
Chapter 2
Preliminaries—Fundamental Groups
and Galois Groups

The purpose of this chapter is to recollect the preliminary materials from topology
and number theory, for the sake of readers. In particular, we present a summary
about fundamental groups and Galois theory for topological spaces and arithmetic
rings in Sects. 2.1 and 2.2, since the analogies between topological and arithmetic
fundamental/Galois groups are fundamental in this book. Sections 2.1 and 2.2 also
contain basic concepts and examples in three dimensional topology and number
fields which will be used in the subsequent chapters. In Sect. 2.3, we review class
field theory as arithmetic duality theorems in Galois, étale cohomology groups.

The reader who wants to know more or see precise proofs may consult [Ms,
Go1, Mr] for fundamental groups and Galois theory, [Go2, Go3, Go4, Hb, Mi1,
Ne1, NSW, Tm] for Galois, étale cohomology and class field theory, and [BZ, Hl,
Kw, Ro, Ln1, Ne2] for the basic materials in knot theory and algebraic number
theory.

2.1 The Case of Topological Spaces

Throughout this book, any topological space is assumed to be a PL-manifold and
any map between topological spaces is assumed to be a PL-map (with obvious
exceptions). Note that a manifold is arcwise-connected if and only if it is con-
nected.

Let X be a connected topological space and fix a base point x ∈ X. For paths
γ, γ ′ : [0,1] → X with γ (1) = γ ′(0), we define a path γ ∨ γ ′ : [0,1] → X by
(γ ∨ γ ′)(t) := γ (2t) if 0 ≤ t ≤ 1/2 and (γ ∨ γ ′)(t) := γ ′(2t − 1) if 1/2 ≤ t ≤ 1.
Let �(X,x) be the set of loops in X based at x. For l, l′ ∈ �(X,x), we say that
l and l′ are homotopic fixing the base point x, denoted by l �x l′, if there is a
homotopy lt connecting l and l′ so that lt ∈ �(X,x) for any t ∈ I . Let π1(X,x)

be the set of equivalence classes, �(X,x)/ �x . Then π1(X,x) forms a group by
the well-defined multiplication [l] · [l′] = [l ∨ l′]. This is called the fundamental
group of X with base point x. For another base point x′, the correspondence [l] �→
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[γ−1 ∨ l ∨ γ ] gives an isomorphism π1(X,x)� π1(X,x′) where γ is a path from x

to x′. Hence, we sometimes omit the base point and write simply π1(X). A con-
tinuous map f : X→ Y induce a homomorphism f∗ : π1(X,x)→ π1(Y,f (x))

by f∗([l]) := [f ◦ l], and we have f∗ = g∗ if f,g : X→ Y are homotopy and
f (x)= g(x). Thus, π1 is a covariant functor from the homotopy category of based
arcwise-connected topological spaces to the category of groups. We note that the
Abelianization π1(X)/[π1(X),π1(X)] of π1(X) is isomorphic to the homology
group H1(X) by sending [l] to the homology class of l (Hurewicz theorem).

Example 2.1 (Circle) S1 := {x ∈R2 | ‖x‖ = 1}. Let l be the loop x ∈ S1 which goes
once around the circle counterclockwise. Then π1(S

1, x) is an infinite cyclic group
generated by [l] (Fig. 2.1).

Fig. 2.1

Example 2.2 (Solid torus) V := D2 × S1, where D2 := {x ∈ R2 | ‖x‖ ≤ 1} is the
unit 2-disk.

Since V is homotopy equivalent to S1, one has π1(V ) = π1(S
1) = 〈[β]〉,

where β = {b} × S1, b ∈ ∂D2. The boundary ∂V of V is a 2-dimensional
torus T 2 := S1 × S1 = ∂V . Define the projection pi : T 2 → S1 for i = 1,2 by
p1(x, y) := x, p2(x, y) := y. Then p1∗ × p2∗ induces an isomorphism π1(T

2) �
π1(S

1)× π1(S
1)= 〈[α]〉 × 〈[β]〉, where α = ∂D2 × {a}, a ∈ S1. Two loops α and

β on T 2 are called a meridian and a longitude, respectively (Fig. 2.2).

Fig. 2.2

Example 2.3 (n-sphere) Sn := {x ∈ R
n+1 | ‖x‖ = 1} (n ≥ 2). Since the space

Sn \ {∗} obtained by removing a point ∗ from Sn is contractible, one has
π1(S

n)= {1}. A connected space X is called simply-connected if π1(X)= {1}.
The Poincaré conjecture, which was proved by G. Perelman (2003), asserts that
a simply-connected closed 3-manifold is homeomorphic to S3.
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The van Kampen theorem provides a useful method to present a fundamental
group in terms of generators and relations. Let F(x1, . . . , xr ) denote the free group
on letters (or words) x1, . . . , xr . For R1, . . . ,Rs ∈ F(x1, . . . , xr ), let 〈〈R1, . . . ,Rs〉〉
denote the smallest normal subgroup of F(x1, . . . , xr ) containing R1, . . . ,Rs . When
a group G is isomorphic to the quotient group F(x1, . . . , xr )/〈〈R1, . . . ,Rs〉〉, we
write G by the following form

G= 〈x1, . . . , xr |R1 = · · · =Rs = 1〉
and call it a presentation of G in terms of generators and relations. Note that the
choices of generators x1, . . . , xr and relators R1 = · · · = Rs are not unique. If
r − s = k, we say that G has a presentation of deficiency k. Now, let X be a topo-
logical space and suppose that there are two open subsets X1 and X2 of X such that
X =X1∪X2 and X1∩X2 is nonempty. We assume that X,X1,X2 and X1∩X2 are
arcwise-connected. Take a base point x ∈ X1 ∩ X2 and suppose that we are given
the following presentations:

π1(X1, x)= 〈x1, . . . , xr |R1 = · · · =Rs = 1〉,
π1(X2, x)= 〈y1, . . . , yt |Q1 = · · · =Qu = 1〉,
π1(X1 ∩X2, x)= 〈z1, . . . , zv | P1 = · · · = Pw = 1〉.

The inclusion maps i1 : X1 ∩ X2 ↪→ X1, i2 : X1 ∩ X2 ↪→ X2 induce the homo-
morphisms i1∗ : π1(X1 ∩ X2, x)→ π1(X1, x), i2∗ : π1(X1 ∩ X2, x)→ π1(X2, x).
Then the van Kampen theorem asserts that π1(X,x) is given by amalgamating
π1(X1 ∩X2, x) in π1(X1, x) and π1(X2, x), namely,

π1(X,x)=
〈
x1, . . . , xr

y1, . . . , yt

∣∣∣∣R1 = · · · =Rs =Q1 = · · · =Qu = 1

i1∗(z1)i2∗(z1)
−1 = · · · = i1∗(zv)i2∗(zv)

−1 = 1

〉
.

Example 2.4 (Handlebody) Let us prepare g copies of a handle D2 ×D1 =D2 ×
[0,1] and a 3-ball D3. For each handle, we fix a homeomorphism D2 × ∂D1 →
∂D3 = S2 and attach g handles to D3 by identifying x ∈ D2 × ∂D2 with f (x).
The resulting 3-manifold is called a handlebody of genus g and is denoted by Hg

(Fig. 2.3).

Fig. 2.3

Hg is homotopy equivalent to a bouquet Bg obtained by attaching g copies of S1

at one point b (Fig. 2.4).
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Fig. 2.4

Letting xi be the loop starting from b and going once around the i-th S1, the van
Kampen theorem yields π1(Hg)= π1(Bg)= F(x1, . . . , xg).

Example 2.5 (Lens space) Let V1, V2 be oriented solid tori and let f : ∂V2
≈→ ∂V1 be

a given orientation-reversing homeomorphism. We then make an oriented connected
closed 3-manifold M = V1 ∪f V2 by identifying x ∈ ∂V2 with f (x) ∈ ∂V1 in the
disjoint union of V1 and V2. Let αi and βi denote a meridian and a longitude on Vi ,
respectively for each i = 1,2. By Example 2.2, we may write

f∗
([α2]

)= p[β1] + q[α1], (p, q)= 1

in a unique way. The topological type of the space M is determined by the pair (p, q)

of integers above and so M is called the lens space of type (p, q) and denoted by
L(p,q). Let us calculate the fundamental group of L(p,q). Let i1 : ∂V2→ V1 be
the composite of f with the inclusion map ∂V1 ↪→ V1 and let i2 : ∂V2 ↪→ V2 be the
inclusion map. Noting π1(Vi)= 〈βi〉 and π1(∂V2)= 〈α2〉 × 〈β2〉 and applying the
van Kampen theorem, we have

π1
(
L(p,q)

) = 〈β1, β2 | i1∗(α2)= i2∗(α2), i1∗(β2)= i2∗(β2)
〉

= 〈β1, β2 | βp

1 α
q

1 = 1, i1∗(β2)= β2
〉

= 〈β1 | βp

1 = 1
〉

� Z/pZ.

So π1(L(p,q)) is a finite cyclic group except the case p = 0 for which we have
L(0,±1)≈ S2 × S1.

More generally, for oriented handlebodies V1,V2 of genus g and an orientation-

reversing homeomorphism f : ∂V2
≈→ ∂V1, we can make an oriented connected

closed 3-manifold M := V1 ∪f V2 in a similar manner. One calls M = V1 ∪f V2 a
Heegaard splitting of M and g the genus of the splitting. Conversely, it is known
that any orientable connected closed 3-manifold has such a Heegaard splitting. For
a proof of this, we refer to [He, Chap. 2]. The fundamental group of a 3-manifold
with a Heegaard splitting is computed in a similar way to the case of a lens space.

Example 2.6 (Knot group, link group) A knot is the image of an embedding of S1

into S3. So, by our assumption, a knot is always assumed to be a simple closed poly-
gon in this book. We denote by VK a tubular neighborhood of K . The complement
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XK := S3 \ int(VK) of an open tubular neighborhood int(VK) in S3 is called the knot
exterior. It is a compact 3-manifold with a boundary being a 2-dimensional torus.
A meridian of K is a closed (oriented) curve which is the boundary of a disk D2

in VK . A longitude of K is a closed curve on ∂XK which intersects with a meridian
at one point and is null-homologous in XK (Fig. 2.5).

Fig. 2.5

The fundamental group π1(XK)= π1(S
3 \K) is called the knot group of K and

is denoted by GK . Firstly, let us explain how we can obtain a presentation of GK .
We may assume K ⊂ R

3. A projection of a knot K onto a plane in R
3 is called

regular if there are only finitely many multiple points which are all double points
and no vertex of K is mapped onto a double point. There are sufficiently many
regular projections of a knot. We can draw a picture of a regular projection of a knot
in the way that at each double point the overcrossing line is marked. So a knot can
be reconstructed from its regular projection. Now let us explain how we can get a
presentation of GK from a regular projection of K , by taking a trefoil for K as an
illustration.

(0) First, give a regular projection of a knot K (Fig. 2.6).

Fig. 2.6

(1) Give an orientation to K and divide K into arcs c1, . . . , cn so that ci (1≤ i ≤
n− 1) is connected to ci+1 at a double point and cn is connected to c1 (Fig. 2.7).
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Fig. 2.7

(2) Take a base point b above K (for example b=∞) and let xi be a loop coming
down from b, going once around under ci from the right to the left, and returning
to b (Fig. 2.8).

Fig. 2.8

(3) In general, one has the following two ways of crossing among ci ’s at each
double point. From the former case, one derives the relation Ri = xix

−1
k x−1

i+1xk = 1,

and from the latter case one derives the relation Ri = xixkx
−1
i+1x

−1
k = 1 (Fig. 2.9).

Fig. 2.9
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Thus, we have n relations R1 = · · · = Rn = 1 for n double points P1, . . . ,Pn,
which give a presentation of GK , GK = 〈x1, . . . , xn | R1 = · · · = Rn = 1〉
(Fig. 2.10).

Fig. 2.10

Among these n relations we can derive any one from the other relations as fol-
lows. Let E be a plane, below K , on which we have a regular projection of K . Let
C be an oriented circle such that a projection of K on E is lying inside C. Let γ

be a path in XK starting from the base point b to a fixed point Q on C and let
l := γ ∨C ∨ γ−1. Note that [l] is the identity in GL. On the other hand, let li be a
path in E starting from Q, going toward Pi and once around Pi with the same ori-
entation as C, and returning Q. Then we see l is homotopic to

∏n
i=1 γ ∨ li ∨ γ−1

(Fig. 2.11).

Fig. 2.11

Since a small circle around Pi corresponds to Ri or R−1
i , there are zi ∈

F(x1, . . . , xn) such that one has

(4)
n∏

i=1

ziR
±1
i z−1

i = 1.

