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Chapter 2
Homogeneous Pinning Systems:
A Class of Exactly Solved Models

Abstract We introduce a class of statistical mechanics non-disordered models –
the homogeneous pinning models – starting with the particular case of random walk
pinning. We solve the model in the sense that we compute the precise asymptotic
behavior of the partition function of the model. In particular, we obtain a formula
for the free energy and show that the model exhibits a phase transition, in fact a
localization/delocalization transition. We focus in particular on the critical behavior,
that is on the behavior of the system close to the phase transition. The approach is
then generalized to a general class of Markov chain pinning, which is more naturally
introduced in terms of (discrete) renewal processes. We complete the chapter by
introducing the crucial notion of correlation length and by giving an overview of
the applications of pinning models. Ising models are presented at this stage because
pinning systems appear naturally as limits of two dimensional Ising models with
suitably chosen interaction potentials. In spite of the fact that these lecture notes
may be read focusing exclusively on pinning, the physical literature on disordered
systems and Ising models cannot be easily disentangled. So a full appreciation of
some physical arguments/discussions in these notes does require being acquainted
with Ising models.

2.1 What Happens if We Reward a Random Walk
When it Touches the Origin?

2.1.1 The Random Walk Pinning Model

We start rather abruptly by making more precise the question in the title and by
answering it. So let us give ourselves a random walk S = {S0,S1, . . .} with S0 = 0
and such that the increment variables {Sn − Sn−1}n∈N, that form an IID sequence,
take values −1, 0 and +1. More precisely we consider a symmetric walk and set
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6 2 Homogeneous Pinning Systems: A Class of Exactly Solved Models

P(S1 = +1) = P(S1 = −1) =: p/2 and P(S1 = 0) = q. Of course p + q = 1: we
exclude the trivial case q = 1 and the simple random walk q = 0 for its somewhat
unpleasant periodic character. For every N ∈ N we introduce the local time LN(S) =
∑N

n=1 1Sn=0 and the probability measure PN,h (h ∈ R) such that

dPN,h

dP
(S) =

1
ZN,h

exp(hLN(S)) 1SN=0 , (2.1)

where ZN,h is typically called partition function and it is just the normalization that
makes PN,h a probability. Of course

ZN,h = E [exp(hLN(S)) ; SN = 0] . (2.2)

A word about an abuse of notation that, in different forms, will be ubiquitous in
these notes: in (2.1) S is a trajectory of the random walk, rather than the sequence
of random variables. Note moreover that we have introduced PN,h as a measure
on the full trajectory and not just for the part of the trajectory that we have really
modified. This has plenty of almost irrelevant advantages that, added up, largely
overcome (in the eyes of the author, of course) the disadvantage of a rather abstract
formulation in terms of the relative density of measures. Note in fact that for every
s1,s2, . . . ,sN

PN,h (S1 = s1,S2 = s2, . . . ,SN = sN)

=
1sN=0

ZN,h
exp

(
h

N

∑
n=1

1sn=0

)
P(S1 = s1,S2 = s2, . . . ,SN = sN) , (2.3)

and we could have used the right-hand side of this expression to define the process,
at the expense of having a family of processes living on different spaces and of a
less compact notation. A last observation on notation is that 1SN=0 is used in place
of the more precise, but less expressive, 1{0}(SN).

Remark 2.1. Why constraining to SN = 0? SN = 0 is a boundary condition and a
priori it is more natural to introduce the free, or unconstrained, model

dPf
N,h

dP
(S) =

1
Zf

N,h
exp(hLN(S)) , (2.4)

but the constrained model often turns out to be more manageable. We anticipate
that, even if for most of the main results there will be little or no difference between
the two models, the interplay between them plays a role in several proofs.
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2.1.2 Visits to the Origin and the Computation
of the Partition Function

The epochs τ = {τ0,τ1, . . .} of successive visits to the origin

τ0 := 0 and τn
n∈N= { j > τn−1 : S j = 0} , (2.5)

is a natural random walk (another one! With positive increments this time)
associated to the problem, in the sense that {τn−τn−1}n∈N is an IID sequence: this is
a direct consequence of the strong Markov property and of the recurrent character of
S that guarantees that P(τ j < ∞ for every j) = 1. In a more customary terminology,
τ is a renewal process with inter-arrival law K(n) := P(τ1 = n). Two basic facts on
this inter-arrival law are

∞

∑
n=1

K(n) = 1 and lim
n→∞

n3/2K(n) =: cK > 0 , (2.6)

where the first fact is just a restatement of P(τ1 < ∞) = 1, but the second requires
a bit more work (see e.g. [22, Appendix A.6] where the value of cK is computed:√

p/2π).

Remark 2.2. We will soon encounter other renewal processes (i.e. random walks
with positive increments: Appendix A offers an introduction to these processes).
So we introduce some (more or less) standard terminology: a renewal τ with
inter-arrival law K(·) will be called K(·)-renewal. If ∑n K(n) = 1 then a.s. |{ j :
τ j < ∞}| = ∞ and the renewal is said persistent. It is positive persistent if also
E[τ1] = ∑n nK(n) < ∞. If instead ∑n K(n) < 1, K(·) can be extended to a probability
distribution by setting K(∞) := 1−∑n∈N K(n) and each realization of τ , still defined
as the sequence of partial sums of the IID sequence of variables with distribution
K(·) on N∪{∞}, contains only a finite number of finite numbers (points, epochs,....).
In this case we say that the renewal is terminating: after a finite number of bounded
jumps, the process jumps to infinity and stays there (in a sense, it leaves the space
once for all). In general, it is very practical to look at τ as a subset of N, rather
than a sequence (in the terminating case we neglect the repeated ∞ and a typical
realization of τ is therefore just a finite subset of N, while in the persistent case it
is an infinite subset). This convention leads to particularly compact notations: for
example n ∈ τ means that there exists j ∈ N∪{0} such that τ j = n. It is customary
to call n �→ P(n ∈ τ) renewal function.

