the unit cube. The main result of periodic homogenization theory is that,
as € goes to zero, the solution u° to (1) converges to u* solution to

4)
u* =0 on 09.

{ —div[4«Vu*]= f in 2,
The convergence holds in L2(2), and weakly in H} (Z). The correctors w,; (for e;
the canonical vectors of R¢) may then also be used to “correct” u* in order to iden-
tify the behavior of u® in the strong topology H, (Z). Several other convergences on
various products involving A pe, (f) and u® also hold. All this is well documented.

The practical interest of the approach is evident. No small scale ¢ is present in the
homogenized problem (4). At the price of only computing d periodic problems (2)
(as many problems as dimensions in the ambient space, take indeed p the vectors of
the canonical basis of R¥), the solution to problem (1) can be efficiently approached
for & small. A direct attack of problem (1) would require taking a meshsize smaller
than ¢. The difficulty has been circumvented. Of course, many improvements and
alternatives exist in the literature.

The proof of the above result can be performed in several ways. One approach is
the energy method by Murat and Tartar (see [14, 17]). Another possible approach
is to use the notion of fwo-scale convergence introduced by G. Nguetseng and
developed by G. Allaire (see [1, 15]).

2.2 Classical Random Homogenization

The present section introduces the classical stationary ergodic setting. We choose to
present the theory in a discrete stationary setting, which is more appropriate for our
specific purpose in the next sections. Random homogenization is more often pre-
sented in the continuous stationary setting. Although the two settings are different
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(neither of them being an extension of the other), the modifications needed to pass
from one setting to the other are tiny, and summarized in Remark 1 below.

Throughout this article, (§2, .%#, P) denotes a probability space. For any random
variable X € L'(£2,dP), we denote by E(X) = f_Q X(w)dP(w) its expectation
value. We fix d € N*, and assume that the group (Z¢, +) acts on £2. We denote by
(tk)reza this action, and assume that it preserves the measure PP, i.e.,

VkeZ¢, VYAeZ, P(A) =P(A). (5)
We assume that 7 is ergodic, that is,

VA e 7, (Vk ez, A= A) = (P(4)=0 or 1). (6)

In addition, we define the following notion of stationarity: any F € LL (R4, L'(£2))
is said to be stationary if

Vk € Zd, F(x + k,w) = F(x, 1y w) almost everywhere in x, almost surely.
(7
In this setting, the ergodic theorem [13, 16] can be stated as follows:
Theorem 1 (Ergodic theorem, [13,16]). Ler F € L®(R?, L'(£2)) be a stationary
random variable in the sense of (7). Fork = (k1. ka,...kg) € R?, we set |k|oo =

sup |k;|. Then
1<i<d
1
m Z F(x, pw) Nj)oo E(F(x,-)) in L°°(]Rd), almost surely.
lkloo<N
(8)
This implies that (denoting by Q the unit cube in R?)
F (f a)) R ]E([ F(x,)dx) in L®(R?), almost surely. 9)
& e—>0 19)

It is useful to intuitively define stationarity and ergodicity in terms of material
modeling. Pick two points x and y # x at the microscale in the material. The par-
ticular local environment seen from x (that is, the microstructure present at x) is
generically different from what is seen from y (that is, the microstructure present
at y). However, the average local environment in x is identical to that in y (consider-
ing the various realizations of the random material). In mathematical terms, the law
of microstructures is the same at all points. This is stationarity. On the other hand,
ergodicity means that considering all the points in the material amounts to fixing
a point x in this material and considering all the possible microstructures present
there.

Remark 1. Alternatively to the above discrete setting, it is possible to define a con-
tinuous ergodic setting, the reader might be more familiar with. We fix d € N*,
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and assume that the group (R¢, +) acts on £2. We denote by (zx) rera this action.
We assume that it preserves the measure [P, that it is ergodic, both properties being
expressed using a straightforward adaptation of (5) and (6) respectively. The notion
of stationarity is defined by F(x + y,w) = F(x,tyw), for all y € R, almost
everywhere in x € R and almost surely. To understand the difference between the
discrete and the continuous settings, note for instance that a 74 -periodic function F
is a particular case of (7), when F' is assumed to be deterministic. In contrast, it is
an example of the continuous setting for a genuinely random function F, §2 being
the d dimensional torus and 7,y = x + y.