Thus, GK has a presentation of deficiency 1.
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A presentation of GK obtained in the way described above is called a Wirtinger
presentation. As we can see from the form of each relation in (3), x1, . . . , xn are con-
jugate each other in GK . Therefore, the Abelianization GK/[GK,GK ] �H1(XK)

of GK is an infinite cyclic group generated by the class of a meridian of K .
We can, of course, consider a knot in any orientable connected closed 3-manifold

and define a tubular neighborhood, knot exterior etc similarly. The exterior XK =
M \ int(VK) is an orientable compact connected 3-manifold with boundary be-
ing a 2-dimensional torus, and so XK is collapsed to a 2-dimensional complex C

with a single 0-cell. Since XK has the Euler number 0, the knot group GK(M) :=
π1(XK) = π1(C) has a presentation of deficiency 1. In general, GK(M) may not
have a Wirtinger presentation (i.e., relations in (3) above).

An r-component link L is the image of an embedding of a disjoint union of
r copies of S1 into an oriented connected closed 3-manifold. So we can write
L = K1 ∪ · · · ∪ Kr where Ki ’s are mutually disjoint knots. A 1-component link
is a knot. A tubular neighborhood VL of L = K1 ∪ · · · ∪ Kr is the union of
tubular neighborhoods of Ki , VL = VK1 ∪ · · · ∪ VKn (VKi

∩ VKj
= ∅ for i �= j ).

The exterior of L is XL := M \ int(VL) and the link group of L is defined by
GL(M) := π1(XL) = π1(M \ L). Like a knot group GK(M), GL(M) has a pre-
sentation of deficiency 1. When M = S3 in particular, a regular projection of a link
L is defined similarly to the case of a knot and GL has a Wirtinger presentation.
Here loops xi and xj are conjugate if and only if ci and cj are in the same compo-
nent of a link and so the Abelianization GL/[GL,GL] � H1(XL) of GL is a free
Abelian group of rank r generated by the classes of meridians of Ki , 1≤ i ≤ r .

Finally, let us give the definition of equivalence among links. For links L, L′ in
an oriented connected closed 3-manifold M , we say that L and L′ are equivalent

if there is an isotopy ht :M ≈→M(0 ≤ t ≤ 1) such that h0 = idM,h1(L)= L′. For
links in S3, this condition is equivalent to the condition that there is an orientation-

preserving homeomorphism f : S3 ≈→ S3 such that f (L) = L′ [BZ, Proposition
1.10]. A quantity inv(L) defined on the set of all links is called a link invariant if
inv(L)= inv(L′) for any two equivalent links L and L′. Likewise a knot invariant
is a quantity defined on the set of all knots, which takes the same for any two equiv-
alent knots. For example, a knot group is a knot invariant and a link group is a link
invariant.

Next, let us recall basic materials concerning covering spaces. Let X be a con-
nected space. A continuous map h : Y →X is called an (unramified) covering if for
any x ∈X, there is an open neighborhood U of x such that

⎧⎪⎨
⎪⎩

(1) h−1(U)=
⊔
j∈J

Vj , Vi ∩ Vj = ∅ (i �= j),

(2) h|Vj
: Vj

≈→U (homeomorphism),

where Vj is a connected component of h−1(U) and an open subset of Y (Fig. 2.12).
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Fig. 2.12

A covering h′ : Y ′ →X is called a subcovering of h : Y →X if there is a contin-
uous map ϕ : Y → Y ′ such that h′ ◦ϕ = h. Then ϕ is also a covering, and we denote
by CX(Y,Y ′) the set of all such ϕ. If there is a homeomorphic ϕ ∈ CX(Y,Y ′), Y and
Y ′ are said to be isomorphic over X. The set of isomorphisms ϕ ∈ CX(Y,Y ) forms
a group, called the group of covering transformations of h : Y →X, and is denoted
by Aut(Y/X).

The most basic fact in covering theory is the following lifting property of a path
and its homotopy.

Proposition 2.7 Let h : Y →X be a covering. For any path γ : [0,1]→X and any
y ∈ h−1(x) (x = γ (0)), there exists a unique lift γ̂ : [0,1]→ Y of γ (i.e., h◦ γ̂ = γ )
with γ̂ (0)= y. Furthermore, for any homotopy γt (t ∈ [0,1]) of γ with γt (0)= γ (0)

and γt (1)= γ (1), there exists a unique lift of γ̂t such that γ̂t is the homotopy of γ̂

with γ̂t (0)= γ̂ (0) and γ̂t (1)= γ̂ (1).

In the following, we assume that any covering space is connected. By Proposi-
tion 2.7, the cardinality of the fiber h−1(x) is independent of x ∈ X. So we call
#h−1(x) the degree of h : Y → X which is denoted by deg(h) or [Y : X]. We
define the right action of π1(X,x) on h−1(x) as follows. For [l] ∈ π1(X,x) and
y ∈ h−1(x), we define y.[l] to be the terminus l̂(1) where l̂ is the lift of l with ori-
gin l̂(0) = y. It is a transitive action such that the stabilizer of y is h∗(π1(Y, y))

by Proposition 2.7 and hence one has a bijection h−1(x)� h∗(π1(Y, y))\π1(X,x).
The induced representation ρx : π1(X,x)→ Aut(h−1(x)) is called the monodromy
permutation representation of π1(X,x), where Aut(h−1(x)) denotes the group of
permutations on h−1(x) so that the multiplication σ1 ·σ2 is defined by the composite
of maps σ2 ◦σ1 for σ1, σ2 ∈Aut(h−1(x)). The representation ρx induces an isomor-
phism Im(ρx)� π1(X,x)/

⋂
y∈h−1(x) h∗(π1(Y, y)). It can be shown that the isomor-

phism class of a covering is determined by the equivalence class of the monodromy
representation. On the other hand, the group Aut(Y/X) of covering transformations
acts from the left on a fiber h−1(x). When this action is simply-transitive, namely, if
the map Aut(Y/X) � σ �→ σ(y) ∈ h−1(x) is bijective for y ∈ h−1(x), h : Y →X is
called a Galois covering. This condition is independent of the choice of x ∈X and
y ∈ h−1(x). For a Galois covering h : Y →X, we call Aut(Y/X) the Galois group
of Y over X and denote it by Gal(Y/X). The following is the main theorem of the
Galois theory for coverings.
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Theorem 2.8 (Galois correspondence) The correspondence (h : Y → X) �→
h∗(π1(Y, y))(y ∈ h−1(x)) gives rise to the following bijection:

{connected covering h : Y →X}/isom. over X

∼−→ {subgroup of π1(X,x)}/conjugate.

Furthermore, this bijection satisfies the following properties:

h′ : Y ′ →X is a subcovering of h : Y →X ⇔ h′∗(π1(Y
′, y′)) (y′ ∈ h′−1(x)) is a

subgroup of h∗(π1(Y, y)) (y ∈ h−1(x)) up to conjugate.
h : Y → X is a Galois covering⇔ h∗(π1(Y, y)) (y ∈ h−1(x)) is a normal sub-
group of π1(X,x). Then one has Gal(Y/X)� π1(X,x)/h∗(π1(Y, y)).

More generally, we can replace π1(X,x) by Gal(Z/X) for a fixed Galois cover-
ing Z→X in the above bijection, and then we have a similar bijection:

{connected subcovering of Z→X}/isom. over X.

∼−→ {subgroup of Gal(Z/X)}/conjugate.

Thus, the fundamental group of a space X may be viewed as a group which
controls the symmetry of the set of coverings of X. In particular, the covering
h̃ : X̃→ X (unique up to isom. over X) which corresponds to the identity group
of π1(X,x) is called the universal covering of X. The universal covering has the
following properties (U):

(U)

⎧⎪⎨
⎪⎩

(i) Fixing x̃ ∈ X̃, the map CX(X̃,Y ) � ϕ �→ ϕ(x̃) ∈ h−1(x)

is bijective for any covering h : Y →X (x = h̃(x̃)).

(ii) Gal(X̃/X)� π1(X,x) (x = h̃(x̃)).

Example 2.9 The universal covering of S1 is given by

h̃ :R→ S1; h̃(θ) := (cos(2πθ), sin(2πθ)
)
.

Let l be a loop starting from a base point x and going once around S1 counterclock-
wise. Define the covering transformation σ ∈Gal(R/S1) by σ(θ) := θ+1. Then the
correspondence σn �→ [ln] (n ∈ Z) gives an isomorphism Gal(R/S1) � π1(S

1, x).
Any subgroup ( �= {1}) of π1(X,x)= 〈[l]〉 is given by 〈[ln]〉 for some n ∈N and the
corresponding covering is given by

hn :R/nZ→ S1; hn(θ mod nZ) := (cos(2πθ), sin(2πθ)
)
.

Example 2.10 The universal covering of a 2-dimensional torus T 2 = S1× S1 is the
product of two copies of the universal covering S1, namely,

h̃ :R2→ T 2;
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h̃(θ1, θ2) :=
((

cos(2πθ1), sin(2πθ1)
)
,
(
cos(2πθ2), sin(2πθ2)

))
.

Define the covering transformation σ1, σ2 ∈ Gal(R2/T 2) by σ1(θ1, θ2) :=
(θ1 + 1, θ2), σ2(θ1, θ2) := (θ1, θ2 + 1). Then the correspondence σ1 �→ [α] (merid-
ian), σ2 �→ [β] (longitude) gives an isomorphism Gal(R2/T 2)� π1(T

2).

Example 2.11 Let L(p,q) be a lens space of type (p, q) (Example 2.5), where p

and q are coprime integers. When p = 0, L(0,±1)= S2 × S1 and so the universal
covering is given by S2 ×R. Assume p �= 0 and let us construct the universal cov-
ering L(p,q).1 We identify S1 with R/Z, D2 with (R/Z× (0,1]) ∪ {(0,0)}, and
regard a solid torus V as R/Z×R/Z× [0,1], ∂V as R/Z×R/Z. Let V1, V2, V ′1,
V ′2 be copies of V . Let us consider the following map

f : ∂V1→ ∂V2; f (x, y) :=
(

qx + y

p
,px

)
.

Since

det

(
q p

1
p

0

)
=−1,

f is an orientation-reversing homeomorphism and L(p,q) is obtained from the
disjoint union of V1 and V2 by identifying ∂V1 with ∂V2 via f . Next, consider the
following orientation-reversing homeomorphism

g : ∂V ′1→ ∂V ′2; g(x, y) := (y, x).

The space obtained from the disjoint union of V ′1 and V ′2 by identifying ∂V ′1 with
∂V ′2 via g is S3. Now define the map h : S3 = V ′1 ∪g V ′2→ L(p,q)= V1 ∪f V2 by

h|V ′1 : V ′1→ V1; h|V ′1(x, y, z) := (x,p(y − qx), z
)
,

h|V ′2 : V ′2→ V2; h|V ′2(x, y, z) := (x,py, z).

Then we see that h is well-defined and h|V ′i (i = 1,2) are both p-fold cyclic cov-

erings, and hence h is a p-fold cyclic covering. Since S3 is simply connected,
h : S3→ L(p,q) defined as above is the universal covering.

Example 2.12 Let K ⊂ S3 be a knot, VK a tubular neighborhood, XK := S3 \
int(VK) the exterior of K , and GK := π1(XK) the knot group. Let α be a merid-
ian of K . Since GK/[GK,GK ] is the infinite cyclic group generated by the class
of α, the map sending α to 1 defines a surjective homomorphism ψ∞ : GK → Z.
Let h∞ : X∞ → XK be the covering corresponding to Ker(ψ∞) in Theorem 2.8.
The covering space X∞ is independent of the choice of α and called the infinite
cyclic covering of XK . Let τ be the generator of Gal(X∞/XK) corresponding to

1The following argument is due to S. Miyasaka, a graduate student at Kyoto University (2005).
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1 ∈ Z. For each n ∈ N, ψn : GK → Z/nZ be the composite of ψ∞ with the nat-
ural homomorphism Z→ Z/nZ, and let hn : Xn → XK be the covering corre-
sponding to Ker(ψn). The space Xn is the unique subcovering of X∞ such that
Gal(Xn/XK)� Z/nZ. We denote by the same τ for the generator of Gal(Xn/XK)

corresponding to 1 mod nZ. The covering spaces Xn (n ∈N), X∞ are constructed as
follows. First, take a Seifert surface of K , an oriented connected surface �K whose
boundary is K . Let Y be the space obtained by cutting XK along XK ∩ �K . Let
�+,�− be the surfaces, which are homeomorphic to XK ∩�K , as in the following
picture (Fig. 2.13).

