
Programming for Engineers

A Foundational Approach to Learning C and Matlab

Bearbeitet von
Aaron R. Bradley

1. Auflage 2011. Buch. xiv, 238 S. Hardcover
ISBN 978 3 642 23302 9

Format (B x L): 15,5 x 23,5 cm
Gewicht: 543 g

Weitere Fachgebiete > EDV, Informatik > Software Engineering

Zu Inhaltsverzeichnis

schnell und portofrei erhältlich bei

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft.
Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm
durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr

als 8 Millionen Produkte.

http://www.beck-shop.de/Bradley-Programming-for-Engineers/productview.aspx?product=9045006&utm_source=pdf&utm_medium=clickthru_lp&utm_campaign=pdf_9045006&campaign=pdf/9045006
http://www.beck-shop.de/trefferliste.aspx?toc=8300
http://www.beck-shop.de/fachbuch/inhaltsverzeichnis/9783642233029_TOC_001.pdf

2

Control

Computation rests on two foundations: memory and control. Having devel-
oped a memory model in Chapter 1, this chapter extends the computational
model with control statements. Such statements direct the flow of computa-
tion: the if/else construct enables conditional computation; and the while
and for constructs facilitate iterative computation. Function calls, when com-
bined with conditional statements, can yield even more complex control in the
form of recursion.

2.1 Conditionals

The most basic control statement is the conditional. Consider this improve-
ment of divide, which checks the input and either returns –1, indicating
malformed input, or computes the quotient and remainder and returns 0,
indicating a successful computation:1

1 int divide(int dividend , int divisor ,

2 int * quotient , int * remainder) {

3 if (divisor <= 0 ||

4 quotient == NULL ||

5 remainder == NULL) {

6 // error: malformed input

7 return -1;

8 }

9 else {

10 *quotient = dividend / divisor;

11 *remainder = dividend % divisor;

1 Returning a negative integer to indicate an error or 0 to indicate success is a
custom based on this observation: “There are many ways of messing up, but only
one way of getting it right.” However, some libraries, including some standard C
libraries, use other customs. For example, some functions may return 0 or 1 to
indicate an error or successful completion, respectively.

A.R. Bradley, Programming for Engineers,
DOI 10.1007/978-3-642-23303-6 2,
© Springer-Verlag Berlin Heidelberg 2011

31

32 Chapter 2. Control

12 // successful computation

13 return 0;

14 }

15 }

Lines 6 and 12 are comments, which are ignored by the compiler but are
intended to be useful to the reader. Lines 3–5 check if divisor <= 0 or
quotient == NULL or remainder == NULL. The operator <= is read as “less
than or equal to” or “at most,” while the operator || is read as “or.” Because
= is reserved for assignment, == is read as “equals.” If any one (or more) of the
predicates is true, then the block of code after the if is executed; otherwise,
the block of code after the else is executed.

A caller could then check for an indication of an error:

1 int main() {

2 int q, r;

3 int errorCode = divide(7, 3, &q, &r);

4 assert (! errorCode);

5 return 0;

6 }

In this case, the error checking is minimal. The ! operator is read as “not”: !0
is 1, while !n is 0 for any n �= 0. Since an assert is triggered if its argument
is false, which in C is 0, the assertion at line 4 is triggered precisely when
divide returns −1, that is, when its input is malformed. While the overall
effect in this particular use of divide is the same as in the previous chapter,
the idea is that this new version of divide allows the caller to recover from
an error if appropriate.