By repeated use of the total probability formula we obtain

ZN,h =
N

∑
n=1

E [exp(hLN(S)) ; SN = 0, LN(S) = n]

=
N

∑
n=1

exp(hn)P(SN = 0, LN(S) = n)
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=
N

∑
n=1

exp(hn) ∑
�∈Nn: |�|=N

P(τ1 = �1, τ2 − τ1 = �2, . . . ,τn − τn−1 = �n)

=
N

∑
n=1

exp(hn) ∑
�∈Nn: |�|=N

n

∏
j=1

K(� j) ,
(2.7)

where |�| = ∑n
i=1 �i. The net outcome is:

ZN,h =
N

∑
n=1

∑
�∈Nn: |�|=N

n

∏
j=1

exp(h)K(� j) . (2.8)

Of course ZN,0 = P(N ∈ τ), that is the partition function is just the renewal function
of τ (see Appendix A), and the right-hand side of (2.8), still for h = 0, is a more
explicit version of such a function: the point is to apply this observation also
when h �= 0. The obstacle is of course that exp(h)K(·) is no longer a probability
distribution if h �= 0: this is not really a serious problem if h < 0 since we have seen
that it suffices to work on N∪{∞}, but for h > 0 we have to do something different.
The idea is to introduce the function F : R → [0,∞) defined by

∑
n∈N

exp(−nF(h)+ h)K(n) = 1 , (2.9)

when such a solution exists, that is for h ≥ 0 (the solution is of course unique by the
monotonicity of x �→ ∑n exp(−xn)K(n) ). When we cannot solve such a problem,
that is for h < 0, we set F(h) = 0. Now, for every h we set for n ∈ N

K̃h(n) := exp(−F(h)n + h)K(n) , (2.10)

and, adding {∞} if needed, K̃h(·) is a probability distribution.

Remark 2.3. The function F(·) is called free energy and it plays a central role
in these notes. A number of properties of F(·) can be obtained with moderate
effort. First of all F(·) is real analytic except at the origin. The analyticity on the
positive semi-axis follows by the Implicit Function Theorem (e.g. [13, Chap. 3,
Proposition 2.20]), since z �→ ∑n K(n)exp(−zn) is analytic on {z ∈ C : ℜ(z) > 0}
and its derivative does not vanish on (0,∞). One verifies directly also that F(·) is
convex and that it is increasing on the positive semi-axis: by taking a derivative of
the expression in (2.9) and by using the notation τ̃(h) for the K̃h(·)-renewal, we see
that for h > 0

F′(h) =
1

∑n nK̃h(n)
=

1

Eτ̃(h)
1

> 0 , (2.11)

and that F′′(h) = F′(h)3var(τ̃(h)
1 ) > 0.
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We can therefore write

ZN,h = exp(F(h)N)
N

∑
n=1

∑
�∈Nn: |�|=N

n

∏
j=1

K̃h(� j) , (2.12)

a formula that can be made much more compact by using the K̃h(·)-renewal τ̃(h):

ZN,h = exp(F(h)N)P
(

N ∈ τ̃(h)
)

, (2.13)

and from such a formula one extracts.

Proposition 2.4. For the partition functions ZN,h and Zf
N,h defined in (2.2) and (2.4)

we have

lim
N→∞

1
N

logZN,h = lim
N→∞

1
N

logZf
N,h = F(h) . (2.14)

Moreover

ZN,h
N→∞∼ ch,K(·) exp(F(h)N)×

⎧⎪⎪⎨
⎪⎪⎩

N0 if h > 0 ,

N−1/2 if h = 0 ,

N−3/2 if h < 0 ,

(2.15)

with

ch,K(·) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
∑n n K̃h(n)

if h > 0 ,

1√
2π p

if h = 0 ,
cK exp(h)

(1−exp(h))2 if h < 0 .

(2.16)

Proof. The proof of (2.14) in the constrained case is just a matter of showing that
logP(N ∈ τ̃(h)) = o(N). But this is obvious since for h < 0 we have exp(h)K(n) ≤
P(N ∈ τ̃(h)) ≤ 1 and if h > 0 (see Fig. 2.1) by the Renewal Theorem (Theorem A.1)

N
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Fig. 2.1 The plot of the logarithm of the partition function for a homogeneous random walk based
model with p = 1/2 and q = 1/2. We have F(0.06) ≈ 3.4×10−3
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P(N ∈ τ̃(h)) tends, as N → ∞, to the positive constant 1/Eτ̃(h)
1 : note that this

establishes (2.15) for h > 0. The sharp estimate (2.15) for h = 0 is just the Local
Central Limit Theorem for S (which can be established via Stirling’s approximation
of the factorial), while the case h < 0 requires a more delicate analysis, that is
however a rather standard result in renewal theory that can be summed up by
saying that the leading asymptotic behavior of the renewal function of a terminating
renewal differs from the leading asymptotic behavior of the inter-arrival distribution
only by a multiplicative constant (see Theorem A.2).

We are left with proving (2.14) in the free case, but this is a direct consequence
of the constrained result and of the formula

Zf
N,h =

N

∑
n=0

Zf
N,h(τ ∩ [n,N] = {n}) =

N

∑
n=0

Zn,hK(N −n) , (2.17)

where we have introduced the notation Zf
N,h(A) (A an event) for E[exp(hLN(S));A]

and K(n) = ∑ j>n K( j) (n = 0,1, . . .). From (2.17), and (2.15), one can also establish
without much effort the analog of (2.15) for Zf

N,h, but this is left to the motivated
readers. ��

2.1.3 From Partition Function Estimates to Properties
of the System

Proposition 2.4 contains very detailed information on the system: let us spell it out.
First of all we have seen in Remark 2.3 that F(·) is real analytic except at the origin:
convexity assures that at least for h �= 0

F′(h) = lim
N→∞

1
N

d
dh

logZN,h = lim
N→∞

1
N

EN,h [LN(S)] . (2.18)

Monotonicity and convexity properties can also be inferred directly form the fact
that h �→ logZN,h is increasing and convex (just take derivatives). Here we are
interested in the fact that formula (2.18) is already showing that passing from h < 0
to h > 0 something very drastic is happening in the system: F′(h) is actually the
density of visits to the origin by the random walk path (the contact density) and
it passes from zero to a positive value (see Fig. 2.3, upper-right inset). This is
clearly a transition from what we may call a delocalized to a localized behavior.
The transition actually happens in a continuous way – there is no jump in the contact
density when h changes sign – and F(·) is C1 in zero, even if it is not C2: this requires
an argument that we develop now. By Riemann sum approximation we see that
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1−∑
n

K(n)exp(−xn) = ∑
n

K(n)(1− exp(−xn))

x↘0∼ cKx1/2
∫ ∞

0

1− exp(−t)
t3/2

dt = 2
√

πcKx1/2 , (2.19)

and since we already know that limh↘0 F(h) = 0 we can apply this formula to (2.9)
obtaining 2

√
πcK F(h)1/2 ∼ h, that is

F(h)
h↘0∼ 1

4πc2
K

h2 . (2.20)

Such an estimate is directly telling us that F(·) is not C2 at the origin and, together
with convexity, is telling us also that F(·) is C1. In a standard statistical mechanics
terminology this means that the system undergoes a second order phase transition,
in the sense that the non-analiticity of the free energy comes from a singularity (in
this case a jump discontinuity) in the second derivative of the free energy.