In the continuous setting, the ergodic theorem [ 13, 16] holds. The conclusions (8)
and (9) are respectively replaced by:

1
— F(x,tyw)dy — E(F(x,:)) =E(F) in L°°(]Rd), almost surely,
|BR| Bgr R—o0
(10)
and
F (f a)) ) (F) in L%®(R%), almost surely. (11
& e—>0
O

We now fix Z an open, smooth and bounded subset of RY and A a square matrix
of size d, which is assumed stationary in the sense defined above, and which is
assumed to enjoy the classical assumptions of uniform ellipticity and boundedness.
Then we consider the boundary value problem

—div (A4 (£, w) Vuf) = in 9,
g iv(4(%,0)Vuf) = f in a2

u®* =0 on 09.

Standard results of stochastic homogenization [4, 12] apply and allow to find the
homogenized problem for problem (12). These results generalize the periodic results
recalled in Sect.2.1. The solution u® to (12) converges to the solution to (4) where
the homogenized matrix is now defined as:

(A =E ( [Q (er + Ve, (0. DT Ay e, dy) , (13)

where for any p € R4, w p 1s the solution (unique up to the addition of a (random)
constant) in {w € L2 (R4, L2(R2)), Vw € L? (R%, L2(£2))} to

loc unif

—div[A(y, w)(p + Vwp(y,w))] =0, as.on R4

Vw,, is stationary in the sense of (7),

E ([Q Vwp(y,+) dy) =0.

(14)
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e Tor the uniform L? space, that is the space
of functions for which, say, the L? norm on a ball of unit size is bounded above
independently from the center of the ball.

A striking difference between the stochastic setting and the periodic setting can
be observed comparing (2) and (14). In the periodic case, the corrector problem
is posed on a bounded domain (namely, the periodic cell Q), since the corrector
wp is periodic. In sharp contrast, the corrector problem (14) of the random case
is posed on the whole space R?, and cannot be reduced to a problem posed on a

We have used above the notation L2

bounded domain. The reason is, condition E (fQ Vw,(y,+) dy) = 0in (14) is

a global condition. It indeed equivalently reads, because of the ergodic Theorem,
a.s. — limp_, 4 IBlm ‘fBR Vwp(y,-)dy = 0 for any sequence of balls Bg of
radii R. The fact that the random corrector problem is posed on the entire space
has far reaching consequences for numerical practice. Truncations of problem (14)
have to be considered, and the actual homogenized coefficients are only correct in
the asymptotic regime. The present series of works is somehow motivated by the
above observation, as already pointed out in the introduction.

Remark 2. In fact, the situation considered here is simple: it is the linear elliptic
case. It is well known that, even in the periodic setting, the difficulties we mention
for the random setting already arise in the periodic setting when the operator is,
for instance, nonlinear. Then determining the periodic homogenized problem can-
not always be reduced to a simple computation on one single periodic cell of the
problem.

2.3 A Variant

A specific stochastic setting has been introduced and studied in [5, 7]. It is not a
particular case of the classical stationary settings defined above. As briefly men-
tioned in the introduction, it is motivated by the consideration of random geometries
(we mean, materials) that have some relation to the periodic setting. Here, the peri-
odic setting is taken as a reference configuration, somewhat similarly to the classical
mathematical formalization of continuum mechanics where a reference configura-
tion is used to define the state of the material under study. Another related idea, in
a completely different context, is the consideration of a reference element for finite
element computations. In all cases, the real situation is seen via a mapping from the
reference configuration to the actual configuration.
We fix some Z¢-periodic, square matrix A per Of size d, assumed to satisfy

dy > 0/V¢é e R, ETAper(y)é > y|£€|?, almost everywhere in y € R?, (15)
Vi,je{l,2,....d}, [Aperlij € L®°(R?). (16)
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We consider the following problem:

—div (Aper (@71 (£,0)) Vuf) = f in 2,

u®*=0 on 092,

A7)

where the function @(-, w) is assumed to be a diffeomorphism from R¢ to R¢ for
P-almost every w. The diffeomorphism is assumed to additionally satisfy

EssInf [det(V@(x,w))] =v >0, (18)
weR, xeRd

EssSup (|V@(x,w)|) = M < oo, (19)
wes2, xeRd
V&(x,w) is stationary in the sense of (7). (20)

Such a @ is called a random stationary diffeomorphism.
The following result is proved in [5, 7]:

Theorem 2. Let 7 be a bounded smooth open subset of R?, and let f € H='(2).
Let Aper be a square matrix which is Zd-periodic and satisfies (15) and (16). Let
@ be a random stationary diffeomorphism satisfying hypotheses (18-20). Then the
solution u®(x, w) to (17) satisfies the following properties:

1. u®(x,w) converges to some ug(x) strongly in L*>(2) and weakly in H'(2),
almost surely;
2. the function uy is the solution to the homogenized problem:

{—diV(A*Vuo) =f in 9,
(21)

=0 on 09.