We have seen two logical operators so far: “or,” ||, and “not,” !. The
operator && is read as “and.” Using &&, divide can be implemented equiva-
lently as follows:

1 int divide(int dividend , int divisor ,

2 int * quotient , int * remainder) {

3 if (divisor > 0 &&

4 quotient != NULL &&

5 remainder != NULL) {

6 *quotient = dividend / divisor;

7 *remainder = dividend % divisor;

8 // successful computation

9 return 0;

10 }

11 else {

12 // error: malformed input

13 return -1;

14 }

15 }

2.1. Conditionals 33

Logical operators are also called Boolean operators after George Boole,
whose contribution to mathematics includes the study of Boolean algebras.
One particular Boolean algebra is the algebra of logical 0 and 1, also called
“false” and “true,” respectively. Here are some basic identities written using
C syntax:

• (!0) == 1, (!1) == 0;
• when x is 0 or 1, (!!x) == x;
• (x && y) == (y && x),

(x || y) == (y || x);
• (x && (y && z)) == ((x && y) && z),

(x || (y || z)) == ((x || y) || z);
• (0 && x) == 0,

(1 && x) == x;
• (0 || x) == x,

(1 || x) == 1;
• (!(x && y)) == (!x || !y),

(!(x || y)) == (!x && !y).

Developing an intuition for logical arithmetic is useful in programming because
conditional statements are sometimes complex.

Exercise 2.1. Apply these identities to solve the following problems:

(a) Manipulate !(x && (y || !z)) so that ! is only applied to variables.
Solution. One application of the penultimate identity above, known as
De Morgan’s law, yields !x || !(y || !z); an application of its dual,
the final identity, yields !x || (!y && !!z); and an application of the
second identity yields !x || (!y && z).

(b) Write an expression equivalent to x || y || z that uses only ! and &&.
(c) Write your own logic manipulations and trade with your colleagues.

�

Conditional statements can extend beyond two options. Consider the fol-
lowing function, which computes the “sign” of an integer: it returns −1, 0, or
1 if the given integer is negative, 0, or positive, respectively:

1 int sign(int x) {

2 int s = 0;

3 if (x < 0)

4 s = -1;

5 else if (x == 0)

6 s = 0;

7 else

8 s = 1;

9 return s;

10 }

34 Chapter 2. Control

Notice that this code snippet does not use braces ({ and }) for the conditional
blocks. Braces are not required when a block consists of only one statement.
However, one must be careful to avoid introducing bugs by accidentally omit-
ting braces.

A function can have multiple return statements, a freedom that becomes
relevant with control. The following is a functionally equivalent but more
concise version of sign:

1 int sign(int x) {

2 if (x < 0) return -1;

3 else if (x == 0) return 0;

4 else return 1;

5 }

Notice that spacing can be used to clarify (or obscure) code.

Exercise 2.2. Modify the swap function of Exercise 1.19 so that it check its
input and returns −1 if it is malformed and 0 otherwise.

Solution. Rather than asserting that neither x nor y is NULL as in Exercise
1.19, which causes the program to abort on bad input, we use an int return
value to indicate whether the function executes successfully. If either is NULL,
the function returns −1; otherwise, it executes normally and returns 0:

1 #include <assert.h>

2 #include <stdlib.h>

3

4 int swap(int * x, int * y) {

5 if (x == NULL || y == NULL) return -1;

6 int t = *x;

7 *x = *y;

8 *y = t;

9 return 0;

10 }

11

12 int main() {

13 int a = 0, b = 1;

14 int rv = swap(&a, &b);

15 assert (rv == 0);

16 assert (a == 1);

17 assert (b == 0);

18 rv = swap(&a, NULL);

19 assert (rv != 0);

20 assert (a == 1);

21 return 0;

22 }

The unit test implemented in main tests both normal and abnormal situations
for swap. The second call to swap would cause the program to abort with the
old version of swap. �

2.1. Conditionals 35

Exercise 2.3. Modify the swap3 function of Exercise 1.20 so that it check its
input and returns −1 if it is malformed and 0 otherwise. �
Exercise 2.4. Write a function that returns the absolute value of an integer
variable. It should have the following prototype:

1 int abs(int a);

Write a unit test of abs in main.
Solution. We explore various equivalent ways of implementing this func-

tion. Given that this function is so simple, the variety in even this example
suggests that, as we tackle ever more interesting programming problems, there
will be ever greater freedom in the design and implementation choices.