Fig. 2.13

Let Y0, . . . , Yn−1 be copies of Y and let Xn be the space obtained from the
disjoint union of all Yi ’s by identifying �+0 with �−1 , . . . , and �+n−1 with �−0
(Fig. 2.14).

Fig. 2.14

Define hn :Xn→XK as follows: If y ∈ Yi \ (�+i ∪�−i ), define hn(y) to be the
corresponding point of Y via Yi = Y . If y ∈�+i ∪�−i , define hn(y) to be the corre-
sponding point of �K via �+i ,�−i ⊂�K . By the construction, hn :Xn→XK is an
n-fold cyclic covering. The generating covering transformation τ ∈Gal(Xn/XK) is
then given by the shift sending Yi to Yi+1 (i ∈ Z/nZ). This construction is read-
ily extended to the case n=∞. Namely, taking copies Yi (i ∈ Z) of Y , let X∞K be
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the space obtained from the disjoint union of all Yi ’s by identifying �+i with �−i+1
(i ∈ Z) (Fig. 2.15).

Fig. 2.15

The generating covering transformation τ ∈ Gal(X∞K /XK) is given by the shift
sending Yi to Yi+1 (i ∈ Z).

Example 2.13 The Abelian fundamental group of X is the Abelianization of π1(X),
which we denote by πab

1 (X). By the Hurewicz theorem, H1(X)� πab
1 (X). The cov-

ering space corresponding to the commutator subgroup [π1(X),π1(X)] in Theo-
rem 2.8 is called the maximal Abelian covering of X which we denote by Xab.
Since πab

1 (X)�Gal(Xab/X), we have a canonical isomorphism

H1(X)�Gal
(
Xab/X

)
.

Therefore, Abelian coverings of X are controlled by the homology group H1(X).
This may be regarded as a topological analogue of unramified class field theory
which will be presented in Example 2.44.

Finally, we shall consider ramified coverings. Let M , N be n-manifolds
(n ≥ 2) and let f : N →M be a continuous map. Set SN := {y ∈ N | f is not a
homeomorphism in a neighborhood of y} and SM := f (SN). Let Dk := {x ∈ R

k |
‖x‖ ≤ 1}. Then f : N→M is called a covering ramified over SM if the following
conditions are satisfied:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1) f |N\SN
:N \ SN →M \ SM is a covering.

(2) For any y ∈ SN, there are a neighborhood V of y, a neighborhood U

of f (y), a homeomorphism ϕ : V ≈→D2 ×Dn−2, ψ :U ≈→D2 ×Dn−2

and an integer e= e(y)(> 1) such that (fe × idDn−2) ◦ ϕ =ψ ◦ f.

Here, ge(z) := ze for z ∈ D2 = {z ∈ C | |z| ≤ 1}. The integer e = e(y) is called
the ramification index of y. We call f |N\SN

the covering associated to f . If N is
compact, f |N\SN

is a finite covering. When f |N\SN
is a Galois covering, f is called

a ramified Galois covering.

Example 2.14 For a knot K ⊂ S3, let VK be a tubular neighborhood of K and
XK = S3 \ int(VK) the knot exterior. Let hn : Xn→ XK be the n-fold cyclic cov-
ering defined in Example 2.12. Note that hn|∂Xn : ∂Xn→ ∂XK is an n-fold cyclic
covering of tori and a meridian of ∂Xn is given by nα where α is a meridian on
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∂XK . So we attach V = D2 × S1 to Xn gluing ∂V with ∂Xn so that a meridian
∂D2×{∗} coincides with nα. Let Mn be the closed 3-manifold obtained in this way
(Fig. 2.16).

Fig. 2.16

Define fn :Mn→ S3 by fn|Xn := hn and fn|V := fn × idS1 . Then fn is a cov-
ering ramified over K and the associated covering is hn. fn :Mn→ S3 is called the
completion of hn :Xn→XK .

The completion given in Example 2.14 is called the Fox completion and such a
completion can be constructed for any finite covering of a link exterior. In fact, the
Fox completion can be defined for any covering (more generally, for a spread) of
locally connected T1-spaces [Fo2]. Here, let us explain an outline of the construction
for a finite covering of a link exterior. Let M be an orientable connected closed 3-
manifold and let L be a link in M . Let X :=M \ L and let h : Y → X be a given
finite covering. Then there exists a unique covering f : N →M ramified over L

such that the associated covering is h : Y → X. Here, the uniqueness means that

if there are such coverings N , N ′, then there is a homeomorphism N
≈→ N ′ so

that the restriction to Y is the identity map. The construction of f : N → M is
given as follows. Let g be the composite of h with the inclusion X ↪→M : g : Y →
M . To each open neighborhood U of x ∈M , we associate a connected component
y(U) of g−1(U) in a way that y(U1)⊂ y(U2) if U1 ⊂ U2. Let Nx be the set of all
such correspondences y. Let N :=⋃

x∈M Nx and define f : N →M by f (y) =
x if y ∈ Nx , namely, Nx = f−1(x). We give a topology on N so that the basis
of open subsets of N are given by the subsets of the form {y ∈ N | y(U) = W }
where U ranges over all subsets of M and W ranges over all connected components
of f−1(U). If y ∈ Y , we can associate to each open neighborhood U of x = f (y) a
unique connected component y(U) of g−1(U) containing y and so we may regard
Y ⊂ N . Intuitively, regarding x ∈ L as the limit of its open neighborhood U as U

smaller, y ∈ N is defined as the limit of a connected component y(U) of g−1(U).
Let V = D2 ×D1 be a tubular neighborhood of L around x = f (y) ∈ L. Then it
follows from the uniqueness of the Fox completion for the covering h−1(V \L)→
V \L that the condition (2) is satisfied in a neighborhood of y ∈ f−1(L).
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Example 2.15 Let L = K1 ∪ · · · ∪Kr be a link in an orientable connected closed
3-manifold M , XL the link exterior GL := π1(XL). Let αi be a meridian of Ki

(1 ≤ i ≤ r). The map sending all αi to 1 defines a surjective homomorphism
ψ∞ :GL→ Z. The infinite covering of XL corresponding to Ker(ψ∞) is called
the total linking number covering of XL. For each n ∈N, let ψn be the composite of
ψ∞ with the natural homomorphism Z→ Z/mZ: ψn :GL→ Z/nZ. For an n-fold
cyclic covering of XL corresponding to Ker(ψn), we have the Fox completion Mn,
which is an n-fold cyclic covering of M ramified over L.

Example 2.16 Let L be a 2-bridge link B(a, b) (0 < b < a, (a, b)= 1) presented by
Schubert’s normal form. If a is odd, L is a knot, and if a is even, L is a 2-component
link (Fig. 2.17).

Fig. 2.17

The double covering of S3 ramified over L is given by the lens space L(a, b)

(Example 2.5). To see this, divide B(a, b) into two parts, say B1 and B2, where B1
consists of 2 bridges (line segment PP ′ ∪ line segment QQ′) and B2 consists of 2
arcs passing under B1 (arcPQ′ ∪arcP ′Q if a is odd and b is odd, arcPQ∪arcP ′Q′
if a is odd and B is even, arcPP ′ ∪ arcQQ′ if a is even). We see B1 and B2 as arcs
inside 3-balls D3

1 and D3
2 respectively (Fig. 2.18).

Fig. 2.18

According to the Heegaard decomposition S3 =D3
1 ∪D3

2 , L is decomposed as
L = B1 ∪ B2. Since the double covering of each D3

i ramified over Bi is a solid
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torus Vi , the double covering M of S3 ramified over L is a lens space. Further, we
see that the image of a meridian α1 on ∂V1 (a lift of the bridge PP ′ to V1) in ∂V2 is
given by a[β2] + b[α2] as a homology class (Fig. 2.19) and hence M = L(a, b).

Fig. 2.19

2.2 The Case of Arithmetic Rings

Throughout this section, any ring is assumed to be a commutative ring with iden-
tity element and any homomorphism between rings is assumed to send the identity
element to the identity element.

For a commutative ring R, let Spec(R) the set of prime ideals of R, called the
prime spectrum of R. For a ∈ R, let Ua := {p ∈ Spec(R) | a /∈ p}. The set Spec(R)

is equipped with the topology, called the Zariski topology, whose open basis is
given by U := {Ua | a ∈ R}. On the topological space Spec(R), one has a sheaf of
commutative rings OSpec(R) so that OSpec(R)(Ua) = Ra := { r

an | a ∈ R,n ∈ Z ≥ 0}
(a �= 0). The pair (Spec(R),OSpec(R)) is called an affine scheme. A scheme is
defined to be a topological space X equipped with a sheaf OX of commutative
rings such that locally (U,OX|U), U being an open subset of X, is given as an
affine scheme. Hereafter, we simply call Spec(R) an affine scheme, omitting the
sheaf OSpec(R). A homomorphism ψ : A→ B of commutative rings gives a con-
tinuous map ϕ : Spec(B)→ Spec(A) defined by ϕ(p) := ψ−1(p) and a morphism
ψ# : OSpec(A)→ ϕ∗OSpec(B) of sheaves on Spec(A) defined by the natural homo-
morphism Aa → Bψ(a) (a ∈ A) induced by ψ . This correspondence gives rise to
an anti-equivalence between the category of commutative rings and the category of
affine schemes. Thus, algebraic properties concerning a ring R can be expressed in
terms of geometric properties concerning an affine Spec(R). However, as is easily
seen, the Zariski topology is too coarse to define topological notions such as loops
on Spec(R) etc. As explained in the previous section, the fundamental group of X

controls the symmetry of the set of all coverings of X. So considering the fundamen-
tal group which describes the homotopy type of a space is equivalent to considering
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all coverings of the space. Similarly, we shall introduce the notion of an étale cov-
ering of Spec(R) which corresponds to a covering of a topological space and then
define the étale fundamental group of Spec(R) following after the property (U) of
the pointed universal covering in the previous section.

For a commutative ring R and p ∈ Spec(R), let Rp denote the localization of
R at p: Rp := {r/s | r ∈ R, s ∈ R \ p}. Let κ(p) denote the residue field of Rp:
κ(p) :=Rp/pRp. A ring homomorphism A→ B is said to be finite étale if

⎧⎪⎨
⎪⎩

(1) B is a finitely generated, flat A-module,

(2) For any p ∈ Spec(A),

B ⊗A κ(p)�K1 × · · · ×Kr × (κ(p)-algebra isomorphism),

where Ki is a finite separable extension of κ(p) (1≤ i ≤ r).
In the rest of this section, a ring A shall denote an integrally closed domain and

let F be the quotient field of A. An A-algebra B is called a connected finite étale
algebra over A, if there is a finite separable extension K of F such that

{
(1) B is the integral closure of A in K,

(2) the inclusion map A ↪→ B is finite étale.

An A-algebra B is called a finite étale algebra over A if B is isomorphic to the
direct product B1 × · · · × Br of finite number of connected finite étale algebras
B1, . . . ,Br over A. An A-algebra B is called a finite Galois algebra over A if B is a
connected finite étale algebra and if for any p ∈ Spec(A) and any algebraic closure
� containing κ(p), the action of Aut(B/A) := {σ | A-algebra automorphism of B}
on HomA-alg(B,�) := {ι |A-algebra homomorphism from B to �} defined by

Aut(B/A)×HomA-alg(B,�)→HomA-alg(B,�); (σ, ι) �→ ι ◦ σ

is simply transitive. This condition is independent of the choice of p and �. If B

is a finite Galois algebra over A, we write Gal(B/A) for Aut(B/A) and call it the
Galois group of B over A. If K denotes the quotient field of B , B is a finite Galois
algebra over A if and only if K/F is a finite Galois extension (see Example 2.17
below), and then Gal(B/A)=Gal(K/F).

Example 2.17 (Field) Let F be a field. One has Spec(F ) = {(0)}. By definition,
a connected finite étale algebra over F is nothing but a finite separable extension
of F , and a étale algebra over F is an F -algebra which is isomorphic to the direct
product of finite number of finite separable extensions of F . A finite Galois algebra
over F is nothing but a finite Galois extension of F .

The most basic field in number theory is the prime field Fp := Z/pZ for a
prime number p. More generally, a finite field Fq consisting of q elements has
the unique extension of degree n in a fixed separable closure Fq for each n ∈ N.
On the other hand, over the field Q of rational numbers, there are infinitely many
(non-isomorphic) quadratic extensions. Hence, Q is much more complicated than
Fq from the viewpoint of field extensions.
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Example 2.18 (Complete discrete valuation ring) A ring R is called a discrete val-
uation ring if the following conditions are satisfied:

{
(1) R is a principal ideal domain,

(2) R is a local ring with the maximal ideal p �= (0).