In (21), the homogenized matrix A is defined by:

[A4]i; = det (]E (/Q V(s -)dz))_l

x E (/ (ei + Vwe, (3, '))TAper(cp_l(y, e dJ’), (22)
@(0,)

where forany p € R¢, wp is the solution (unique up to the addition of a (random)
constant) in {w € L2 (R?, L2(2)), Vw € L2 (R, L2(2))} to

loc unif

—div [Aper (@7 (3. 0))(p + Vwp)] =0,

wp(y,0) = wp(® N (y,w),w), Vi, isstationary in the sense of (7),

. ([p(g,o Vel ')dy) =0

(23)
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3 Numerical Approaches for an Approximation at First Order

3.1 Small Perturbations of the Periodic Setting

It has been shown in [7] that, when @ in (17) is a perturbation of the Identity map
P(x,w) =x +n¥(x,0) + O(nz), (24)

the solution to the corrector problem (23) may be developed in powers of the small
parameter 7). It reads W (x, w) = w% (x) 4+ nw}, (x, @) + O(?), where w'), solves

—div[Aper (p + ng)] =0, wg is Q-periodic, (25)
and where w}, solves

~div [Aper VWh] = div [~ A e, VEVW, — (VT — (div ¥)1d) A e, (p + VW),

Vw,, is stationary and E (/ VW;) =0.
0

(26)
The problem (26) in W}J is random in nature, but it is in fact easy to see, taking the

expectation, that W;, = E(W},) is Q-periodic and solves the deterministic problem
—div [Aper VW;]

= div [~ A pe, E(VE) Vi) — (E(V¥T) — E(div ¥)Id) Aper (p + VW)
(27)

This is useful because, on the other hand, the knowledge of wop and W;, suffices
to obtain a first order expansion (in 1) of the homogenized matrix. Define A?j =
fQ(e,- + ngl_)TAper ej and

Al = —/QE(div w) AY; +/Q(e,- + Vwo ) Aper € E(div )
+/Q(vw;i —E(VW)ngi)TAperej,

we then have
Ay = A + nA' + 0(n?). (28)
As subsequently shown in [10], a similar approach can be applied to the corrector

problems once discretized by a finite element approach. Given a mesh %(Q) of

O of size h, reproduced by periodicity on Qn = [0, N]¢, we define the discrete
variational formulation
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Find W2 (-, w) € VI¥(Qn) suchthat, forall v, € V" (Qn).

/ det(VO) (Vi)' (VO) T Aper (p + (VO ' Vit N (L)) =0 (29)
on

almost surely,

where V,f “(Qn) is the set of Q y-periodic functions that have their restriction to
Oy in a typical finite element space built from the mesh ‘7hN (obtained by peri-
odization). Note that the problem is formulated in terms of W, (rather than w,)
because the gradient of W, is stationary. The matrix

[A*h’N]ij (@)
1 B —1y~h,N\T
=det| —— Vo —_— det(V@)(éi + (Vo) VWef ) Aperej
|QN| [N |QN| onN !

(30)

is then considered. Using the same expansion (24) as in the above “continuous” case,
a formal expansion W};’N = wop’h’N + nw},’h’N + O(n?) of the discrete corrector is
performed and inserted in (29). The function wg’h’N is then shown to be indepen-

dent of N (it is henceforth denoted wop’h), while wop’h and w},’h’N are respectively

solutions to
Find w" € VI (Q) such that, for all v, € V*(Q),

/Q (Vo) Aper (p + Vi) =0, 3D

and

Find w},’h’N(-, w) € V}fer(QN) such that, for all vj, € V}fer(QN), and almost surely,