This description of the system in terms of contact density is only partially
satisfactory, for example because we already know that the unperturbed random
walk S (h = 0) has zero contact density, but we know much more, namely that the
number of contacts in a stretch N is of order

√
N (a much sharper information). Can

we get such a precise estimate also for the h �= 0 case? The answer is yes and it is
summed up in the next statement.

Proposition 2.5. If h < 0 then for every n ∈ N

lim
N→∞

PN,h(LN(S) = n) = (1− exp(h))2 nexp(h(n−1)) , (2.21)

(note that the right-hand side is the discrete density of X +Y + 1, with X and Y
independent geometric variables of parameter exp(h)) while if h > 0 we have that
for every ε > 0

lim
N→∞

PN,h

(∣∣∣∣LN(S)
N

− F′(h)
∣∣∣∣ ≥ ε

)
= 0. (2.22)

Moreover for every h, every n, every t�∈N and every t∈N
n such that 0< t1 < t2

< .. . < tn ≤ t� we have

lim
N→∞

PN,h (τ ∩ (0,t�] = {t1, . . . ,tn}) = P
(

τ̃(h)∩ (0, t�] = {t1, . . . ,tn}
)

, (2.23)

that is the sequence {PN,hτ−1}N of measures on P0 (cf. Sect. A.1.4 of Appendix A)
converges weakly to P(τ̃(h))−1.

Note that this statement includes global estimates, that is (2.21) and (2.22), and a
local one, that is (2.23). Note that (2.22) holds also for h ≤ 0, but of course for h ≤ 0
one has much sharper estimates (like (2.21) for h < 0!). These estimates are just
instances of what one can obtain once the sharp asymptotic behavior of the partition
function is known (see Fig. 2.2).
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−20
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h=−0:5

h=0:25

500 20000 15001000

Fig. 2.2 Three trajectories for h =−0.5 and N = 2,000 (the underlying walk has p = q = 1/2) and
one for h = 0.25. While the image clearly suggests that the first three trajectories are delocalized,
i.e. they keep away from 0, and have a Brownian scaling, the maximum of the other trajectory is
+6 and the minimum is −7, so the path is essentially localized at 0

Proof. The result follows from Proposition 2.4 by routine arguments. We go quickly
through them, leaving some of the details to the reader. Let us point out that, in a
sense, Proposition 2.4 is a detour and everything in the end boils down to renewal
function estimates, but developing in arguments using the partition function has
several advantages, like making connection with more general cases.

For what concerns (2.21) the result for n = 1 is immediate, since the probability
we want to compute is exp(h)K(N)/ZN,h ∼ (1 − p)2. For n = 2 instead one
observes that for any choice of a sequence of natural numbers {a(N)}N such that
1�a(N)�N we have

PN,h(LN(S) = 2) = ∑N
n=1 K(n)K(N −n)exp(2h)

ZN,h

=
∑a(N)−1

n=1 . . .+ ∑N−a(N)−1
n=a(N) . . .+ ∑N

n=N−a(N) . . .

ZN,h

= 2exp(h)(1− exp(h))2(1 + o(1)) (2.24)

+c−1
h,K(·)e

2h(1 + o(1))N3/2
N−a(N)−1

∑
n=a(N)

n−3/2(N −n)−3/2

= 2exp(h)(1− exp(h))2(1 + o(1))+ O(a(N)−1/2) ,
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which is the result we were looking for. The general case is just a straightforward
generalization which is best done by first observing that the configurations that
contain points far from both 0 and N are negligible:

PN,h (τ ∩ [L,N −L] �= /0) ≤ ∑N−L
n=L Zn,hZN−n,h

ZN,h

≤ c1
∑N−L

n=L K(n)K(N −n)
K(N)

≤ c2K(L) , (2.25)

where c1 and c2 are suitable (h and K(·) dependent) positive constants. In words, the
result is simply saying that in the limit the process comes back a finite number of
times close to 0 (each time it attempts to come back it has a probability 1− exp(h)
of not making it) and the behavior near N is just mirror symmetric (in law).

A proof of (2.22) is an immediate consequence of the fact that for h > 0 we
have F′′(h) = limN N−1varPN,h(LN(S)), but this requires some work. So we take the

cheaper path of observing that PN,h actually coincides with the law of the K̃h(·)-
renewal conditioned to visit N: for every n and every s ∈N

n such that 0 < s1 < .. . <
sn = N we have

PN,h (τ ∩ (0,N] = {s1, . . . ,sn}) =
enhK(s1)K(s2 − s1) . . .K(N − sn−1)

eNF(h) P
(
N ∈ τ̃(h)

)
=

K̃h(s1)K̃h(s2 − s1) . . . K̃h(N − sn−1)
P
(
N ∈ τ̃(h)

)
= P

(
τ̃(h)∩ (0,N] = {s1, . . . ,sn}

∣∣∣N ∈ τ̃(h)
)

.

(2.26)

But since, by the law of large numbers, τ̃(h)
j / j tends as j → ∞ to E[τ̃(h)

1 ] almost

surely, one directly obtains that N−1|τ̃(h)∩(0,N]| −→ 1/E[τ̃(h)
1 ] almost surely. Since

the event N ∈ τ̃(h) has a probability bounded away from zero, for any sequence of
events AN such that P(AN) −→ 0, we have also P(AN |N ∈ τ̃(h)) −→ 0. Therefore,

by using AN = {|N−1|τ̃(h)∩ (0,N]|−1/E[τ̃(h)
1 ]| > ε}, we get (2.22).