So Spec(R)= {(0),p}. For i ≤ j , let fij : R/pj → R/pi be the natural ring homo-
morphism. Then {R/pi , fij } is a projective system and the projective limit

R̂ := lim←−
i∈N

R/pi :=
{
(ai) ∈

∏
i∈N

R/pi | fij (aj )= ai (i ≤ j)

}

forms a subring of the direct product ring
∏

i R/pi . Giving R/pi the discrete topol-
ogy, we endow R̂ with the induced topology of the direct product space

∏
i R/pi .

Then R̂ becomes a topological ring and is called the p-adic completion of R. By
the injective map x �→ (x mod pi ), R is regarded as a subring of R̂. If R = R̂, we
call R a complete discrete valuation ring. Let K be the quotient field of R. Let
us fix a prime element π so that p = (π). Any element x ∈ K× is then written
as x = uπn (u ∈ R×, n ∈ Z) uniquely and so we set v(x) := n. Then v is a dis-
crete valuation on K (v is independent of the choice of π ). Namely, v : K× → Z

is a surjective homomorphism such that v(x + y) ≥ min(v(x), v(y)) (∀x, y ∈ K ;
v(0) :=∞). We call v the p-adic (additive) valuation. Take c > 1, define the p-adic
multiplicative valuation by |x| := c−v(x). Then we have a metric d on K defined
by d(x, y) := |x − y|. The topology on K defined in this way is independent of the
choice of c. The completion K̂ of the metric space (K,d) is called the p-adic com-
pletion of K . The metric d and the discrete valuation v are extended to those on K̂

(written by the same d and v) so that K̂ is a topological field. Now choose a system
S(⊂ R) of complete representatives of R/p, where we choose 0 as a representa-
tive of the class 0 mod p). Then an element x ∈ K̂ with v(x)= n ∈ Z is expanded
uniquely as x = anπ

n+ an+1π
n+1+ · · · (ai ∈ S), called the p-adic expansion of x.

By the correspondence x �→ (x mod pi ), the valuation ring {x ∈ K̂ | v(x)≥ 0} of K̂

is identified with R̂. The quotient field K̂ of R̂ is called a complete discrete valua-
tion field. The maximal ideal of R̂ is the valuation ideal p̂ := {x ∈ K̂ | v(x) > 0} and
the residue field R̂/p̂ is identified with R/p. For example, Z(p) for a prime number
p is a discrete valuation ring. The completions of Z(p) and Q with respect to the
associated p-adic valuation are called the ring of p-adic integers and the p-adic
field, respectively which are denoted by Zp and Qp , respectively.

Let A be a complete discrete valuation ring and let F be the quotient field of A.
Let K be a separable extension of F of degree n and let B be the integral closure
of A in K . Then B is also a discrete valuation ring with the quotient field K . Fur-
thermore, B is a free A-module of rank n. Let p and P be the maximal ideals of A

and B , respectively. Then we can write pB =Pe (e ∈ N) uniquely. If e = 1, K/F

is called an unramified extension, and if e > 1, K/F is called a ramified extension.
The integer e is called the ramification index of K/F . If e = n, K/F is called a



2.2 The Case of Arithmetic Rings 27

totally ramified extension. Since B ⊗A κ(p)� B/Pe , one has

B is a connected étale algebra over A

⇔ K/F is an unramified extension

⇔ κ(P)/κ(p) is a separable extension of degree n.

Thus, the correspondences K/F �→ B/A �→ κ(P)/κ(p) gives rise to the follow-
ing bijections:

{finite unramified extension of F }/F -isom.

∼→ {connected finite étale algebra over A}/A-isom.

∼→ {finite separable extension of κ(p)}/κ(p)-isom.

For the case that A= Zp and F =Qp , B is called a ring of p-adic integers and
K is called a p-adic field where p stands for the maximal ideal of B .

Example 2.19 (Dedekind domain) A ring R is called a Dedekind domain if the
following conditions are satisfied

⎧⎪⎨
⎪⎩

(1) R is a Noetherian integral domain (not a field),

(2) R is integrally closed,

(3) any non-zero prime ideal of R is a maximal ideal.

For example, a principal ideal domain is a Dedekind domain. In the rest of this
book, we denote by Max(R) the set of maximal ideals of R. The condition (3) is
equivalent to the condition that Spec(R)=Max(R)∪{(0)}. In terms of ideal theory,
a Dedekind domain R is characterized as follows: “Any non-zero ideal a of R is ex-
pressed uniquely (up to order) as a= p

e1
1 · · ·per

r where pi ’s are distinct prime ideals
of R and ei ∈ N”. Let K be the quotient field of a Dedekind domain R. A finitely
generated R-submodule(�= (0)) of K is called a fractional ideal of R. For a frac-
tional ideal a, we let a−1 := {x ∈K | xa⊂ R}. Then a−1 is a fractional ideal of R

and one has aa−1 = R. So any nonzero ideal a of R is expressed uniquely (up to
order) as a= p

e1
1 · · ·per

r where pi ’s are distinct prime ideals of R and ei ∈ Z. Hence,
the set of all fractional ideals forms a group by multiplication, called the fractional
ideal group of R, which is the free Abelian group generated by Max(R). The quo-
tient group of the fractional ideal group by the subgroup consisting of principal
ideals (a)= aR (a ∈K×) is called the ideal class group of R.

Let R be a Dedekind domain. Since the localization Rp of R at p ∈Max(R) is
a discrete valuation ring [Se2, Chap. I, Sect. 3], one has its completion R̂p as in
Example 2.18. The completed ring R̂p is called the p-adic completion of R. The
completion Kp of the quotient field K of Rp is defined similarly and is called the
p-adic completion of K . We note that the localization S−1R of a Dedekind domain
R with respect to any multiplicatively closed set S(�= R \ {0}) is also a Dedekind
domain.
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Let A be a Dedekind domain and let F be the quotient field of A. Let K be a
separable extension of F of degree n and let B be the integral closure of A in K .
Then B is also a Dedekind domain with the quotient field K [ibid, Chap. I, Sect. 4].
Since B ⊗A Ap is a finitely generated flat Ap-module for any p ∈ Spec(A), B is a
finitely generated flat A-module. For p ∈Max(A), we can write in a unique manner
pB = P

e1
1 · · ·Per

r where Pi ’s are distinct prime ideals of B and ei ∈ N. We then
say that Pi lies over p. We say that Pi is unramified in K/F if ei = 1, and we say
that Pi is ramified in K/F if ei > 1. The integer ei is called the ramification index
of Pi in K/F . We say that p is unramified in K/F if e1 = · · · = er = 1, and we
say that p is ramified in K/F if ei > 1 for some i. We say that p is totally ramified
in K/F if r = 1, e1 = n, and we say p is completely decomposed in K/F if r = n,
e1 = · · · = er = 1. We also say that p is inert in K/F if r = e1 = · · · = er = 1. If any
p ∈Max(A) is unramified in K/F , K/F is called an unramified extension, and if
there is a p ∈Max(A) which is ramified K/F , K/F is called a ramified extension.
Since B ⊗A κ(p)� B/P

e1
1 × · · · ×B/P

er
r , one has

B is a connected finite étale algebra over A

⇔ K/F is an unramified extension.

Since the étale fundamental group of a scheme is defined as a pro-finite group,
we recall here some basic materials about pro-finite groups which will be used later
on. Let (Gi,ψij ) (i ∈ I ) be a projective system consisting of finite groups Gi and
homomorphisms ψij : Gj → Gi (i ≤ j ). Giving Gi the discrete topology, we en-
dow the projective limit lim←−i∈IGi with the induced topology as a subspace of the
direct product space

∏
i∈I Gi . Then lim←−i∈I Gi becomes a topological group, called a

pro-finite group. A pro-finite group is characterized as a topological group G which
satisfies one of the following two properties: (1) G is a compact and totally discon-
nected, or (2) G has a fundamental system of neighborhoods of the identity con-
sisting of compact and open subgroups of G. If each Gi is an l-group for a prime
number l, the profinite lim←−i

Gi is called a pro-l group.

Example 2.20 Let G be a group. Consider the set {Ni | i ∈ I } of all normal sub-
groups of G with finite index and define i ≤ j if Nj ⊂Ni . Let ψij :G/Nj →G/Ni

be the natural homomorphism for i ≤ j . Then (G/Ni,ψij ) forms a projective sys-
tem. The projective limit

Ĝ := lim←−
i

G/Ni

is called the pro-finite completion of G. If we consider only normal subgroups Ni

of G such that each G/Ni is an l-group for a prime number l, the projective limit

Ĝ(l) := lim←−
G/Ni=l-group

G/Ni

is called the pro-l completion of G. If F is a free group on words x1, . . . , xr , the
pro-finite completion and pro-l completion of F (l being a prime number) is called
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a free pro-finite group and a free pro-l group on x1, . . . , xr respectively. For example,
the pro-l completion lim←−n

Z/lnZ of the additive group Z is nothing but the additive
group of the ring of l-adic integers Zl . The pro-finite completion lim←−n

Z/nZ of Z is

the direct product
∏

l Zl (l running over all prime numbers) which is denoted by Ẑ.

Let F̂ be a free pro-finite group on words x1, . . . , xr . For R1, . . . ,Rs ∈ F̂ , we
denote by 〈〈R1, . . . ,Rs〉〉 the smallest normal closed subgroup of F containing
R1, . . . ,Rs . If a pro-finite group G is isomorphic to the quotient F̂ /〈〈R1, . . . ,Rs〉〉,
we write G by the following form

G= 〈x1, . . . , xr |R1 = · · · =Rs = 1〉

and call it a presentation of G in terms of generators and relations. We also define a
presentation of a pro-l group similarly as a quotient of a free pro-l group F̂ (l). For
a pro-l group G, one has the following [NSW, Chap. III, Sect. 9] proposition.

Proposition 2.21 A subset S of G generates G topologically if and only if the set
of residue classes S mod Gl[G,G] generates G/Gl[G,G] topologically. The car-
dinality of a minimal generator system of G is given by the dimension of the 1st
group cohomology group H 1(G,Fl ) over Fl . Further, the cardinality of minimal
relations in a minimal generator system is given by the dimension of the 2nd group
cohomology group H 2(G,Fl ) over Fl .

Example 2.22 Let G be a pro-finite group and let l be a prime number. By Zorn’s
lemma, one has a minimal element Nl with respect to the inclusion relation among
all normal subgroups N of G such that G/N is a pro-l group. In fact, Nl is char-
acterized by the following two properties: (1) G/Nl is a pro-l group, (2) if G/N

is a pro-l group, then Nl ⊂N. We call G/Nl the maximal pro-l quotient of G and
denote it by G(l). The pro-l completion Ĝ(l) of a group G is the maximal pro-l
quotient of the pro-finite completion Ĝ of G. For instance, Zl is the maximal pro-l
quotient of Ẑ.

Now let A be an integrally closed domain again and let X := Spec(A). In order to
define the étale fundamental group of X as a covariant functor, we need to consider
all finite étale coverings of X including non-connected ones. We call a morphism
h : Y → X of schemes a finite étale covering if there is a finite étale algebra B =
B1×· · ·×Br (Bi being connected) over A such that Y = Spec(B)=⊔r

i=1 Spec(Bi)

(disjoint union of schemes) and h is the morphism associated to the inclusion
A ↪→ B . A finite étale covering h′ : Y ′ → X is called a subcovering of h : Y → X

if there is a morphism ϕ : Y → Y ′ such that h′ ◦ ϕ = h. We denote by CX(Y,Y ′)
the set of such morphisms ϕ. If there is an isomorphism ϕ ∈ CX(Y,Y ′), we say that
Y and Y ′ are isomorphic over X. The set of isomorphisms ϕ ∈ CX(Y,Y ) forms a
group, called the group of covering transformations of h : Y → X, which denoted
by Aut(Y/X).
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Let p ∈ X and fix an algebraically closed field � containing κ(p). It defines a
morphism x : Spec(�)→ X, called a geometric base point or simply a base point
of X. For a finite étale covering h : Y →X, we define the fiber of x by

Fx(Y ) := HomX

(
Spec(�),Y

)
:= {y : Spec(�)→ Y | h ◦ y = x

}
� HomA-alg(B,�),

and, for ϕ ∈ CX(Y,Y ′), we define Fx(ϕ) : Fx(Y )→ Fx(Y
′) by Fx(y) := ϕ ◦ y (Fx

is called the fiber functor from the category of finite étale coverings of X to the
category of sets). If Y is a connected (i.e., Y = Spec(B) for a connected finite étale
algebra B over A), #Fx(Y ) is independent of the choice of x. So we call #Fx(Y ) the
degree of h : Y →X which is denoted by deg(h) or [Y :X]. A morphism h : Y →X

is called a finite Galois covering if Y = Spec(B) for a finite Galois algebra B over A.
In other words, Y is connected and the action of Aut(Y/X) on Fx(Y ) defined by
(σ, y) �→ σ ◦ y is simply transitive. This condition is independent of the choice of
x (i.e., the choice of p and �). For a finite Galois covering h : Y → X, we call
Aut(Y/X) the Galois group of Y over X and denote it by Gal(Y/X).