The first implementation is verbose but straightforward:

1 #include <assert.h>

2

3 int abs(int a) {

4 int x;

5 if (a < 0) {

6 x = -a;

7 }

8 else {

9 x = a;

10 }

11 return x;

12 }

13

14 int main() {

15 int x = -3;

16 int y = abs(x);

17 assert (x == y || -x == y);

18 assert (y >= 0);

19 x = abs(y);

20 assert (y == x);

21 return 0;

22 }

There are two tests in main: abs should return a nonnegative number that
is equal in magnitude to the original number, and it should leave a positive
number unchanged.

In this variation, we realize that we don’t need a local variable:

1 int abs(int a) {

2 if (a < 0)

3 a = -a;

4 return a;

5 }

In the final variant, we realize that we don’t need to change the value of a at
all but can instead use multiple return statements:

36 Chapter 2. Control

1 int abs(int a) {

2 if (a < 0) return -a;

3 return a;

4 }

�

Exercise 2.5. Write a function that computes the minimum and the max-
imum of two integer variables and returns them through call-by-reference
parameters. It should have the following prototype:

1 int minmax(int a, int b, int * min , int * max);

Write a unit test of minmax in a main function. �

2.2 Recursion

According to the Church–Turing thesis, you have now learned all the tools
necessary to compute anything that is theoretically computable—were mem-
ory and time unlimited. Does this statement surprise you? For that matter,
have you ever thought about what is and is not computable? An entire branch
of knowledge called computability theory has evolved from the pioneering
work of Gödel, Church, Turing, and others.

To get a taste of just how powerful the combination of the stack, func-
tions, and conditional statements are, let’s implement a short function that
computes the sum 1 + 2 + · · · + n, for a given positive integer n:

1 int sum(int n) {

2 int upto = 0;

3 // n must be positive

4 assert (n > 0);

5 if (n == 1)

6 // the sum of 1 is just 1

7 return 1;

8 else {

9 // the sum 1 + ... + n == (the sum 1 + ... + n-1) + n

10 upto = sum(n-1);

11 return upto + n;

12 }

13 }

Line 4 asserts that n is positive, which is according to the English specification
of the function given above. Then, if n == 1, the function simply returns 1:
the sum of 1 is 1. For the general case, we recognize that

1 + · · · + n = (1 + · · · + (n − 1)) + n ,

2.2. Recursion 37

because addition is associative. Thus, to compute the sum 1 + · · · + n, sum
simply needs to compute the sum 1 + · · · + (n − 1) and then add n, which is
what lines 10–11 accomplish.

Let’s trace through a call to sum arising in the following context:

1 int main() {

2 int s = sum (3);

3 return 0;

4 }

At entry, memory has the following configuration:

int s ⊗ 1000
void * pc “system” 996
int rv ⊗ 992

The call at line 2 causes sum’s stack frame to get pushed:

int upto 0 1016
void * pc main:2+ 1012
int rv ⊗ 1008
int n 3 1004
int s ⊗ 1000
void * pc “system” 996
int rv ⊗ 992

The location main:2+ refers to the address of the machine instructions that
must be executed after sum returns, which corresponds to the assignment
of the return value to s. sum(3) executes. The second conditional block is
executed because 3 != 1. Line 10 of sum calls sum again, so that a second
instance of sum’s stack frame is pushed:

int upto 0 1032
void * pc sum:10+ 1028
int rv ⊗ 1024
int n 2 1020
int upto 0 1016
void * pc main:2+ 1012
int rv ⊗ 1008
int n 3 1004
int s ⊗ 1000
void * pc “system” 996
int rv ⊗ 992

Notice how, in the new instance, the parameter n is initialized to 2 and the
program counter is set to be restored to line 10 of sum upon return.