For what concerns (2.23) consider first the case tn = t� and write much like for
(2.26) (with t0 := 0 and assuming N larger than t�)

PN,h (τ ∩ (0, tn] = {t1,t2, . . . ,tn}) =

exp(hn)

(
n

∏
j=1

K(t j − t j−1)

)
ZN−tn,h

ZN,h
=

n

∏
j=1

K̃h(t j − t j−1)
ZN−tn ,h exp(F(h)tn)

ZN,h

= P
(

τ̃(h)∩ (0,tn] = {t1,t2, . . . ,tn}
)⎡⎣P

(
N − tn ∈ τ̃(h)

)
P
(
N ∈ τ̃(h)

)
⎤
⎦ , (2.27)
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where we have applied the renewal property and (2.13). But the term between the
square brackets tends to 1 as N tends to infinity (because of the Renewal Theorem if
h > 0, and because, if h < 0, partition functions coincide with renewal functions to
which (2.15) applies). The case t� > tn of (2.23) can be dealt with by decomposing
the probability according to the values of the first contact site t larger than t� and by
applying (2.27), that is by writing

PN,h (τ ∩ (0, t�] = {t1, . . . ,tn}) =
N

∑
t=t�+1

PN,h (τ ∩ (0, t] = {t1, . . . ,tn, t}) . (2.28)

Actually at this stage one can for example use the argument used in (2.25) to restrict
the summation only to values of t that are either close to t� or close to N and then
apply (2.15) and (2.27). By performing the summation we recover (2.23). ��

2.2 The General Homogeneous Pinning Model

The asymptotic arguments that we have developed up to here essentially rely only on
the fact that the tail distribution of the first return to the origin of the random walk
S has a power law decay with exponent 3/2. The first generalization that comes
to mind is, possibly, considering higher dimensional random walks. These cases
can be treated precisely along the same line, in fact one can show (see e.g. [22,
Appendix A.6]) that if the increment of the random walk is a (Zd-valued) centered
random variable with finite variance σ2 (and P(S1 = 0) ∈ (0,1) to avoid periodicity
and triviality) then

K(n) n→∞∼ cd(σ2)×
{

1/
(
n(logn)2

)
if d = 2

1/n1+|(d/2)−1| if d = 1,3,4 . . .
(2.29)

with cd(σ2) > 0. Another important fact is that ∑n K(n) = 1 if d = 1 and 2, but
∑n K(n) < 1 for d = 3,4, . . . But since our model in the end depends only on the
inter-arrival law it is very natural to look at the renewal process τ as the basic
underlying process (the free process) and put conditions on it: much of the literature
has been in fact developed for K(·) regularly varying and it is possibly also natural to
look at the case is which K(·) (K(n) = ∑ j>n K( j), n = 0,1, . . .) is regularly varying.
In order to make our arguments lighter we will consider a subclass of regularly
varying inter-arrival laws supported on N, that is we will assume that there exists
α > 0 such that

K(n) n→∞∼ cK

n1+α and K(n) > 0 for n ∈ N. (2.30)

The positivity condition can be relaxed at the expense of a series of tedious remarks
that we spare to the reader (of course K(n) ∼ cK/n1+α implies K(n) > 0 for n
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sufficiently large). The choice of restricting to trivial regularly varying behavior
(pure power law) is instead more substantial, above all because it excludes from
our analysis the d = 2 case (2.29) and, more generally, the α = 0 case, in which
an interesting phenomenon does happen. But the gain in simplicity of exposition is
considerable.

Note that we have not assumed ∑n K(n) = 1: in general we set (again) K(∞) :=
1 − ∑∞

n=1 K(n) and we stress that ∑∞
n=1 . . . means ∑n∈N . . .. Let us write down

explicitly the model:

dPN,h

dP
(τ) =

1
ZN,h

exp(h |τ ∩ (0,N]|) 1N∈τ . (2.31)

As we have already stressed, τ can be terminating or persistent and the following
remark, that is going to be repeated in the most general context later, turns out to be
quite helpful.

Remark 2.6. If τ is terminating, then the model is equivalent on events that depend
on τ ∩ (0,N] to the model based on the persistent τ̃ renewal with inter-arrival law
n �→ K̃(n) := K(n)/(1 − K(∞)) and h replaced by h + log(1 − K(∞)). This can
be easily verified by writing explicitly the probability of the event τ ∩ (0,N] =
{t1, t2, . . . ,tn}, n ∈ {1, . . . ,N} and 0 < t1 < t2 < .. . < tn = N. In particular, the two
partition functions coincide (we are talking of ZN,h not of Zf

N,h!). This allows us to
restrict in most of the cases our attention to the case in which the underlying renewal
is persistent.

The generalization of Proposition 2.4 is in a sense straightforward, but it does
present some novelties both from the viewpoint of mathematical tools (in fact:
renewal theory estimates) and for the novel behaviors arising (see Fig 2.3).

Theorem 2.7. For the partition function ZN,h = E[exp(h |τ ∩ (0,N]|) ; N ∈ τ] and
the companion free partition function Zf

N,h = E[exp(h |τ ∩ (0,N]|)], both based on
the K(·)-renewal, with K(·) as in (2.30), we have that

lim
N→∞

1
N

logZN,h = lim
N→∞

1
N

logZf
N,h = F(h) , (2.32)

where F(h) – the free energy – is the unique solution of (2.9) if such a solution exists
(that is if h ≥ hc := − log(1−K(∞))) and F(h) := 0 otherwise. Moreover

ZN,h
N→∞∼ ch,K(·) exp(F(h)N)×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

N0 if h > hc ,

Nmin(α−1,0) if h = hc and α �= 1 ,

1/ logN if h = hc and α = 1 ,

N−(1+α) if h < hc ,

(2.33)

with the explicit value of the constant ch,K(·) > 0 given below.
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Fig. 2.3 Free energy (F(·), solid line) and contact fraction (F′(·), dashed line) for four values of
α . The particular models we have chosen have K(n) = αΓ (n−α)/(Γ (1−α)n!) n→∞∼ (α/Γ (1−
α))n−1−α for α ∈ (0,1) and K(n) = Γ (n−1/2)/(