A pair of a finite étale covering h : Y → X and y ∈ Fx(Y ) is called a pointed
finite étale covering. A morphism between pointed finite étale coverings (Y, y) and
(Y ′, y′) over X is given by a ϕ ∈ CX(Y,Y ′) satisfying ϕ ◦ y = y′. Then we have the
following theorem which is regarded as an analogue of the property (U)-(i) of the
universal covering in Sect. 2.1.

Theorem 2.23 There is a projective system ((Yi
hi→X,yi), ϕij ) of pointed finite Ga-

lois coverings such that for any finite étale covering h : Y →X, the correspondence
CX(Yi, Y ) � ϕ �→ ϕ ◦ yi ∈ Fx(Y ) gives the following bijection:

lim−→
i

CX(Yi, Y )� Fx(Y ).

Let X̃ = lim←−i
Yi and x̃ = (yi). The pair (X̃, x̃) plays a role similar to the pointed

universal covering of a manifold. Thus, as an analogue of (U)-(ii) in Sect. 2.1, we
define the étale fundamental group2 of X with base point x by

π1(X,x) :=Gal(X̃/X) := lim←−
i

Gal(Yi/X),

where the projective limit is taken with respect to the composite

Gal(Yj /X)� Fx(Yj )
Fx(ϕij )→ Fx(Yi)�Gal(Yi/X) (i ≤ j).

2Although the étale fundamental group is often denoted by πét
1 (X,x), we write it by π1(X,x) or

π1(X) for simplicity.



2.2 The Case of Arithmetic Rings 31

The group structure of x is independent of the choice of x (non-canonically isomor-
phic). Thus, we often write simply π1(X) omitting a base point and call it the étale
fundamental group of X. By Theorem 2.23, for any finite étale covering Y over X,
π1(X, x̄) acts on Fx(Y ) continuously from the right. We write this action by y.σ

(σ ∈ π1(X,x), y ∈ Fx̄(Y )).
Let A′ be an integrally closed domain and let A→A′ be a ring homomorphism.

Let f :X′ := Spec(A′)→X be the associated morphism of affine schemes. We fix
an algebraic closure �′ of κ(p′) and let x′ : Spec(�′)→ X′ be the corresponding
base point of X′. The composite x := f ◦ x̄′ : Spec(�′)→ X gives a base point
of X. Then, for any finite étale covering h : Y →X, one has the bijection

Fx′(Y ×X X′) = HomX′
(
Spec(�′), Y ×X X′

)
� HomX

(
Spec(�′), Y

)= Fx(Y ).

Here we note that Y ×X X′ may not be connected, even though Y is connected. In
the above bijection, let us take Y to be Yi in Theorem 2.23 and let y′i be the point in
Fx′(Yi ×X X′) corresponding to yi ∈ Fx̄(Yi). Then for σ ′ ∈ π1(Y

′, y′), we have the
unique σi ∈Gal(Yi/X) such that y′i .σ ′ = σi ◦ yi . So letting f∗(σ ′) := (σi), we have
a continuous homomorphism f∗ : π1(X

′, x′)→ π1(X,x).

For a projective system (Yi
hi→X,ϕij ) of (connected) finite étale coverings of X,

the projective limit Y = lim←−i
Yi is called a (connected) pro-finite étale covering, and

we let Fx(Y ) := {(yi) | yi ∈ Fx(Yi), ϕij ◦ yj = yi(ı ≤ j)}. For y ∈ Fx(Y ), we set
h∗(π1(Y, y)) :=⋂i hi∗(π1(Yi, yi)). If each Yi is a Galois covering of X, we call Y a
pro-finite Galois covering and define the Galois group of Y over X by Gal(Y/X) :=
lim←−i

Gal(Yi/X). The main theorem of the Galois theory (Galois correspondence)
over X is stated as follows.

Theorem 2.24 (Galois correspondence) The correspondence (h : Y → X) �→
h∗(π1(Y, y)) (ȳ ∈ Fx(Y )) gives rise to the following bijection:

{connected pro-finite étale covering h : Y →X}/isom. over X

∼→ {closed subgroup ofπ1(X,x)}/conjugate.

Furthermore, this bijection satisfies the followings:

h : Y → X is a connected finite étale covering ⇔ h∗(π1(Y, y)) is an open sub-
group.
h′ : Y ′ → X is a subcovering of h : Y → X ⇔ h∗(π1(Y, y))(ȳ ∈ Fx(Y )) is a
subgroup of h′∗(π1(Y

′, y′)) (ȳ′ ∈ Fx(Y
′)) up to conjugate.

h : Y → X is a Galois covering ⇔ h∗(π1(Y, y)) (y ∈ Fx(Y )) is a normal sub-
group of π1(X,x). Then one has Gal(Y/X)� π1(X,x)/h∗(π1(Y, y)).

More generally, we can replace π1(X,x) by Gal(Z/X) for a fixed pro-finite Ga-
lois covering Z→X in the above, and then we have a similar bijection:
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{connected subcovering of Z→X}/isom. over X.

∼−→ {closed subgroup of Gal(Z/X)}/conjugate.

Example 2.25 Let F be a field. Choose an algebraically closed field � containing F

which defines a base point x : Spec(�)→ Spec(F ). Let F be the separable closure
of F in �. The set of all finite Galois extensions of Ki ⊂� of F is inductively or-
dered with respect to the inclusion relation and one has F = lim−→i

Ki , the composite
field of Ki ’s. Therefore, we can take Spec(Ki) for Yi in Theorem 2.23 and hence

π1
(
Spec(F ), x

)= lim←−
i

Gal(Ki/F )=Gal(F/F ).

Let F be a finite field Fq . For each n ∈ N, there is the unique subfield Fqn ⊂ Fq

of degree n over Fq and so Fq = lim−→n
Fqn . Define the Frobenius automorphism

σ ∈Gal((Fq/Fq) by

σ(x)= xq (x ∈ Fq).

For each n ∈ N, the correspondence σ |Fqn �→ 1 mod n gives an isomorphism
Gal(Fqn/Fq)� Z/nZ. Hence, we have

π1
(
Spec(Fq)

)= lim←−
n

Gal(Fqn/Fq)� lim←−
n

Z/nZ= Ẑ.

Here, the Frobenius automorphism σ corresponds to 1 ∈ Ẑ.

Example 2.26 Let A be a complete discrete valuation ring with the quotient field F .
Choose an algebraically closed field � containing F which defines a base point
x : Spec(�)→ Spec(A). Consider the set of all finite Galois algebras Bi over
A in �, which is inductively ordered. Let Ki be the quotient field of Bi and let
F̃ = lim−→i

Ki , the composite field of Ki ’s. The field F̃ is called the maximal unram-
ified extension of F in �. Then we can take Spec(Bi) for Yi in Theorem 2.23 and
hence

π1
(
Spec(A), x

)= lim←−
i

Gal(Bi/A)= lim←−
i

Gal(Ki/F )=Gal(F̃ /F ).

Let p be the maximal ideal of A. Let f : Spec(κ(p))→ Spec(A) be the mor-
phism associated to the natural homomorphism A→ κ(p). Choose an algebraically
closed field �′ containing κ(p). Let x′ : Spec(�′)→ Spec(κ(p)) be the associ-
ated base point and let x := f ◦ x′. Since there is the bijection between the set
of κ(p)-isomorphism classes of finite separable extensions of κ(p) and the set of F -
isomorphism classes of finite unramified extensions of F (Example 2.18), f induces
the isomorphism f∗ : π1(Spec(κ(p)), x ′)� π1(Spec(A), x).

Example 2.27 Let A a Dedekind domain with the quotient field F . Choose an al-
gebraically closed field � containing F which defines a base point Spec(�)→
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Spec(A). Consider the set of all finite Galois algebras Bi over A in �, which is
inductively ordered. Let Ki be the quotient field of Bi and let F̃ = lim−→i

Ki , the com-

posite of Ki ’s. The field F̃ is called the maximal unramified extension of F in �.
Then we can take Spec(Bi) for Yi in Theorem 2.23 and hence

π1
(
Spec(A), x

)= lim←−
i

Gal(Bi/A)= lim←−
i

Gal(Ki/F )=Gal(F̃ /F ).

Example 2.28 Let A be an integrally closed domain and let X = Spec(A). Let Yi ’s
be finite Galois coverings of X in Theorem 2.23. Now let us consider only Yi→X

whose degree is a power of a fixed prime number l. We then define the pro-l étale
fundamental group of X by

π1(X,x)(l) := lim←−[Y :X]=a power of l

Gal(Yi/X).

In fact, π1(X,x)(l) is the maximal pro-l quotient of π1(X,x) (Example 2.22).
Suppose A is a field F . Let F(l) be the composite field of all finite l-extensions
Ki of F (a finite l-extension means a finite Galois extension whose degree is a
power of l) in �, called the maximal l-extension of F . Then one has π1(X,x)(l)=
Gal(F (l)/F ). Suppose A is a Dedekind domain. Let F̃ (l) be the composite field
of all finite unramified l-extensions of F in �, called the maximal unramified l-
extension of F . Then one has π1(X,x)(l)=Gal(F̃ (l)/F ).

A typical example of a Dedekind domain is the ring of integers of a number field
and its localizations. Here we recall some basic material concerning number fields
which shall be used later. A number field is an algebraic extension of the field of
rational numbers Q. The ring of integers of a number field k is the integral closure
of Z in k and is denoted by Ok . When the degree [k :Q] is finite, we often call k a
finite number field. In the following, we assume k is a finite algebraic number field
and set n := [k :Q] is finite. Since Z is a principal ideal domain, Ok is a Dedekind
domain [Se2, Chap. I, Sect. 4]. Further, Ok is a free Z-module of rank n. For p ∈
Max(Ok), p∩Z is an ideal of Z generated by a prime number p and the residue field
κ(p)=Ok/p is a finite extension of Fp . In this book, we shall often write Fp instead
of κ(p) to indicate that it is a finite field. For an ideal a(�= (0)), the quotient ring
Ok/a is finite. The order #(Ok/a) is called the norm of a and is denoted by Na. For
a fractional ideal a=∏p p

ep (ep ∈ Z), the norm Na is defined by
∏

p(Np)ep . For a
principal ideal (α) (α ∈ k×), one has N(α)= |Nk/Q(α)| where Nk/Q(α) :=∏n

i=1 αi

(αi running over conjugates of α over Q). The group of fractional ideals of Ok is
called the ideal group of k which we denote by I (k). It is a free Abelian group
generated by Max(Ok). The subgroup P(k) consisting of principal fractional ideals
is called the principal ideal group of k. The quotient group I (k)/P (k) is called the
ideal class group of k which we denote by H(k).

For p ∈Max(Ok), we denote by Op the p-adic completion of Ok and by kp the
p-adic completion of k, which are a ring of p-adic integers and a p-adic field in the
sense of Example 2.18, respectively. So kp is equipped with the topology defined
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by the p-adic valuation. Since the residue field Fp of Op is finite, Op is a compact
topological ring and kp is a locally compact topological field. An embedding of k

into a locally compact topological field is given as one of the embeddings k ↪→ kp
for some p ∈Max(Ok), k ↪→ R or k ↪→ C. Among the conjugate fields of k (i.e.,
the images of embeddings k ↪→ C), let ιi : k � k(i) ⊂ R (1 ≤ i ≤ r1) be the real

embeddings, and let ιr1+j : k � k(r1+j) ⊂ C, ιr1+j : k � k
(r1+j) ⊂ C (1 ≤ j ≤ r2)

be the complex but not real embeddings where ιr1+j and k
(r1+j)

mean the complex
conjugate of ιr1+j and k(r1+j), respectively and so r1 + 2r2 = n. For a ∈ k, we set
|a|p := Np−vp(a) (p ∈Max(Ok), vp is ap-adic additive valuation), |a|∞i

:= |ιj (a)|
(1 ≤ j ≤ r1), |a|∞r1+j

:= |ιr1+j (a)|2 = ιr1+j (a)ιr1+j (a) (1 ≤ j ≤ r2). These give
all nontrivial multiplicative valuations on k up to equivalence. We identify an em-
bedding ιj with the valuation | · |∞j

and call it an infinite prime of k and de-
note it by ∞j or v∞j

simply. The infinite primes v∞1, . . . , v∞r1
are called real

primes, and v∞r1+1, . . . , v∞r1+r2
are called complex primes. We denote the set of

infinite primes by S∞k := {v∞1, . . . , v∞r1+r2
} and often write v for an element of

Sk :=Max(Ok)∪ S∞k . Then for a ∈ k×, the following product formula holds:

∏
v∈Sk

|a|v = 1 (a ∈ k×).