/Q Vo) T Aper VwihN
N

= fo,, (W7 [A per VYW L (VO T — (divi)Id) A pe, (p + Vw?;”)] .
(32)

Equations (31) and (32) are of course discretized formulations of (25) and (26),
respectively. Similarly to what has been proven in the continuous setting in [7] (and
briefly recalled above), it is possible to show that there exists a constant C (i, N, w)
such that, for n sufficiently small,

<|On|"2C(h, N, w),

-2 ~h,N 0,h 1,h,N
VN (., — Vo — gL AN
0 |V o) - Vgt vt |
(33)

and
2 AN (@) — A% — AN ()| < C(h, N, w), (34)
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where A,V is defined by (30), (4%");; = / (i + VwoM) T Aper e and
0

1 1
(AN = Ay —— [ dive+ —— [ (e + VW) Aperesdivw
|ON| on |ON| ON
1 h,N mT
N

. . . . . . —1,h,N __
Again as in the continuous setting, knowing only the expectation w, =

]E(w},’h’N) which solves, for all v;, € V,fer(QN),

/ (Vo))" Aper VN = / (Vi) [Aper E(VW) VWS* + (E(VE)T
on on
— E(div ¥)Id) A per (p + VW) (35)

is sufficient to determine the first order correction to the homogenized matrix. A

simple argument shows that W};h’N is independent from N (it is henceforth denoted

by W};h), Q-periodic, and solution to (35) with N = 1, which is a converging
discretization of (27) when / vanishes. The matrix A" = E(A"*) is similarly
independent of N, and can be computed only using VW};h.

The question arises to know how large the (random) constant C(k, N, ®) in (34)
is. Too large a constant would indeed mean that the first order expansion in 7,
although appealing theoretically, is useless practically to get an accurate approxi-
mation of the homogenized matrix. This is the purpose of [10] to examine this issue
in a simple testcase, representative of some generality.

We work in dimension 2, with coordinates x = (x1,x3), and consider two
families (X )xez and (Yx)rez of scalar, identically distributed, independent ran-
dom variables. Their common law is the uniform law % ([a,b]) on the range
[a, b]. We choose the diffeomorphism @(x) = x + n¥(x,w), with ¥(x,w) =
(Yx(x1,w), ¥y (x2,w)), where Yy is defined by

k-1 x|
Ux (x1.o) = Y perra() | Y Xg(@) + 2X; () / sin?(2wt) dt |,
keZ q=0 k
and vy is defined similarly. The periodic matrix A, is defined by
Vx € Q» Aper(x) = aper(x)IdZ, aper(xl s X2) = /3+(a_:3) Sinz(”xl) Sinz(nx2)~
The idea is to consider a Z?-periodic material, where thermal conductivity (mod-
eled by the matrix Ape, o @~ 1) smoothly varies from o to B < «. Conductivity

is maximum at the center of the cell O, and minimum on its boundary. Note that
the map ¥y is not stationary, but its gradient is. This is a prototypical example of
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n (4x"N) ) (")),
0.1 3.073 £ 0.00928 | —4.233 £ 0.216
0.01 | 2.839 £0.00111 | —5.009 £ 0.254
0.001 | 2.812 £ 0.000113 | —5.104 £ 0.259
0.0001| 2.809 & 0.0000113 | —5.114 £ 0.259

Fig. 2 Left: value of A, © @~ !(x, w) for a particular random realization on the domain Q y—s
(n = 0.05). This intuitively models a periodic structure (disks centered on a periodic lattice)

slightly perturbed by a random diffeomorphism close to Identity. Right: values of (AZ‘N)H and
(€N, in function of 5. All data are extracted from [10]

the setting developed in [7], which is not covered by classical stochastic homoge-
nization theory since Aper o @~! is not stationary. As shown by Fig. 2 (left) where
Aper 0@~ 1(x, w) is displayed for a particular realization of the randomness, this is
however a quite intuitive setting which deserves specific attention. The specific val-
ues chosen for the parameters are: ¢ = —2.25,b = 575, ¢ = 10,and 8 = 1,
h =1/3, N =20. The number of realizations is 10. The numerical results are
obtained using the finite element software FreeFem++. They are displayed on the
table of Fig. 2 (right). The left column shows the result obtained for the (1, 1) entry
of the homogenized matrix, with the interval of confidency. The right column gives
the value of the error estimator

eh,N(a)) = n_Z(A*h’N(a)) _ AO,h _ T]Al’h’N(CL))),

again for the (1, 1) entry. The values found for other entries of the homogenized
matrix lead to similar conclusions. Note that, for the purpose of analysis and with a
view to reducing variance (see the details in [10]), we have used the random value
A% 4 nAV2N (w) in the right hand side of the estimator. In practice, A%# + nA'"
would be used, instead of A% 4+ nA'"N (w), as an approximation for AN