√
π(n+1)!) n→∞∼ (1/

√
π)n−5/2 for the α = 3/2

case. Such peculiar choices of K(·) are made because ∑n K(n)exp(−Fn) can be made explicit
by using By using the identity ∑∞

n=0 Γ (β + n)xn/n! = Γ (β )(1 − x)−β , that holds for β ∈ R \
{0,−1,−2, . . .}: for example when α ∈ (0,1) we have ∑n K(n)exp(−Fn) = 1− (1− exp(−F))α .
In the first three cases ∑n K(n) = 1 so that hc = 0, but for α = 3/2 we have ∑n K(n) = 2/3 (nothing
sacred about 2/3, it is just an arbitrary choice!), so that hc = log(3/2) = 0.405 . . .. For the α = 1/2
we have K(n) = P(τ1 = 2n), where τ the renewal set associated to the one dimensional symmetric
simple random walk

Proof. All is of course in (2.13) [recall also (2.10)] and all we need are (sharp)
renewal function estimates. These estimates are discussed at length in Appendix A,
here we just recall the main results that can be summed up to: if K̃(·) is an inter-
arrival distribution (with K̃(∞) := 1−∑n K̃(n) ∈ (0,1)) and τ̃ the corresponding
renewal

1. If K̃(∞) = 0 and ∑n nK̃(n) < ∞ we have limN→∞ P(N ∈ τ̃) = 1/∑n nK̃(n) (this
is just the Renewal Theorem).

2. If K̃(∞) = 0 and K̃(n) ∼ cn−1−α (with c > 0 and α ∈ (0,1)) we have

P(n ∈ τ̃) n→∞∼ α sin(πα)
cπ

nα−1 . (2.34)

3. If K̃(∞) = 0 and K̃(n) ∼ c/n2 (c > 0) then

P(n ∈ τ̃) n→∞∼ 1
c logn

. (2.35)
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4. If K̃(∞) > 0 and K̃(n) ∼ cn−1−α (with c > 0 and α > 0) then

P(n ∈ τ̃) n→∞∼ K̃(n)
K̃(∞)2

. (2.36)

Very little of the sharpness of these estimates is needed to establish (2.32) (see the
proof of Proposition 2.4). Extracting (2.33) is instead a rather tedious book-keeping
exercise with K̃(·) = K̃h(·) [cf. (2.10)]: let us go through it so that we determine
ch,K(·).

If h > hc we can apply point (1) and ∑n nK̃h(n) = 1/F′(h) (use for example that
the derivative of ∑n K̃h(n) with respect to h is zero), so that ch,K(·) = F′(h).

If h < hc we have K̃h(∞) > 0 and we can apply point (4). The net result is that
ch,K(·) = exp(h)/(1− exp(h))2.

When h = hc instead notice first of all that K̃h(∞) = 0, so τ̃h is persistent
(regardless of the persistence properties of the reference renewal τ!). We distinguish
the three cases α > 1, α = 1 and α < 1. If α > 1 we apply (1) and ch,K(·)
= ∑n K(n)/∑n nK(n) (notice that we have used our convention that ∑n . . . does
not include n = ∞, so that ∑n nK(n) < ∞). If α = 1 we apply (3) and ch,K(·) =
∑n K(n)/cK . If α ∈ (0,1) then (2) yields ch,K(·) = (α sin(πα)∑n K(n))/(cK π). ��
Remark 2.8. Extracting from (2.33) the sharp asymptotic behavior of Zf

N,h is an
even more tedious exercise. The result is however definitely instructive and not void
of interest, both for the sequel and for the intuition. We do not want to make the
exposition too heavy and we refer to [22, Chap. 2], but we point out that the fact that
the constrained partition function ZN,h is invariant under the transformation (τ,h) �→
(τ̃,h+ log∑n K(n)) of Remark 2.6, does not imply that also Zf

N,h is invariant (in fact
this is false and, in some cases, even the large N behavior is different).

Extracting path properties from Theorem 2.7 is an exercise: result and proof are
absolutely parallel to Proposition 2.5.

Proposition 2.9. If h < hc = − log∑n K(n) then for every n ∈ N

lim
N→∞

PN,h(LN(S) = n) = (1− exp(h−hc))2 nexp((h−hc)(n−1)) , (2.37)

while if h > hc we have that for every ε > 0

lim
N→∞

PN,h

(∣∣∣∣ |τ ∩ (0,N]|
N

− F′(h)
∣∣∣∣ ≥ ε

)
= 0. (2.38)

Moreover for every h, every n, every t� and every t ∈ N
n such that 0 < t1 < t2 < .. .

< tn ≤ t� we have

lim
N→∞

PN,h (τ ∩ (0,t�] = {t1, . . . ,tn}) = P
(

τ(h)∩ (0, t�] = {t1, . . . ,tn}
)

, (2.39)
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that is the sequence {PN,hτ−1}N of measures on P0 (cf. Sect. A.1.4 of Appendix A)
converges weakly to P(τ̃(h))−1.

2.3 Phase Transition and Critical Behavior

This section focuses of the behavior of F(h) close to hc. In view of (2.32) and of
Remark 2.6, we can develop the arguments in the persistent set-up, that is when
hc = 0. The crucial estimate, like in Sect. 2.1.3, is understanding the asymptotic
behavior of ∑n K(n)exp(nx) for x ↘ 0. So let us set:

Ψ (x)
x>0
:= 1−

∞

∑
n=1

K(n)exp(−nx) , (2.40)

and let us compute:

1−
∞

∑
n=1

K(n)exp(−nx) = 1−
∞

∑
n=1

(
K(n−1)−K(n)

)
exp(−nx)

= (1− exp(−x))
∞

∑
n=0

exp(−nx)K(n) .

(2.41)

Therefore, when α > 1, one directly sees that Ψ(x) ∼ xE[τ1] as x ↘ 0. If instead
α ∈ (0,1), by Riemann sum approximation, one obtains

Ψ(x)
x↘0∼ x∑

n

cK exp(−xn)
αnα ∼ xαcK

α

∫ ∞

0
t−α exp(−t)dt ∼ cK

Γ (1−α)
α

xα .