Intuitively, a scheme Spec(Ok) is ‘compactified’ by adding S∞k . We thus write
Spec(Ok) := Spec(Ok) ∪ S∞k . An element a ∈ k× is said to be totally positive if
ιj (a) > 0 (1 ≤ j ≤ r1). We denote by P+(k) the group of principal fractional ide-
als generated by totally positive elements in k. The quotient group I (k)/P+(k) is
called the ideal class group in the narrow sense or simply the narrow ideal class
group of k, which we denote by H+(k). For a Z-basis ω1, . . . ,ωn of Ok , we define
the discriminant of k by dk := det(ιi((ωj )))

2. It is independent of the choice of basis
ω1, . . . ,ωn.

Let K/k be a finite extension. For an infinite prime v ∈ S∞k , we say that v is ram-
ified in K/k if v is a real prime and is extended to a complex prime of K . Otherwise,
namely, if v is a complex prime of k, or if v is a real prime and any extension of v

to K is a real prime, then we say that v is unramified in K/k. According to the con-
vention in algebraic number theory, we say that K/k is an unramified extension, if
all p ∈Max(Ok) and all v ∈ S∞k are unramified in K/k. When all p ∈Max(Ok) are
unramified and some infinite prime may be ramified in K/k, we say that K/k is an
unramified extension in the narrow sense or simply a narrow unramified extension.

Since a number field k is embedded into C (or p-adic field) as we have seen
above, the ring of integers Ok is not only a Dedekind domain but also enjoys some
analytic properties. Here are most notable properties of a number field k of finite
degree over Q. Notations are as above:

Minkowski’s theorem 2.29 If k �=Q, then |dk|> 1.

The finiteness of ideal classes 2.30 The (narrow) ideal class group H(k) (or
H+(k)) is a finite Abelian group.
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Dirichlet’s unit theorem 2.31 The unit group O×k is the direct product of the cyclic
group of roots of unity in k and a free Abelian group of rank r1 + r2 − 1.

Example 2.32 (Quadratic number field) Let m be a square-free integer (�= 1) and
let k :=Q(

√
m), a quadratic number field. Then one has

Ok =
{
Z[ 1+

√
m

2 ] m≡ 1 mod 4,

Z[√m] m≡ 2,3 mod 4,

dk =
{

m m≡ 1 mod 4,

4m m≡ 2,3 mod 4.

O×k �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

{±1} ×Z m > 0,

{±1,±√−1} m=−1,

{±1,±ω,±ω2}(ω := 1+√−3
2

)
m=−3,

{±1} m=−2, m <−3.

Example 2.33 (Cyclotomic field) Let n be an integer≥ 3 and let ζn := exp( 2π
√−1
n

).
Let k := Q(ζn), a cyclotomic field. Then k is a finite Abelian extension of Q

whose Galois group Gal(k/Q) is isomorphic to (Z/nZ)×. This isomorphism is
given as follows: For g ∈ Gal(k/Q), define m(g) by g(ζn) = ζ

m(g)
n . Then the

map g �→ m(g) gives an isomorphism Gal(k/Q) � (Z/nZ)×. Hence, [k : Q] =
φ(n)(Euler function). One has Ok = Z[ζn] and O×k � 〈±ζn〉 × Z

φ(n)/2−1. The dis-
criminant of k is given as follows: If n= pe for a prime number p,

dk =
{
−ppe−1(pe−e−1) p ≡ 3 mod 4 or p = e= 2

ppe−1(pe−e−1) otherwise.

In general, for n = p
e1
1 · · ·per

r the decomposition of prime factors of n, we have

dk = d

φ(n)

φ(p
e1
1 )

k1
· · ·d

φ(n)

φ(p
er
r )

kr
where ki =Q(ζ

p
ei
i
).

Example 2.34 Let Op be a ring of p-adic integers and kp be its quotient field. By
Example 2.26, one has

π1
(
Spec(Op)

)� π1
(
Spec(Fp)

)� Ẑ.

Since a separable closure of Fp is obtained by adjoining n-th roots of unity to Fp

for all natural number n prime to q :=Np, the maximal unramified extension k̃p of
kp is given by

k̃p = kp
(
ζn | (n, q)= 1

)
,

where ζn is a primitive n-th root of unity in kp. The element of π1(Spec(Op)) =
Gal(k̃p/kp) corresponding to the Frobenius automorphism σ ∈ π1(Spec(Fp) =
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Gal(Fp/Fp) under the above isomorphism is also called the Frobenius automor-
phism, denoted by the same σ , which is given by σ(ζn)= ζ

q
n .

Example 2.35 By Minkowski’s theorem 2.29, there is no nontrivial connected finite
étale algebra over Z. Hence, we have

π1
(
Spec(Z)

)= {1}.
Example 2.36 Let k be a number field of finite degree over Q and let Ok be the ring
of integers of k. Let S be a finite set of maximal ideals of Ok : S = {p1, . . . ,pn}. By
the finiteness of ideal classes (2.30), one finds ni ∈ N for each i so that pni

i = (ai),
ai ∈Ok . Set A = Ok[ 1

a1···an
]. Since A is a localization of Ok , A is a Dedekind

domain and Spec(A)= Spec(Ok) \ S. Choose an algebraically closed field � con-
taining k which defines a base point x : Spec(�)→ Spec(A). For a finite extension
K/k in �, if any maximal ideal which is not contained in S is unramified in K/k,
we say that K/k is unramified outside S ∪ S∞k (S∞k being the set of infinite primes
of k). Let kS = lim−→i

ki be the composite field of all finite Galois extensions ki of
k in � which are unramified outside S ∪ S∞k . The field kS is called the maximal
Galois extension of k unramified outside S ∪ S∞k . We can take Spec(ki) for Yi in
Theorem 2.23 and hence

π1
(
Spec(Ok) \ S,x

)=Gal(kS/k)= lim←−
i

Gal(ki/k).

We denote this pro-finite group by GS(k). In the case k = Q, we shall simply
write GS . For a prime number l, let kS(l) be the maximal l-extension of k unramified
outside S ∪ S∞k . We then have GS(k)(l)=Gal(kS(l)/k).

Finally, we shall review some materials about ramified extensions over a
Dedekind domain. Let A be a Dedekind domain with the quotient field F . Let
K be a finite separable extension of F and let B be the integral closure of A in K .
The morphism f : N := Spec(B)→ M := Spec(A) induced from the inclusion
A ↪→ B is called a ramified covering if K/F a ramified extension. The information
on which P ∈Max(B) or p ∈Max(A) is ramified is detected by the different or
the relative discriminant for B/A. Let ιj : K→ F (1 ≤ j ≤ n) be all embeddings
of K into a separable closure F of F . The trace TrK/F and the norm NK/F are
defined by TrK/F (a) := ι1(a)+ · · · + ιn(a) and NK/F (a) := ι1(a) · · · ιn(a), respec-
tively. Let b := {b ∈ K | TrK/F (ab) ∈ A ∀a ∈ B}. We easily see b is a fractional
ideal containing B . We then define the different of B/A by dB/A := b−1 and the
relative discriminant of B/A by dB/A :=NK/F (dB/A). If K/F is a finite extension
of number fields of finite degree over Q, we denote simply by dK/F the relative
discriminant dOK/OF

and call it the relative discriminant of K/F . In particular,
dk/Q coincides with the ideal of Z generated by the discriminant dk . Now, as for the
ramification, we have the following:

P is ramified in K/F ⇐⇒ P|dB/A

p is ramified in K/F ⇐⇒ p|dB/A.
(2.1)
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Therefore, only finitely many p ∈Max(A) are ramified in K/F . Let SF be the set of
p ∈Max(A) ramified in K/F and let SK := f−1(SF ). We call f |N\SK

:N \ SK→
M \ SF the associated finite étale covering. If f |N\SK

is a Galois covering, f

is called a ramified Galois covering. This condition amounts to K/F being a
Galois extension. Finally, K/F is called a tamely ramified extension, if for any
P ∈Max(B) ramified in K/F , the ramification index of P is prime to the char-
acteristic of the residue field κ(P). Here if the characteristic of κ(P) is zero, no
condition is meant. Unless a ramification is tame, i.e., the ramification index of P
is divisible by the positive characteristic of κ(P), then it is called a wild ramifi-
cation. Let � be an algebraically closed field containing F which defines a base
point x : Spec(�)→ X := Spec(F ), and let F t be the composite field of all fi-
nite tamely ramified extensions Ki of F in �. The field F t is called the maximal
tamely ramified extension of F . Then we define the tame fundamental group of X

by

πt
1(X,x)= lim←−

Ki

Gal(Ki/F )=Gal
(
F t/F

)
,

where the projective limit is taken over all finite tamely ramified extensions Ki/F

in �.

Example 2.37 Let k be a number field of finite degree over Q and let dk be the
discriminant of k. By (2.1), Spec(Ok)→ Spec(Z) is a finite covering which is ram-
ified over primes (p), p|dk , and Spec(Ok[1/dk])→ Spec(Z[1/dk]) is the associated
étale covering.

Example 2.38 Let p be a fixed prime number. For n ∈ N, let ζpn := exp( 2π
√−1
pn )

and kn := Q(ζpn). Set On := Okn , Mn := Spec(On) and Xn := Spec(On[ 1
p
]) for

simplicity. By Example 2.33 and (2.1), the natural map Mn→M0 = Spec(Z) is a
Galois covering ramified over (p), and Xn→ X0 = Spec(Z[ 1

p
]) is the associated

étale covering. The Galois group is given by

Gal(Mn/M0)=Gal(Xn/X0)=Gal(kn/k0)�
(
Z/pn

Z
)×

.

By the natural maps Mn+1→Mn and Xn+1→Xn, M∞ := lim←−n
Mn is a pro-finite

ramified Galois covering over M0 and X∞ := lim←−n
Xn is a pro-finite Galois covering

over X0. Let k∞ := lim−→n
kn = Q(ζpn | n ≥ 1). Then the Galois group of M∞ over

M0 is given by

Gal(M∞/M0)=Gal(X∞/X0)=Gal(k∞/Q)� lim←−
n

(
Z/pn

Z
)× = Z

×
p .

The ramification of (p) is as follows: Since the minimal polynomial of ζpn over Q is

f (X)= Xpn−1
Xpn−1−1

and f (1+X)≡Xpn−1(p−1) mod p, we have pOn = ppn−1(p−1),

where p = (ζpn − 1). The ramification index pn−1(p − 1) is same as the covering
degree [kn :Q] = φ(pn) and so (p) is totally ramified in Mn→M0.
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Example 2.39 Let kp be a p-adic field with q = Np and let X = Spec(kp). Choose
an algebraically closed field � containing kp and let kp be the algebraic clo-
sure of kp in �. By Example 2.34, the maximal unramified extension k̃p of kp
is given by kp(ζn | (n, q) = 1), where ζn is a primitive n-th root of unity in kp
so that ζm

n = ζn/m for m|n. The kernel of the natural homomorphism π1(X) =
Gal(kp/kp)→ π1(Spec(Op)) = Gal(k̃p/kp) induced by the inclusion Op ↪→ kp
is called the inertia group of kp which we denote by Ikp . The tame fundamental

group πt
1(X) will be described as an extension of Gal(k̃p/kp) by the maximal tame

quotient I t
kp

of Ikp as follows. Let π be a prime element of kp. Then the maximal

tamely ramified extension kt
p of kp is given by

kt
p = k̃p

(
n
√

π | (n, q)= 1
)
.

We define the monodromy τ ∈Gal(kt
p/kp) by

τ(ζn)= ζn, τ ( n
√

π)= ζn
n
√

π.

Then τ is a topological generator of I t
kp
:=Gal(kt

p/kp), the maximal tame quotient
of Ikp , and gives the following isomorphism

Gal
(
kt
p/k̃p

)� lim←−
(n,q)=1

Z/nZ=: Ẑ(q ′),

where τ corresponds to 1 ∈ Ẑ
(q ′). Hence, we have the following short exact se-

quence:

1→ Gal(kt
p/k̃p)→Gal(kt

p/kp)→ Gal(k̃p/kp)→ 1.