The conclusion is that the constant C(h, N, w) is small (say of the order of 5
in this particular case) and that the first order approximation A%# + A" of the
homogenized matrix AN s thus a practically accurate numerical approach (pro-
vided the first order precision is judged satisfactory for the application considered).
In terms of computational efficiency, the gain is enormous. Solving the couple of
periodic problems (31) and (35) to respectively get wg’h and W;’h
expensive than solving the original stochastic corrector problem (29).

is much less
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3.2 Rare but Possibly Large Perturbations

We now consider a slightly different perturbative approach. It could be presented in
the setting of random diffeormophisms introduced in Sect. 2.3 above, but for clarity
we present it in the more classical setting of Sect. 2.2.

As above, we consider our random material as a small perturbation of a periodic
material. The matrix that models its response is thus expanded as

A,,(x,a)) = Aper(x) + bn(wi)cper(x)v (36)

where, with evident notation, A ., is a periodic matrix modeling the unperturbed
material, and where C),. is a periodic matrix modeling the perturbation. The ampli-
tude of the perturbation, which used to be modeled by a deterministic coefficient 7
in the previous section, is now a scalar random field by (x, w). We assume that this
field satisfies

6yl L= (0;LP(2)) n_:>9 (37)

for some 1 < p < oo. For well-posedness of the problem, we also assume there
exists 0 < & < B such that for almost all x € R4 and for almost all w € $2,

VECRY, V>0, alfl’ < Ay(x.0)E-§ and |Ay(x,0)E| < BlE].

Condition (37) states that the perturbation in (36) is small on average. However,
it does not prevent the perturbation to be large, once in a while, because we only
have p < oo (Note that the setting of the previous section corresponds to a situation
where p = 00). Whereas the idea underlying the setting of the previous section was
perturb the periodic material possibly often but only slightly, the intuitive image
behind the present setting is perturb the periodic material only rarely, but then
possibly largely. The comparison of Fig. 2 (left) and Fig. 3 is self explanatory.

When the exponent p in (37) is strictly larger than one, a theory similar to that of
the previous section can be developed. Assuming that my, := |6, || Leo(0:L7 (2))—0
as 71 vanishes, it may be proved, up to the extraction of a subsequence, that the
homogenized tensor A x admits a first order expansion in terms of the small “coef-
ficient” my. The coefficients are easily expressed using periodic corrector problems
built from the matrices A ., and Cp,,. The remainder in the expansion can indeed
be shown to be o(my) in a certain sense and under appropriate assumptions. We
refer to [2, 3] for the details. There are some cases when the expansion in fact does
not converge. We now address such a case, very different in nature.

Consider the prototypical case where b;, is uniform in each cell of 74 and writes

by(x,0) = Y 1o+ (x) By (@), (38)
kezd
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Fig. 3 A typical random realization of the Bernoulli law for the perturbed periodic material

where the B,’,‘ are independent identically distributed random variables. Their com-
mon law is assumed to be a Bernoulli law of parameter n. This setting satisfies
condition (37) for all p > 1. The difficulty with a possible expansion in “powers”
of by is intuitively that, a Bernoulli variable B, being valued in {0, 1}, is such that
B? = B for all p. So all terms in the expansion are potentially of the same order.
A different strategy is needed. We now explain an alternative, formal approach, for
which we do not know any rigorous foundation to date. Although definite conclu-
sions on the validity of the approach have yet to be obtained, the numerical tests we
performed show its practical correctness and efficiency.

