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Chapter 2
Single-Channel Speech Enhancement
with a Gain

There are different ways to perform speech enhancement in the frequency domain
from a single microphone signal. The simplest way is to estimate the desired signal
from the noisy observation with a simple complex gain. This approach is investigated
in this chapter and all well-known optimal gains are derived. We start by explaining
the single-channel signal model for speech enhancement in the time and frequency
domains.

2.1 Signal Model

The noise reduction or speech enhancement problem considered in this study is one
of recovering the desired signal (or clean speech) x(t), t being the time index, of zero
mean from the noisy observation (microphone signal) [1–3]

y(t) = x(t) + v(t), (2.1)

where v(t) is the unwanted additive noise, which is assumed to be a zero-mean
random process white or colored but uncorrelated with x(t). All signals are considered
to be real and broadband.

Using the short-time Fourier transform (STFT),1 (2.1) can be rewritten in the
frequency domain as

Y (k, m) = X (k, m) + V (k, m), (2.2)

where the zero-mean complex random variables Y (k, m), X (k, m), and V (k, m) are
the STFTs of y(t), x(t), and v(t), respectively, at frequency-bin k ∈ {0, 1, . . . , K −1}
and time-frame m. Since x(t) and v(t) are uncorrelated by assumption, the variance
of Y (k, m) is

1 Note that the concepts presented in this work can be applied to any other transformed domain.
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16 2 Single-Channel Speech Enhancement with a Gain

φY (k, m) = E
[
|Y (k, m)|2

]

= φX (k, m) + φV (k, m), (2.3)

where E[·] denotes mathematical expectation, and

φX (k, m) = E
[
|X (k, m)|2

]
, (2.4)

φV (k, m) = E
[
|V (k, m)|2

]
, (2.5)

are the variances of X (k, m) and V (k, m), respectively.

2.2 Microphone Signal Processing with a Gain

In this chapter, we try to estimate the desired signal, X (k, m), from the noisy obser-
vation, Y (k, m), i.e.,

Z(k, m) = H(k, m)Y (k, m), (2.6)

where Z(k, m) is supposed to be the estimate of X (k, m) and H(k, m) is a complex
gain that needs to be determined. This procedure is called the single-channel speech
enhancement in the STFT domain with a complex gain.

We can express (2.6) as

Z(k, m) = H(k, m) [X (k, m) + V (k, m)]

= Xfd(k, m) + Vrn(k, m), (2.7)

where

Xfd(k, m) = H(k, m)X (k, m) (2.8)

is the filtered desired signal and

Vrn(k, m) = H(k, m)V (k, m) (2.9)

is the residual noise.
Since the estimate of the desired signal is the sum of two terms that are uncorre-

lated, the variance of Z(k, m) is

φZ (k, m) = |H(k, m)|2 φY (k, m)

= φXfd (k, m) + φVrn(k, m), (2.10)
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where

φXfd (k, m) = |H(k, m)|2 φX (k, m), (2.11)

φVrn(k, m) = |H(k, m)|2 φV (k, m), (2.12)

are the variances of Xfd(k, m) and Vrn(k, m), respectively.

2.3 Performance Measures

The first attempts to derive relevant and rigorous performance measures in the context
of speech enhancement can be found in [1, 4, 5]. These references are the main
inspiration for the derivation of measures in the studied context throughout this
work.

In this section, we are going to define the most useful performance measures for
single-channel speech enhancement with a gain in the STFT domain. We can divide
these measures into two categories. The first category evaluates the noise reduction
performance while the second one evaluates speech distortion. We are also going to
discuss the very convenient mean-square error (MSE) criterion and show how it is
related to the performance measures.

2.3.1 Noise Reduction

One of the most fundamental measures in all aspects of speech enhancement is
the signal-to-noise ratio (SNR). The input SNR is a second-order measure which
quantifies the level of noise present relative to the level of the desired signal.