"| "|
Ẑ

(q ′)
Ẑ

We define an extension of the Frobenius automorphism σ ∈ Gal(k̃p/kp) to
Gal(kt

p/kp), denoted by the same σ , by

σ(ζn)= ζ
q
n , σ ( n

√
π)= n

√
π.

Then τ and σ are subject to the relation

στ = τqσ.

Thus, we have

πt
1(X)=Gal

(
kt
p/kp

)= 〈τ, σ | τq−1[τ, σ ] = 1
〉
.

We note that for a prime number l prime to q , the pro-l fundamental group
π1(Spec(kp))(l) has a similar presentation.
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Example 2.40 Let k be a number field of finite degree over Q. Let S be a finite subset
of Max(Ok) and let X := Spec(Ok) \ S. Let kS be the maximal Galois extension
of k unramified outside S ∪ S∞k (Example 2.36). Take a p ∈Max(Ok) and let kp

be the p-adic field. Choose an algebraic closure kp of kp and hence a base point
x : Spec(kp)→ Spec(kp). Combining x with the natural morphism Spec(kp)→X,
we have a base point of X, y : Spec(kp)→X. This defines an embedding kS ↪→ kp
over k and induces the homomorphism

ϕp : π1
(
Spec(kp), x

)=Gal(kp/kp)→ π1(X,y)=GS(k).

The embedding kS ↪→ kp over k defines a prime p in kS over p. Then the image of
ϕp coincides with the decomposition group of p

Dp :=
{
g ∈GS(k) | g(p)= p

}
.

Hereafter, we suppose an embedding kS ↪→ kp and hence p is fixed, and we call Dp

the decomposition group over p in kS/k and denote by Dp. Similarly, we call the
image of the inertia group Ikp under ϕp the inertia group over p in kS/k and denote
by Ip. If we replace an embedding kS ↪→ kp by another one, Dp and Ip are changed
to some conjugate subgroups in GS(k).

Suppose p /∈ S. Then p is unramified in kS/k, namely, Ip = 1. So ϕp factors
through Gal(k̃p/kp). We call the image σp := ϕp(σ ) ∈GS(k) of the Frobenius au-
tomorphism σ ∈ Gal(k̃p/kp) the Frobenius automorphism over p. If we replace
an embedding kS ↪→ kp by another one, σp is changed to a conjugate in GS(k).
Therefore in an Abelian quotient of GS(k), the image of σp is uniquely deter-
mined.

Although we have dealt with étale fundamental groups in this section, one has
also the theories of étale (co)homology and higher homotopy groups for schemes
which are defined by a simplicial method, similar to the method in topology (cf.
[Go2, Go3, Go4, AM, Frl]). For example, Spec(Op) and Spec(Fp) are étale ho-
motopy equivalent. For recent investigations on the subject, we refer to [Sc2] and
references therein.

2.3 Class Field Theory

The Abelian fundamental group of X = Spec(A) is the Abelianization of the
étale fundamental group π1(X) and is denoted by πab

1 (X). The pro-finite cov-
ering of X corresponding to the closed commutator subgroup [π1(X),π1(X)] is
called the maximal Abelian covering of X which we denote by Xab. So πab

1 (X)=
Gal(Xab/X). If A is a field F , one has πab

1 (Spec(F )) = Gal(F ab/F ) where F ab

is the maximal Abelian extension of F , the composite field of all finite Abelian
extensions of F . For a Dedekind domain A, let F be the quotient field of A.



40 2 Preliminaries—Fundamental Groups and Galois Groups

Then one has πab
1 (Spec(A)) = Gal(F̃ ab/F ) where F̃ ab is the maximal unramified

Abelian extension of F , the composite field of all finite unramified Abelian ex-
tensions of F . Class field theory for a number field k describes the Abelian fun-
damental group πab

1 (Spec(k)) = Gal(kab/k) in terms of the base field k. Its local
version for a p-adic field kp, the theory describing πab

1 (Spec(kp)) = Gal(kab
p /kp)

in terms of the base field kp, is called local class field theory. Since for a num-
ber field k, πab

1 (Spec(k)) = lim←−S
πab

1 (Spec(Ok) \ S) = lim←−S
Gal(kab

S /k) (S run-
ning over finite subsets of Max(Ok)), class field theory amounts to describing
GS(k)ab = πab

1 (Spec(Ok) \ S) = Gal(kab
S /k) in terms of k and S, where kab

S is the
maximal Abelian extension of k unramified outside S ∪ S∞k (Example 2.33). These
descriptions are obtained as duality theorems in the étale cohomology of Spec(kp)
and Spec(Ok) \ S.

In what follows, we shall consider some étale cohomology groups of X =
Spec(A) with coefficients in locally constant étale sheaves on X defined by Abelian
groups on which π1(X,x) acts continuously. Here an étale sheaf M on X is called
locally constant if there is a connected finite étale covering Y → X such that M|Y
is a constant sheaf of an Abelian group on Y . A finite π1(X,x)-module M gives
rise to a locally constant étale sheaf on X which is defined by associating to a
connected finite étale covering Y → X the π1(Y, y)-invariant subgroup Mπ1(Y,y)

(y ∈ Fx(X)) of M . Conversely, a locally constant, finite étale sheaf M gives rise
to a finite π1(X,x)-module Mx , the stalk of M at x. Thus, we identify a locally
constant étale sheaf on X with the associated finite π1(X,x)-module. For the case
that A is a field F , an étale sheaf of finite Abelian group on Spec(F ) is same as
a finite Abelian group on which π1(Spec(F )) = Gal(F/F ) acts continuously. So
the étale cohomology group Hi(Spec(F ),M) is identified with the Galois coho-
mology group Hi(Gal(F/F ),M) which we denote by Hi(F,M) for simplicity.
The étale cohomological dimension of X = Spec(A) is defined by the smallest in-
teger n (or∞) such that Hi(X,M)= 0 for i > n and any torsion étale sheaf M of
Abelian groups on X. For a locally compact Abelian group G, we denote by G∗ the
Pontryagin dual of G, the locally compact Abelian group consisting of continuous
homomorphisms G→R/Z.

2.3.1 Finite Fields

Let F be a finite field Fq . For a finite Gal(Fq/Fq)-module M , let M∗ =
Hom(M,Q/Z). The action of Gal(Fq/Fq) on M∗ is defined by (gϕ)(x)= ϕ(g−1x)

(g ∈Gal(Fq/Fq), ϕ ∈M∗, x ∈M). Then the cup product

Hi(Fq,M∗)×H 1−i (Fq,M)→H 1(Fq,Q/Z)�Q/Z (i = 0,1)

gives a non-degenerate pairing of finite Abelian groups, and Spec(Fq) has the étale
cohomological dimension 1. In particular, if Gal(Fq/Fq) acts on M trivially, by
using Gal(Fq/Fq)= Ẑ, this pairing reduces to the duality M �M∗∗.
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2.3.2 p-Adic Fields

Let kp be a p-adic field. Let Op be the ring of p-adic integers, π a prime element of
Op and vp the p-adic additive valuation with vp(π) = 1. For a finite Gal(kp/kp)-

module M , let M ′ := Hom(M,k
×
p ). The action of Gal(kp/kp) on M ′ is defined by

(gϕ)(x)= gϕ(g−1x) (g ∈Gal(kp/kp), ϕ ∈M ′, x ∈M).

Tate local duality 2.41 There is a canonical isomorphism H 2(kp, k
×
p )�Q/Z and

the cup product

Hi(kp,M
′)×H 2−i (kp,M)→H 2(kp, k

×
p )�Q/Z (0≤ i ≤ 2)

gives a non-degenerate pairing of finite Abelian groups. The étale cohomological
dimension of Spec(kp) is 2.

Now consider the case i = 1 and M = Z/nZ. Then one has M ′ = μn, the
group of n-th roots of unity, H 1(kp,Z/nZ) = Hom(Gal(kab

p /kp),Z/nZ), and
H 1(kp,μn)= k×p /(k×p )n (Kummer theory). Thus, Tate local duality induces an iso-
morphism

k×p /(k×p )n �Gal
(
kab
p /kp

)
/nGal

(
kab
p /kp

)
.

By taking the projective limit lim←−n
, we obtain the reciprocity homomorphism of

local class field theory

ρkp : k×p −→Gal
(
kab
p /kp

)
,

which is injective and has the dense image. Further, by taking the pull-back by ρkp ,
one has a bijection between the set of open subgroups of Gal(kab

p /k) and the set

of finite-index open subgroups of k×p . Let k̃p be the maximal unramified extension
of kp. Then we have the following commutative exact diagram:

0→ O×p → k×p
vp→ Z → 0

" ↓ ↓ρkp ∩↓
0→ Gal(kab

p /k̃p)→ Gal(kab
p /k)→ Gal(k̃p/k)= Ẑ→ 0

Here the left vertical isomorphism is the restriction of ρkp to O×p and the right ver-
tical injection is the map sending 1 to the Frobenius automorphism σp. Therefore,
ρkp(π)= σp.

For a finite Abelian extension KP/kp, we define the reciprocity homomorphism

ρKP/kp : k×p −→Gal(KP/kp) (2.2)

by composing ρkp with the natural projection Gal(kab
p /kp)→ Gal(KP/kp). Then

ρKP/kp induces the isomorphism

k×p /NKP/kp(K
×
P

)�Gal(KP/kp),
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and it follows that any open subgroup of k×p with finite index is obtained as the norm
group of the multiplicative group of a finite Abelian extension of kp. Further, one
has

KP/kp is unramified ⇐⇒ ρKP/kp(O×p )= idKP

⇐⇒ NKP/kp(O×P)=O×p , (2.3)

and, in this case, we have

ρkp(x)= σvp(x),

where σ ∈ Gal(KP/kp) is the Frobenius automorphism. On the other hand, if
KP/kp is totally ramified, the restriction of ρkp to O×p induces the isomorphism

O×p /NKP/kp(O×P)�Gal(KP/kp).

We now assume that kp contains a primitive n-th root of unity for some integer
n≥ 2. Then the Hilbert symbol

(
,

p

)
n

: k×p /(k×p )n × k×p /(k×p )n −→ μn

is defined by (
a, b

p

)
n

:= ρkp(b)( n
√

a)

n
√

a
.

The Hilbert symbol is bi-multiplicative and skew symmetric and satisfies the fol-
lowing property:

(
a, b

p

)
n

= 1 ⇐⇒ b ∈Nkp( n
√

a)/kp

(
kp(

n
√

a)×
)

⇐⇒ a ∈Nkp(
n√

b)/kp

(
kp(

n
√

b)×
)
. (2.4)

When kp(
n
√

a)/kp (a ∈ k×p ) is an unramified extension (this is the case if
a ∈O×p ), the n-th power residue symbol is defined by

(
a

p

)
n

:=
(

a,π

p

)
n

= σ( n
√

a)
n
√

a
, (2.5)

where σ = ρkp( n
√

a)/kp
(π) ∈Gal(kp( n

√
a)/kp) is the Frobenius automorphism. Then

one has (
a

p

)
n

= 1 ⇐⇒ a ∈ (k×p )n

⇐⇒ a mod p ∈ (F×p )n (if a ∈Up).
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Let kp = Qp for an odd prime number p and let a be an integer prime to p. Then
the power residue symbol ( a

p
)2 coincides with the Legendre symbol ( a

p
).

As for the field R of real numbers, we also have the duality theorem by using
Tate’s modified cohomology groups [Se2, Chap. VIII]. Let M be a finite Gal(C/R)-
module and let M ′ = Hom(M,C×). The action of Gal(C/R) on M ′ is defined by
(gϕ)(x)= gϕ(g−1x) (g ∈Gal(C/R), ϕ ∈M ′, x ∈M). Then the cup product

Ĥ i(R,M ′)× Ĥ 2−i (R,M)→H 2(R,C×)� F2 (i ∈ Z)

gives a non-degenerate pairing of finite Abelian groups. Letting i = 1 and M = μ2,
we have the isomorphism

ρC/R : R×/(R×)2 =H 1(R,μ2)�H 1(R,F2)
∗ =Gal(C/R).

The reciprocity homomorphism ρR :R× →Gal(C/R) is then defined by composing
the natural projection R

× → R
×/(R×)2 with ρC/R. Hence, ρR is surjective and

Ker(ρR)=R
× (the connected component of 1).