Once again, the second conditional block is executed because 2 != 1, and
another stack frame is pushed:

38 Chapter 2. Control

int upto 0 1048
void * pc sum:10+ 1044
int rv ⊗ 1040
int n 1 1036
int upto 0 1032
void * pc sum:10+ 1028
int rv ⊗ 1024
int n 2 1020
int upto 0 1016
void * pc main:2+ 1012
int rv ⊗ 1008
int n 3 1004
int s ⊗ 1000
void * pc “system” 996
int rv ⊗ 992

This time, the parameter is initialized to 1. Therefore, the first conditional
block is executed so that the return value is set to 1:

int upto 0 1048
void * pc sum:10+ 1044
int rv 1 1040
int n 1 1036
int upto 0 1032
void * pc sum:10+ 1028
int rv ⊗ 1024
int n 2 1020
int upto 0 1016
void * pc main:2+ 1012
int rv ⊗ 1008
int n 3 1004
int s ⊗ 1000
void * pc “system” 996
int rv ⊗ 992

Then control returns to the calling context, where upto is set to the return
value, and the expended stack frame is popped:

2.2. Recursion 39

int upto 1 1032
void * pc sum:10+ 1028
int rv ⊗ 1024
int n 2 1020
int upto 0 1016
void * pc main:2+ 1012
int rv ⊗ 1008
int n 3 1004
int s ⊗ 1000
void * pc “system” 996
int rv ⊗ 992

Control now proceeds to line 11, where the sum upto + n is computed and
stored in the return value:

int upto 1 1032
void * pc sum:10+ 1028
int rv 3 1024
int n 2 1020
int upto 0 1016
void * pc main:2+ 1012
int rv ⊗ 1008
int n 3 1004
int s ⊗ 1000
void * pc “system” 996
int rv ⊗ 992

Then control returns to the calling context, where upto is set to the return
value, and the expended stack frame is popped:

int upto 3 1016
void * pc main:2+ 1012
int rv ⊗ 1008
int n 3 1004
int s ⊗ 1000
void * pc “system” 996
int rv ⊗ 992

Control now proceeds to line 11, where the sum upto + n is computed and
stored in the return value:

int upto 3 1016
void * pc main:2+ 1012
int rv 6 1008
int n 3 1004
int s ⊗ 1000
void * pc “system” 996
int rv ⊗ 992

40 Chapter 2. Control

Finally, control returns to the calling context, where s is set to the return
value, the expended stack frame is popped, and main’s rv is set to 0:

int s 6 1000
void * pc “system” 996
int rv 0 992

Execution of the program then completes.
Study this section until you understand precisely how the computer exe-

cutes this program.
This example demonstrates recursion, which is the most powerful tech-

nique for writing programs that do an amount of work dependent on input.

Exercise 2.6. To make sum callable in any context, it would be best to remove
the need for the assertion at line 4.

(a) Rename sum to sum. Adding an underscore () at the beginning of a
function name is a common naming convention to indicate that it is a
function that is not intended to be called outside of a specific context.

(b) Write an entry function called sum with the following prototype:

1 int sum(int n, int * s);

The return value should be used to indicate whether the input is mal-
formed, in particular if n <= 0 or s == NULL. As usual, it should return 0
to indicate successful execution and a negative value to indicate an error.
The sum itself should be returned via the reference s. After checking that
the input is well formed, sum should call sum, which should perform the
main computation.

(c) Remove the protection in sum to optimize the implementation.

Solution. The function sum does the hard work. Unlike the original version
of sum above, it does not protect itself against spurious input because it is not
intended to be called outside of a context in which we can guarantee well
formed input:

1 #include <assert.h>

2 #include <stdio.h>

3 #include <stdlib.h>

4

5 /* Helper function that computes the product. Returns the

6 * sum 1 + 2 + 3 + ... + n. Assumes that n > 0.

7 */

8 int _sum(int n) {

9 // Base case: the sum 1 is just 1.

10 if (n == 1) return 1;

11 // Recursive case: compute (1 + 2 + ... + (n-1)) + n.

12 return _sum(n-1) + n;

13 }

2.2. Recursion 41

The function sum checks its input and invokes sum if the input is well formed:

1 /* Interface for computing the sum

2 * 1 + 2 + 3 + ... + n

3 * Returns -1 if n <= 0 or s is NULL; otherwise , stores the

4 * sum in the cell that s references and returns 0.