(2.42)
For α = 1 we set �(n) := ∑n

j=1 1/ j for n ∈ N and �(0) := 0 so that

Ψ(x)
cK

x↘0∼ x
∞

∑
n=1

exp(−xn)
n

= x(1− exp(−x))
∞

∑
n=1

�(n)exp(−xn) , (2.43)

Now note that ∑∞
n=1 �(n)exp(−xn) ∼ ∑n log(n)exp(−xn) and since we have that

∑n log(xn)exp(−xn) is O(1/x), we see that ∑∞
n=1 �(n)exp(−xn) is asymptotically

equivalent to log(1/x)∑∞
n=1 exp(−xn) ∼ x−1 log(1/x). Therefore if α = 1

Ψ (x)
x↘0∼ cKx log(1/x) . (2.44)

By recalling that Ψ(F(h)) = 1− exp(h), by inverting the asymptotic relations we
obtain the behavior of F(h) for h ↘ 0: we sum up the result in the following
statement.
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Theorem 2.10. For K(·) as in (2.30), F(·) as in Theorem 2.7 and hc equal to
− log∑n K(n), we have that

F(h)
h↘hc∼ C(K(·))

⎧⎪⎪⎨
⎪⎪⎩

h−hc if α > 1 ,

(h−hc)/ log(1/(h−hc)) if α = 1 ,

(h−hc)1/α if α ∈ (0,1) ,

(2.45)

where

C(K(·)) =

⎧⎪⎪⎨
⎪⎪⎩

∑n K(n)/∑n nK(n) if α > 1 ,

1/cK if α = 1 ,

((α ∑n K(n))/(cKΓ (1−α)))1/α if α ∈ (0,1) .

(2.46)

If F(·) is Ck (of course the issue is at hc), then F(h) = o((h− hc)k) for h ↘ hc.
Therefore Theorem 2.10 directly implies that, for k = 2,3, . . ., F(·) is not Ck for
α ≥ 1/k. Moreover, it is not C1 for α > 1 (but of course it is C0). By using the
convexity of F(·) one directly extracts also that, for α ≤ 1, F(·) is C1: since F′(·) is
non-decreasing (and well-defined except possible at hc), a discontinuity at hc of F′(·)
implies F(h) ≥ c(h−hc) for h > hc, with c = limh↘hc F′(h) > 0, which contradicts
the estimate in Theorem 2.10. In general one has instead to resort to a direct estimate
(that can be found Appendix A, Theorem A.8). The net result is summed up in the
next statement in which we use the standard terminology: a phase transition is a
point of non-analiticity of the free energy, this point is called critical, and the phase
transition is said of kth order (k ∈ N) if the free energy is, at the critical point, Ck−1,
but not Ck.

Proposition 2.11. The homogeneous pinning model (2.31) has a phase transition
of kth order, k = 2,3, . . ., at h = hc if α ∈ [1/k,1/(k−1)). The transition is of second
order also if α = 1, while it is of first order for α > 1.

2.4 A First Look at a Crucial Notion: The Correlation Length

The notion of correlation length plays a central role in the study of statistical
mechanics systems. In general, even for a given system there are plenty of
reasonable definitions of correlation length. Let us see for the homogeneous pinning
system: we have seen (Proposition 2.5) that the N → ∞ model is the renewal with
inter-arrival law K̃h(·). In this case the first notion of correlation length that comes
to mind is given by looking at the correlation

E
[
δ̃mδ̃m+n

]
−E

[
δ̃m

]
E
[
δ̃m+n

]
= E

[
δ̃m

](
E
[
δ̃n

]
−E

[
δ̃m+n

])
, (2.47)
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where δ̃n = 1n∈τ̃(h) . If h ≤ hc (delocalized regime) then, thanks to Theorem A.2 and
to Theorem A.4, one directly sees that for every m the correlation decays, as n → ∞,
with a power law: since the correlation length is naturally defined as the reciprocal of
the exponential decay rate of the correlations, we see that in this case the correlation
length is ∞. If instead h > hc one can, for the sake of simplicity, take the limit m→∞,
so that one is effectively talking about the covariance of the stationary renewal: by
the Renewal Theorem, applied to (2.47), the correlation length this time is read off

E
[
δ̃n

]
− 1

μ̃(h)
, with μ̃(h) := Eτ̃(h)

1 . (2.48)

The correlation length is therefore given by the reciprocal of the rate of convergence
of the renewal function to its asymptotic value. The renewal equation comes to our
help in order to compute it, but things are not as easy as one might think at first.
It is a standard result [28] that if the inter-arrival law decays exponentially (more
precisely: in the case of a recurrent K̃(·)-renewal such that supn exp(cn)K̃(n) < ∞
for some c > 0), then the renewal function converges to its limit exponentially fast.
As it is well known since a long time (see for example [26]) however, the relation
between the rate of decay of K̃(·) and the one of the renewal function are in general
rather unrelated (see [23] for examples and several references). But what is going to
be important for our discussion is that, in the context we consider, one can establish
a general result. Namely that

Proposition 2.12. [23] Choose an inter-arrival law K(·) that satisfies (2.30). Then
there exists h0 ∈ (hc,∞] such that for h ∈ (hc,h0) we have

P
(

n ∈ τ̃(h)
)
− 1

μ̃(h)
n→∞∼ c(h)K(n)exp(−F(h)n) , (2.49)

with c(h) a positive (explicit) constant. So, in particular, we have

lim
n→∞

−1
n

log

(
P
(

n ∈ τ̃(h)
)
− 1

μ̃(h)

)
= F(h) . (2.50)

This result can be read as saying that the correlation length κ = κ(h) is equal to
1/F(h), at least when the system is close to criticality. The fact that (in general)
we can link the correlation length to the free energy only close to criticality is
not a problem because the correlation length becomes important precisely close to
criticality, that is when it diverges.

The role of κ(h) emerges clearly also from (2.13): the exponential growth of
the partition function sets in when N is about κ(h) (look at Fig. 2.1). Figure 2.1
definitely suggests another correlation length: κ̃(h) := inf{N : ZN,h > 1}, where the
value 1 is a bit arbitrary (at this stage), but it is a natural reference point. Why this is
not such a bad definition will be clear later on: for the moment we register the fact
that logκ(h) ∼ log κ̃(h) as h ↘ hc.
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2.5 Why Do People Look at Pinning Models?
A Modeling Intermezzo

The main purpose of these notes is to investigate the effect of disorder on statistical
mechanics models, notably on phase transitions and critical phenomena. Pinning
models turn out to be a particularly favorable context to attack this daunting issue.