Heuristically, on the cube Qn = [0, N]¢ and at order 1 in 7, the probability
to get the perfect periodic material (entirely modeled by the matrix Ap.,) is (1 —
N “~1-NH4 n+ O(n?), while the probability to obtain the unperturbed material
on all cells except one (where the material has matrix Ape; + Cper) is N d 1-

N d_lr] ~ N9y + O(»?). All other configurations, with more than two cells
perturbed, yield contributions of orders higher than or equal to n?. This gives the
intuition that the first order correction indeed comes from the difference between
the material perfectly periodic except on one cell and the perfect material itself. It is
therefore claimed in [2,3] that A, « = Aperx + NA1,+ + 0(n) where Aper « is the
homogenized matrix for the unperturbed periodic material and

Al,* e; = lim [(Aper + lQCper)(VW,I'V + ei) - Aper (VW? + ei)] s
N—+o0 onN
(39)
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where w? is the corrector for Ay, and wlN solves

—div ((Aper () + 10Cper (1)) (Vi (1) +¢)) = 0

in QOn, wf-v QN — periodic.

(40)

Note that the integral appearing in the right-hand side of (39) is not normalized: it a
priori scales as the volume N¢ of Q and has finite limit only because of cancel-
lation effects between the two terms in the integrand. This is very similar in nature
to the modeling of defects in Statistical Physics: a flawless (periodic) environment
is substracted to the actual environment and acts as a normalization.

There actually exists a formal generalization of (39) that allows for recovering the
setting of the previous cases. The approach of the present section therefore appears
to be the most general approach to the modeling of “small” random perturbations.
We again refer to [2, 3] for more details.

The approach has been tested in [3]. The matrix A ., is taken scalar. In each
periodic cell, it has constant value 1,020 in the central circular inclusion and con-
stant value 20 in the surrounding region. The matrix Cp,, has value —1,000 in the
inclusions and 0 outside. The coefficient by, is of the form (38), with B, a Bernoulli
variable with parameter 7 = 0.1. The results are shown on Fig.4 below. On the

40.0
39.5
—— periodic homogenization
§ — — stochastic homogenization
E, 39.0 —-- perturbative approach
e}
2 i
N
& 38.5
D
@]
g i
2 \
< 38.0 \
4 \ S
\ / N\
37.5 - \ /N ——
—.\/ N = T T ——T T
i vV - ——= S e It Lo =
37.0
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N

Fig. 4 Comparison of the actual random coefficient, which converges to the homogenized coef-
ficient in the limit of large cube sizes N, (curve labelled “stochastic homogenization”) with the
unperturbed periodic homogenized coefficient (curve labelled “periodic homogenization”) and
the first order expansion (curve labelled “perturbative approach”). The asymptotic limit is almost
instantaneously found by the perturbative approach
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cube Qn = [0, N]? with N increasingly large, an approximation of A, x is directly
computed. Alternatively, expression (39) is employed to calculate the first order term
Ay« of the expansion. The values A « and A per,«+nA1,« are then compared to one
another. The process is completed for several realizations of the random material.
Only a particular realization is shown on Fig. 4 but all realizations yield qualitatively
similar behaviours. It is observed that, using the perturbative approach, the large N
limit for cubes of size N is already very well approached for small values of N.
As in the previous section, the computational efficiency of the approach is clear:
solving the two periodic problems with coefficients A pe, and A pe,r + 19 Cpe, for
a limited size N is much less expensive than solving the original, random corrector
problem for a much larger size N.

4 Related Problems and Techniques

We conclude this article with some comments.

First, it is useful to mention that the variant of stochastic homogenization
described in Sect.2.3 has originally been introduced in [6, 7] for an apparently
different context, related to atomistic modeling of materials and the limit of atom-
istic models to derive models for continuum mechanics. Although the two topics
of Atomistic to Continuum limits and homogenization of partial differential equa-
tions look different at first sight, they actually share similarities, as two sides of the
general paradigm of change of scales.

Second, the set of techniques presented above is specific to the case of peri-
odic settings slightly perturbed by random perturbations. Although we believe this
allows to treat many situations, the situation where randomness is intense is still,
of course, of major interest. In that case, there seems to be no hope of simplifying
the problem. A corrector problem of the type (14) (or of the type (23) when ran-
dom diffeomorphisms are employed), posed on the entire ambient space, needs to be
solved, for each vector p of the canonical basis. And, the average giving the homog-
enized matrix needs then to be computed. As in any situation where randomness is
present, numerical practice shows that variance issues come into the picture and
complicate the already huge computational task. A companion article [11] presents
some techniques recently introduced to improve the efficiency of computations of
homogenization problems that require the solution of corrector problems posed on
the entire space.
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