5 */

6 int sum(int n, int * s) {

7 if (n <= 0 || s == NULL)

8 return -1;

9

10 // We know that n > 0 at this point , so we can safely

11 // call the helper function.

12 *s = _sum(n);

13

14 // success

15 return 0;

16 }

Although the check that n > 0 is simple, this pattern of separating the main
computation from the external interface is common in situations in which the
input check is more complex.

Finally, main tests sum with both well formed and malformed input. It
uses the output function printf, which is discussed in depth in Chapter 5, to
print the sum to the console:

1 int main() {

2 // test the sum function

3 int s, err;

4 err = sum(5, &s);

5 assert (err == 0);

6 // print the result to the console

7 printf("%d\n", s);

8 // test bad input

9 err = sum(-3, &s);

10 assert (err != 0);

11 return 0;

12 }

Compiling and running the program yields the expected output of 15:

$ gcc -Wall -Wextra -o sum sum.c
$./sum
15

�
Exercise 2.7. Write a function to compute the product 1 × · · · × n, for pos-
itive n. Write a main function to call it, and illustrate various interesting
memory configurations during its execution. Use the protection and naming
conventions of Exercise 2.6. �

42 Chapter 2. Control

2.3 Loops

While recursion is necessary for solving some important problems and the
most natural looping structure in some widely used programming languages
such as lisp and ocaml, the iteration exhibited in the sum example is better
expressed—in C, anyway—through explicit looping control statements.

Let’s revisit the problem of summing 1 + · · · + n, for positive integer n.
This time we will use a while statement:

1 int sum(int n) {

2 assert (n > 0);

3 int i = 1, s = 0;

4 while (i <= n) {

5 s = s + i;

6 i = i + 1;

7 }

8 return s;

9 }

Line 2 declares a loop counter, i, that is incremented from 1 to n and an
accumulator, s, that is initialized to 0. Lines 4–7 execute iteratively, as long
as i <= n. The effect is thus that every integer between 1 and n is added to
s precisely once.

The stack is not the best way to visualize looping, or iterative, program
behavior. Instead, we construct the following table for an input to sum of 5:

n i s

5 1 0
1 5 2 1
2 5 3 3
3 5 4 6
4 5 5 10
5 5 6 15

The first row of numbers indicates the variables’ initial values. Subsequent
rows indicate their values at the end of each iteration of the loop. Trace
through the code and the table to verify your understanding of the computa-
tion. Explain to yourself why sum(5) returns 15. What does sum(8) return?
What about sum(0)?

Once again, we may not be satisfied with the possibility that calling sum
with a nonpositive value could halt our program: such violent behavior com-
promises the modularity of the function. Instead, we write the following more
modular and more robust function:

1 int sum(int n, int * s) {

2 int i = 1;

3

4 // check for well formed input

2.3. Loops 43

5 if (n <= 0 || s == NULL)

6 // indicate malformed input

7 return -1;

8

9 *s = 0;

10 while (i <= n) {

11 *s += i; // short for *s = *s + i;

12 i++; // short for i = i + 1;

13 }

14 // indicate successful execution

15 return 0;

16 }

This implementation introduces new operators for accumulating sums. Loop
counters are so prevalent in C that the language designers included the opera-
tor ++ to increment a variable by 1. Accumulation is also a frequent operation,
and the += operator provides a convenient shorthand. Similar operators exist
for other arithmetic operations, including --, -=, *=, and /=.

Exercise 2.8. Write a version of product (see Exercise 2.7) that uses a while
loop instead of recursion. Draw a table that illustrates values of its variables
during execution for a reasonable input. �

The loop of sum follows a common pattern that motivates the for loop:

1 int sum(int n, int * s) {

2 int i;

3

4 // check for malformed input

5 if (n <= 0 || s == NULL) return -1;

6

7 *s = 0;

8 for (i = 1; i <= n; i++)

9 *s += i;

10

11 return 0;

12 }

Lines 8–9 compile to exactly the same machine instructions as this loop:

1 i = 1;

2 while (i <= n) {

3 *s += i;

4 i++;

5 }

In general, a for loop of the form

1 for (<initialize >; <condition >; <increment >) {

2 <body >

3 }

44 Chapter 2. Control

is exactly the same as a while loop of the form

1 <initialize >

2 while (<condition >) {

3 <body >

4 <increment >

5 }

Programmer preference dictates when to use a while statement and when to
use a for statement. Readability is the goal.