But pinning models have received widespread attention, notably in physics,
chemistry and biology. Let us have a quick look at this direction by considering
three different instances: this will serve also to motivate the introduction of
disorder.

2.5.1 Polymer Pinning by a Defect

Polymers are chains of repetitive units (monomers) that may or may not be identical.
Polymer modeling is tightly related to random walks in the sense that the most
basic model of a polymer is the random walk. Less simplistic models include a self-
avoiding constraint and/or increment correlation. In addition, polymers are often in
interaction with an environment: the presence in the environment of an attractive
(or repulsive) region may have a substantial effect on the polymer trajectory. When
such a region is a point or a line (but it could also be a plane or a hyperplane) then
a natural basic model, in which we either disregard self-avoidance or we implement
it by looking at the so-called directed polymers, is precisely the pinning model. For
more on this, see [22, Chap. 1] and references therein.

2.5.2 Interfaces in Two Dimensions

There is very deep link between interfaces in two dimensional (discrete spin) models
and random walks (e.g. [1]). It is sketched in Fig. 2.4, both in the case in which
the arising walk is free and when there is a pinning effect. The figure is based
on the Ising model that we introduce also because it comes up later on in these
notes. An Ising model in the rectangular box Λ = ∏d

i=1(−Li,Li)∩Z
d (Li ∈ N) is a

measure on ΩΛ := {−1,+1}Λ∪∂Λ , where ∂Λ is the external boundary of Λ , that is
∂Λ = {x ∈ Z

d \Λ : |x− y| = 1 for a y ∈ Λ}. The measure is determined once we
fix a value β ≥ 0 (the inverse temperature) and an element η ∈ {−1,+1}∂Λ , the
boundary condition, and then we say that the probability μΛ ,η (σ) of observing the
configuration σ ∈ ΩΛ is

μΛ ,η (σ) =

{
exp(−β HΛ (σ))/ZΛ ,β ,η if σ(x) = η(x) for x ∈ ∂Λ ,

0 otherwise ,
(2.51)
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–L1 +L1

Fig. 2.4 We are drawing a configuration of the two-dimensional Ising model in the finite box with
L1 = 9, L2 = 6 and boundary conditions that are +1 on {x : x2 = −L2, x1 = −L1 +1, . . . ,L1 −1}
and −1 on the rest of ∂ +Λ . The up spins (+) are identified by a gray or a dark gray square, while
the down spins (−) are light gray. The spins on which a boundary magnetic field acts are marked
by large black dots. In the text, to which we refer for details, it is sketched the explanation of
the reduction of the spin configuration to an interface: the interface is reproduced below the spin
configuration with an equivalent but more natural representation if we look at it as a random walk
path

where ZΛ ,β ,η is the normalization constant and HΛ (σ) is the energy of the model
that we choose to be

HΛ (σ) = −1
2 ∑

x,y
J(x,y)σ(x)σ(y)−∑

x
h(x)σ(x) , (2.52)

where the sums are over Λ ∪ ∂Λ and J(x,y) = 0 unless |x− y| = 1. Of course the
most basic Ising model is the one in which J(x,y) = 1 for every |x−y|= 1 and h(x)
does not depend on x, but the general case here serves two purposes:

1. Later on we will discuss the generalization of what we develop for pinning
models to more general cases and the disordered Ising model, that is the case
in which {J(x,y)}x,y and/or {h(x)}x are realizations of families of IID random
variables, is at the heart of the progress in the statistical mechanics of disordered
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systems, much as the non-disordered Ising model is at the heart of the progress
in statistical mechanics.

2. The interface line, or phase separation line, reduces to a random walk in the
strongly anisotropic limit and a suitable choice of h(·) has the effect of a pinning
potential: this is what we are going to explain next.

In (the upper part of) Fig. 2.4 we draw a configuration of the two dimensional
Ising model in a finite box Λ : spins are drawn in small boxes that are either light
gray, gray or dark gray. We are thinking of the case in which J(x,y) = 0 unless
|x− y| = 1 and J(x,y) = J1 ≥ 0 (respectively J(x,y) = J2 ≥ 0) if x− y = (±1,0)
(respectively x − y = (0,±1)). We also restrict our attention to h(·) ≡ 0 for the
moment, that is, we think of an Ising model without external (magnetic) field and
with nearest neighbor interactions that can be different along the horizontal and
vertical directions (the infinite volume limit of this model has been solved by Lars
Onsager [4], a result that has deeply marked statistical mechanics).

As we are trying to convince the reader with the figure, such a spin configuration
can be mapped to a set of contours (this is a very classical construction, see e.g. [18,
Chap. 2]). All the contours are closed lines, except one that goes from the lower left
corner to the lower right corner: we call such an open contour interface and we stress
that the existence of an open contour is directly related to the boundary conditions
(for example: all spins +1 on the boundary entails all contours are closed). Note that
in the limit J1 → ∞ the configuration we have drawn has probability zero: a positive
probability configuration is rather the one in which we switch to −1 all spins in
the gray squares and in this case only one contour survives: the interface. More is
true: in this limit the interface is a trajectory of a random walk with increments in
Z, starting in the lower left corner and ending on the lower right corner. As a matter
of fact, it is an easy exercise to show that the law of such an Ising interface is just
the law of the walk we have just mentioned (to be precise, the probability that the
increment is equal to n is const.exp(−β J2|n|)) conditioned not to exit the box Λ .
If now we consider a very tall box (L2 → ∞) we are just dealing with a random
walk bridge constrained not to go below the height of its starting (and arrival) point.
The lower part of the figure draws the interface with a slightly different convention
that has the advantage to be closer to the customary way of drawing random walk
trajectories.

If now we allow what is usually called a boundary magnetic field, that is if we set
for example h((i,−L2 +2)) =−h < 0 for i =−L1 +1, . . . ,L1 −1, spins of value −1
are favored in the sites on which we have put the field (the sites on which we put the
boundary field are marked by large black dots). What is the effect of the boundary
field on the random walk trajectory? The answer is simply that there is a reward of
h > 0 for the walk to stick to the bottom line: we are therefore just dealing with a
homogeneous pinning model.