2.3.3 Number Rings

Let k be a number field of finite degree over Q. Let Ok be the ring of integers of
k and set X = Spec(Ok). An étale sheaf M of Abelian groups on X is said to be
constructible if all stalks of M are finite and there is an open subset U ⊂ X such
that M|U is locally constant [Z]. For a constructible sheaf M on X, the modified
étale cohomology groups Ĥ i(X,M) (i ∈ Z), which take the infinite primes into
account, are defined. For the definition of modified cohomology, we refer to ([Z],
[Kt1, Sect. 3], [Mi2]). We let M ′ :=Hom(M,Gm,X) where Gm,X is the étale sheaf
on X defined by associating to a connected finite étale covering Spec(B)→X the
multiplicative group Gm,X(Y )= B×.

Artin-Verdier duality 2.42 Let M be a constructible sheaf on X. There is a canon-
ical isomorphism Ĥ 3(X,Gm,X)�Q/Z and the natural pairing

Ĥ i(X,M ′)× Ext3−i
X (M,Gm,X)→ Ĥ 3(X,Gm,X)�Q/Z

gives a non-degenerate pairing of finite Abelian groups. The étale cohomological
dimension of X = Spec(Ok) is 3, up to 2-torsion in the case that k has a real prime.

Let U be an open subset of X. In the following, we shall use the notations X0 :=
Max(OK),U0 := U ∩ Max(Ok). Let S∞k be the set of infinite primes of k, and
set S = X \ U,S = S ∪ S∞k so that π1(U) =GS(k) = Gal(kS/k) (Example 2.36).
Let M be a finite GS(k)-module and we use the same notation M to denote the
corresponding locally constant, finite étale sheaf on U . Assume #M ∈O(U)× (S-
unit). Let j : U ↪→ X be the inclusion map and define the constructible sheaf j!M
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on X as follows: For a finite étale covering h : Y →X, j!M(Y) :=M if h(Y )⊂ U ,
and j!M(Y)= 0 otherwise. Then we have ExtiX(j!M,Gm,X)=Hi(U,M ′) and the
pairing of Artin-Verdier duality becomes the cup product

Ĥ i(X, j!M)×H 3−i (U,M ′)→ Ĥ 3(X,Gm,X)�Q/Z (i ∈ Z).

Let V be an open subset of X so that V ⊂U . Applying the excision

Hi+1
v (X, j!M)=

⎧⎪⎨
⎪⎩

Ĥ i(kv,M) (v ∈ S∞k ),

H i(kp,M) (v = p ∈ S),

H i+1
p (U,M) (v = p ∈U \ V )

to the relative étale cohomology sequence for the pair V ⊂X and taking the induc-
tive limit lim−→V : smaller

, we obtain the following long exact sequence:

· · · → Hi
c (U,M)→Hi(k,M)→

⊕
v∈S

H i(kv,M)⊕
⊕
p∈U0

Hi+1
p (U,M)

→ Hi+1
c (U,M)→ ·· · .

Next, we take the inductive limit lim−→U
making U smaller (i.e., S larger) in the above

exact sequence. Noting Hi+1
p (U,M) = Coker(H i(Fp,M)→ Hi(kp,M)), we ob-

tain the Tate–Poitou exact sequence:

Tate–Poitou exact sequence 2.43 Let M be a finite Gal(k/k)-module and set M ′ =
Hom(M,k

×
). The action of Gal(k/k) on M ′ is given by (gϕ)(x)= gϕ(g−1x) (g ∈

Gal(k/k),ϕ ∈M ′, x ∈M). Then we have the following exact sequence of locally
compact Abelian groups:

0→H 0(k,M)→ P 0(k,M)→H 2(k,M ′)∗ → H 1(k,M)

↓
P 1(k,M)

↓
0←H 0(k,M ′)∗ ← P 2(k,M)←H 2(k,M)← H 1(k,M ′)∗

Here the cohomology groups Hi(k,−),H i(kv,−) are endowed with the discrete
topology, and P i(k,M) is defined by

P i(k,M) := ∏
p∈X0

Hi(kp,M)×
∏

v∈S∞k
Ĥ i(kv,M),

where
∏

p∈X0
Hi(kp,M) means the restricted direct product of Hi(kp,M)’s with

respect to the subgroups

Hi
ur(kp,M) := Im

(
Hi(Fp,M)→Hi(kp,M)

)
,
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namely,
∏
p∈X0

Hi(kp,M) := {(cp) | cp ∈Hi
ur(kp,M) for all but finitely many of p’s

}
.

The topology of P i(k,M) is given as the restricted direct product topology, namely,
the basis of neighborhoods of the identity is given by the compact groups

∏
v∈S∞k

Ĥ i(kv,M)×
∏
p∈S

H i(kp,M)×
∏
p∈U0

Hi
ur(kp,M)

where U ranges over open subsets of X.
We define the idèle group Jk and the idèle class group Ck of k, respectively by

Jk :=
∏
p∈X0

k×p ×
∏

v∈S∞k
k×v , Ck := Jk/k×, (2.6)

where
∏

p∈X0
k×p means the restricted direct product of k×p ’s with respect to O×p ’s

and k× is regarded as a closed subgroup of Jk embedded diagonally.
Now let us specialize M to be the group μn of n-th roots of unity in the Tate–

Poitou exact sequence (2.43). Then we have

H 1(k,μn)= k×/(k×)n, P 1(k,μn)= Jk/J
n
k ,

H 2(k,μn)= nBr(k), P 2(k,M)=
⊕

v

nBr(kv).

Here Br(R) stands for the Brauer group of R [NSW, Chap. VI, Sect. 3] and
nA := {x ∈ A | nx = 0} for an Abelian (additive) group A. Since H 1(k,Z/nZ)∗ =
Gal(kab/k)/nGal(kab/k) and the localization map Br(k)→⊕

v∈X0∪S∞k Br(kv) is
injective (Hasse principle for the Brauer group [ibid, Chap. VIII, Sect. 1]), the Tate–
Poitou exact sequence yields the following isomorphism

Ck/Cn
k �Gal

(
kab/k

)
/nGal

(
kab/k

)
.

Taking the projective limit lim←−n
, we obtain the reciprocity homomorphism of class

field theory

ρk : Ck −→Gal(kab/k). (2.7)

The map ρk is surjective and Ker(ρk) coincides with the connected component of 1
in Ck . Further, taking the pull-back by ρk , one has a bijection between the set of open
subgroups of Gal(kab/k) and the set of open subgroups of Ck . The relation with
local class field theory is given as follows: Let ιv : k×v → Ck be the map defined by
ιv(av)= [(1, . . . ,1, av,1, . . . )]. Then one has the following commutative diagram:

k×v
ρkv−→ Gal(kab

v /kv)

ιv↓ ↓
Ck

ρk−→ Gal(kab/k)

(2.8)
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For a finite Abelian extension K/k, the reciprocity homomorphism

ρK/k : Ck −→Gal(K/k) (2.9)

is defined by the composing ρk with the natural projection Gal(kab/k)→Gal(K/k).
Then ρK/k induces the isomorphism

Ck/NK/k(CK)�Gal(K/k)

and it follows that any open subgroup of Ck is obtained as the norm group of the
idèle class group of a finite Abelian extension of k. Further, one has

p is completely decomposed in K/k ⇐⇒ ρK/k ◦ ιp(k
×
p )= id,

v is unramified in K/k ⇐⇒ ρK/k ◦ ιp(O×v )= id,
(2.10)

where we set O×v := k×v if v ∈ S∞k .

Example 2.44 (Unramified class field theory) Let k̃ab+ be the maximal Abelian ex-
tension of k such that any p ∈X0 is unramified. Then we have

πab
1

(
Spec(Ok)

)=Gal
(
k̃ab+ /k

)
.

By (2.10), the fundamental map ρk induces the isomorphism

Jk/k×
( ∏

v∈S∞k
(k×v )2 ×

∏
p∈X0

O×p
)
�Gal

(
k̃ab+ /k

)
.

Note that the left-hand side is isomorphic to the narrow ideal class group H+(k)

by the correspondence Jk � (av) �→∏
p∈X0

pvp(ap) ∈ Ik . Therefore, we have the fol-
lowing canonical isomorphism:

H+(k)�Gal
(
k̃ab+ /k

)
.

Let k̃ab be the maximal Abelian extension such that any prime of k is unramified,
called the Hilbert class field of k. Then the Galois group Gal(k̃ab/k) is canonically
isomorphic to the ideal class group H(k) of k:

H(k)�Gal
(
k̃ab/k

)
.

The above two isomorphisms are regarded as arithmetic analogues of the isomor-
phism given by Hurewicz theorem in Example 2.13.

Example 2.45 Let S be a finite subset of Max(Ok) and let kab
S be the max-

imal Abelian extension of k unramified outside S ∪ S∞k so that GS(k)ab =
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πab
1 (Spec(Ok) \ S) = Gal(kab

S /k) (Example 2.36). By (2.10), the reciprocity ho-
momorphism ρk induces the isomorphism

Jk/k×
( ∏

v∈S∞k
(k×v )2 ×

∏
p∈X\S

O×p
)
�Gal

(
kab
S /k

)
,

where k×(· · · ) means the topological closure. By Example 2.44, Gal(k̃ab+ /k) �
H+(k)= Jk/k×(

∏
v∈S∞k (k×v )2 ×∏p∈X0

O×p ) and

k×
( ∏

v∈S∞k
(k×v )2 ×

∏
p∈X0

O×p
)/

k×
( ∏

v∈S∞k
(k×v )2 ×

∏
p∈X\S

O×p
)

�
∏
p∈S

O×p
/(∏

p∈S
O×p ∩ k×

( ∏
v∈S∞k

(k×v )2 ×
∏

p∈X\S
O×p

))

�
∏
p∈S

O×p /O+k

where O+k := {a ∈ O×k | a is totally positive} and O+k denotes the topological clo-
sure of the diagonal image of O+k in

∏
p∈S O

×
p . Hence, we have the following exact

sequence:

0→
∏
p∈S

Up/O+k →Gal
(
kab
S /k

)→H+(k)→ 0.

As O×p = F
×
p × (1 + p), this exact sequence gives some restrictions on rami-

fied primes in S. For example, if p is ramified in a pro-l extension for some prime
number l, one must have Np≡ 1 or 0 mod l.

Example 2.46 Let k =Q and S = {(p1), . . . , (pr)} in Example 2.45. For this case,
we have H+(Q)= 1 and Z

+ = {1} and hence

Gab
S �

r∏
i=1

Z
×
pi

.

It follows Q
ab
S = Q(μp∞i | 1 ≤ i ≤ r) where μp∞i :=

⋃
d≥1 μpd

i
, μpd

i
being the

group of pd
i -th roots of unity.

Suppose that pi ≡ 1 mod n (1≤ i ≤ r) for some integer n(≥ 2). Fix a primitive
root αi mod pi , F×pi

= 〈αi〉. Let

ψ :
r∏

i=1

Z
×
pi
=

r∏
i=1

F
×
pi
× (1+ piZpi

)→ Z/nZ
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be the homomorphism defined by ψ(αi)= 1,ψ(1+ piZpi
)= 0. Let k be the sub-

field of Qab
S corresponding to Ker(ψ) which is independent of the choice of αi . The

field k is the cyclic extension of Q of degree n such that any prime outside S ∪ {∞}
is unramified and each prime in S is totally ramified in k/Q.

Next let S = {(p)}. Then one has

Q{p} =Q(μp∞), G{p} =Gal(Q(μp∞)/Q)� Z
×
p .

We set

q :=
{

p (p is a odd prime number)
4 (p = 2),

and let

ψ : Z×p = F
×
p × (1+ pZp)→ 1+ qZp � Zp

be the projection on 1+ qZp . Let Q∞ denote the subfield of Qab
S corresponding to

Ker(ψ). The field Q∞ is then the unique Galois extension of Q whose Galois group
Gal(Q∞/Q) is isomorphic to Zp . Note that only (p) is ramified in the extension
Q∞/Q and it is totally ramified.

In general, for a number field F of finite degree over Q, F∞ := FQ∞ is a Galois
extension with Gal(F∞/F ) being isomorphic to Zp such that only primes over p are
ramified in F∞/F . The extension F∞ is called the cyclotomic Zp-extension of F .

As is seen above, the Artin–Verdier duality and the Tate–Poitou exact sequence,
which contain the main content of class field theory, are arithmetic analogues of the
3-dimensional Poincaré duality and the relative cohomology sequence (+excision)
in topology respectively. Readers may find similar features between Example 2.46
and Examples 2.12, 2.15, Example 2.44 and Example 2.13. We shall discuss these
analogies more precisely in the subsequent chapters.
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