Exercise 2.9. Rewrite the product function of Exercise 2.8 using a for loop.
�

Exercise 2.10. Write a function to compute the power an, where n ≥ 0. It
should have the following prototype:

1 /* Sets *p to the n’th power of a and returns 0, except

2 * when n < 0 or p is NULL , in which case it returns -1.

3 */

4 int power(int a, int n, int * p);

Write a unit test in a main function to test various values. The following code
sequence illustrates how to use printf to provide informative output:

1 int x = 3, y = 5, pow;

2 power(x, y, &pow);

3 printf("%d^%d = %d\n", x, y, pow);

�

Exercise 2.11. Mathematical sequences can be computed using loops. Con-
sider, for example, the following sequence:

a0 = 1 and ai+1 = 2 · ai + 1 for i > 0 ,

whose first elements are 1, 3, 7, 15, 31, 63, This function returns the nth
element:

1 int seq(int n) {

2 int i, a = 1;

3 for (i = 1; i <= n; i++)

4 a = 2*a + 1;

5 return a;

6 }

For example, seq(0) returns 1, seq(1) returns 3, and seq(4) returns 31.
Write functions to compute the nth elements of the following sequences:

(a) a0 = 1 and ai+1 = 3 · ai + 2 for i > 0.
(b) a0 = 59 and ai+1 = ai/2 + 1 for i > 0, where / denotes integer division;

in C, use /. For example, 3/2 = 1. The first elements of the sequence are
59, 59/2 + 1 = 29 + 1 = 30, 16, 9, 5, 3,

2.3. Loops 45

(c) a0 = 1, a1 = 1, and ai+1 = ai−1 + ai for i > 1. The first elements of the
sequence, called the Fibonacci sequence, are 1, 1, 2, 3, 5, 8,
Solution. This function needs to remember the previous two values:

1 int seq(int n) {

2 int i, a = 1, b = 1;

3 for (i = 2; i <= n; i++) {

4 int t = b; // temporary variable

5 b = a + b;

6 a = t;

7 }

8 return b;

9 }

Verify that this function indeed returns the nth element of the sequence
for various n.

(d) a0 = 0, a1 = 2, and ai+1 = 2 · ai−1 − ai for i > 1.
(e) a0 = 7, a1 = 11, and ai+1 = −ai−1 + ai for i > 1.
(f) a0 = 1, a1 = 1, a2 = 1, and ai+1 = ai−2 + ai for i > 2.

�
Exercise 2.12. Mathematical series can be computed using loops. Consider,
for example, the following sequence:

a0 = 1 and ai+1 = 2 · ai + 1 for i > 0 .

The corresponding series is constructed by computing the partial sums:

a0,

1∑

j=0

aj ,

2∑

j=0

aj ,

3∑

j=0

aj ,

Since the first elements of the sequence are 1, 3, 7, 15, 31, 63, . . ., the first ele-
ments of the corresponding series are 1, 1+3 = 4, 1+3+7 = 11, 26, 57, 120,
This function returns the nth element of the series:

1 int series(int n) {

2 int i, a = 1, sum = 1;

3 for (i = 1; i <= n; i++) {

4 a = 2*a + 1;

5 sum += a;

6 }

7 return sum;

8 }

For example, series(0) returns 1, series(1) returns 4, and series(4) re-
turns 57. Write similar functions to compute the nth elements of series corre-
sponding to the sequences of Exercise 2.11. �

More complex control patterns will come after we have studied more com-
plex data structures. However, all control builds on conditionals, loops, and
occasionally recursion.