Two remarks to close this issue are in order.

1. Of course all that we have discussed becomes more delicate and definitely not as
straightforward if J1 < ∞, nonetheless the simplified J1 = ∞ case to a certain
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extent turns out not to be an oversimplification (see e.g. [37] and references
therein).

2. It is of course natural to choose h(i,−L2 + 2) with a non-trivial dependence on
i (for example, we could choose them by coin tossing (±h)): the arising random
walk model is a inhomogeneous pinning model that fits (and motivates!) the
definition of inhomogeneous models of the next chapters.

2.5.3 DNA Denaturation: The Poland–Scheraga Model

Understanding the very complex geometrical structure in which two complementary
DNA strands (two polymers) are found in cell nuclei is a long standing issue on
which a lot of effort is invested. There are of course plenty of issues: we focus just
on the fact that two complementary strands are not tightly bind all the times (as a
matter of fact, unbinding is necessary in particular for copying the genetic code to
another polymer, the RNA) and unbinding, above all local unbinding, happens all
the time as a standard consequence of thermal fluctuations. Biologists and physicists
have developed models for such a phenomenon and a basic, but apparently rather
effective model, even on a quantitative level, is just based on pinning models [20].
Starting off in the most naive way we can model two-stranded DNA by two directed
walks interacting via pinning potentials, see e.g. [30] and references therein. Since
the difference of two independent random walks is still a random walk, we are
dealing with a standard pinning model. However directed walk models lead to values
of α that are in contrast with observations. In fact the three dimensional model, that
corresponds to the walk in two dimensions plus the fixed direction, yields α = 0,
a case not treated in this notes that however leads to a C∞ behavior of the free
energy [22, Chap. 2], while there is a tendency to believe that the transition is first
order, even if such a statement has to be taken with caution because real DNA
experiments are not about infinitely long strands, see for example [6, 27]. To make
a long story short, the bio-physical community seems to have settled that renewal
pinning models with α ≈ 1.15 is a reasonably good model for DNA denaturation
[6, 15]: however what is most important is that inhomogeneous interactions need
to be taken into account, unless one is dealing with synthetic DNA made up by
one strand containing only Adenine (respectively Cytosine) bases and the the other
strand containing only Thymine (respectively Guanine) bases. A few more details
can be found in Fig. 2.5 and its caption.

2.6 A Look at the Literature

Much of this chapter is devoted to the homogeneous pinning model. This model,
at least in some random walk cases, has been the object of several works in the
physical literature at the beginning of the 1980s proposing different exact solutions
(e.g. [7, 29]), but the generalized model and a comprehensive view identifying the
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t6 t5 t9 t8 t14 t13

Fig. 2.5 A schematic, standard, view of DNA denaturation. The two thick lines are the DNA
strands. They may be paired, gaining thus energetic contributions that depend on whether the
base pair is A–T or G–C (the model is therefore inhomogeneous: A–T bonds are weaker than
G–C bonds). The sections of unpaired bases are called loops. The DNA portion in the drawing
corresponds to the renewal model trajectory with τ j − τ j−1 = 1 except for three inter-arrivals (so
loops correspond to inter-arrivals of length 2 or more)

general mechanism behind the various exact solutions are due to Fisher [19]. The
approach given here, however, is not the one in [19], that goes by computing
the series ∑N zNZN,h. We aim directly at ZN,h and at its interpretation in term of
renewal function: this approach has been developed in [25, Appendix A] and [10].
It has been proven useful also beyond the renewal set-up, notably for Markov
renewal processes that cover a very wide class of models: pinning and copolymers in
periodic environments [11], pinning of directed semi-flexible polymers [9], pinning
on layered interfaces [12] and pinning of random walks with continuous increments
[33] (the Brownian motion case has been treated for example in [14,31] by different
techniques and we refer to [22] for further references on the vast literature on
homogeneous pinning).

While of course the modeling aspects must not be neglected, the approach given
here shows that the physical solution of the homogeneous pinning model (notably,
free energy estimates) are just a subset of classical renewal theory developed in the
1950s and 1960s (e.g. [16, 17, 21], see [3] for further references).

Further considerations and references on path properties of the limit (N → ∞)
process can be found in [22, Chap. 2], notably the scaling limits at criticality that
makes a link with the theory of regenerative sets and subordinators [5].

Dynamical issues have been left completely out and that will not change in the
next chapters: these notes are about the equilibrium measure, but the dynamical
issues are of great interest (see for example [8]).

In [2] the author provides a class of random walks with increments taking values
±1 that have regularly varying return time distribution: therefore this work exhibits
walks for which (2.30) holds, for arbitrary α .

Section 2.4 introduces the notion of correlation length: it is difficult to stress
enough the role of such a concept in statistical mechanics. But it is also difficult
to treat it in a satisfactory way without mentioning the disordered case: for here
we content ourselves with adding the references [24, 34–36], that deal in part with
the homogeneous case (and are very relevant for the disordered case), and [32]
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that develops a mathematical viewpoint on the finite size scaling properties of the
homogeneous models, that is on the behavior of the system of correlation length
size, close to criticality (when the correlation length diverges).
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12. F. Caravenna, N. Pétrélis, A polymer in a multi-interface medium. Ann. Appl. Probab. 19,

1803–1839 (2009)
13. J.B. Conway, Functions of One Complex Variable, 2nd edn. Graduate Texts in Mathematics,

vol. 11 (Springer, New York, 1978)
14. M. Cranston, L. Koralov, S. Molchanov, B. Vainberg, Continuous model for homopolymers. J.

Funct. Anal. 256, 2656–2696 (2009)
15. D. Cule, T. Hwa, Denaturation of heterogeneous DNA. Phys. Rev. Lett. 79, 2375–2378 (1997)
16. W. Feller, An Introduction to Probability Theory and Its Applications, vol. I, 3rd edn. (Wiley,

New York, 1968)
17. W. Feller, An Introduction to Probability Theory and Its Applications, vol. II, 2nd edn. (Wiley,

New York, 1971)
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