We define the subband and fullband input SNRs at time-frame m as [1]

iSNR(k, m) = φX (k, m)

φV (k, m)
, k = 0, 1, . . . , K − 1, (2.13)

iSNR(m) =
∑K−1

k= 0 φX (k, m)∑K−1
k= 0 φV (k, m)

. (2.14)

It is easy to show that [1]

iSNR(m) ≤
K−1∑
k= 0

iSNR(k, m). (2.15)

To quantify the level of the noise remaining after the noise reduction processing
via the complex gain, we define the output SNR as the ratio of the variance of the
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filtered desired signal over the variance of the residual noise. We easily deduce the
subband output SNR

oSNR [H(k, m)] = |H(k, m)|2 φX (k, m)

|H(k, m)|2 φV (k, m)

= φX (k, m)

φV (k, m)
, k = 0, 1, . . . , K − 1 (2.16)

and the fullband output SNR

oSNR [H(:, m)] =
∑K−1

k= 0 |H(k, m)|2 φX (k, m)∑K−1
k= 0 |H(k, m)|2 φV (k, m)

. (2.17)

We notice that the subband output SNR is equal to the subband input SNR, so the
subband SNR cannot be improved with just a gain but the fullband output SNR can.
It can be verified that [1]

oSNR [H(:, m)] ≤
K−1∑
k= 0

iSNR(k, m). (2.18)

The previous inequality shows that the fullband output SNR is always upper bounded
no matter the choices of the H(k, m).

For the particular gain H(k, m) = 1, we have

oSNR [1(k, m)] = iSNR(k, m), k = 0, 1, . . . , K − 1, (2.19)

oSNR [1(:, m)] = iSNR(m). (2.20)

With the identity gain, 1, the SNR cannot be improved.
The noise reduction factor [4, 5] quantifies the amount of noise whose is rejected

by the complex gain. This quantity is defined as the ratio of the variance of the noise
at the microphone over the variance of the residual noise. The subband and fullband
noise reduction factors are then

ξnr [H(k, m)] = φV (k, m)

|H(k, m)|2 φV (k, m)

= 1

|H(k, m)|2 , k = 0, 1, . . . , K − 1, (2.21)

ξnr [H(:, m)] =
∑K−1

k= 0 φV (k, m)∑K−1
k=0 |H(k, m)|2 φV (k, m)

=
∑K−1

k= 0 φV (k, m)∑K−1
k= 0 ξ−1

nr [H(k, m)] φV (k, m)
, (2.22)
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and we always have

ξnr [H(:, m)] ≤
K−1∑
k= 0

ξnr [H(k, m)] . (2.23)

The noise reduction factors are expected to be lower bounded by 1 for appropriate
choices of the H(k, m). So the more the noise is reduced, the higher are the values of
the noise reduction factors.

2.3.2 Speech Distortion

In practice, the complex gain distorts the desired signal. In order to evaluate the level
of this distortion, we define the speech reduction factor [1] as the variance of the
desired signal over the variance of the filtered desired signal. Therefore, the subband
and fullband speech reduction factors are defined as

ξsr [H(k, m)] = φX (k, m)

|H(k, m)|2 φX (k, m)

= 1

|H(k, m)|2 , k = 0, 1, . . . , K − 1, (2.24)

ξsr [H(:, m)] =
∑K−1

k= 0 φX (k, m)∑K−1
k= 0 |H(k, m)|2 φX (k, m)

=
∑K−1

k= 0 φX (k, m)∑K−1
k= 0 ξ−1

sr [H(k, m)] φX (k, m)
, (2.25)

and we always have

ξsr [H(:, m)] ≤
K−1∑
k= 0

ξsr [H(k, m)] . (2.26)

The speech reduction factor is equal to 1 if there is no distortion and expected to be
greater than 1 when distortion occurs.

By making the appropriate substitutions, one can derive the relationships:

oSNR [H(k, m)]

iSNR(k, m)
= ξnr [H(k, m)]

ξsr [H(k, m)]
, k = 0, 1, . . . , K − 1, (2.27)

oSNR [H(:, m)]

iSNR(m)
= ξnr [H(:, m)]

ξsr [H(:, m)]
. (2.28)

These expressions indicate the equivalence between gain/loss in SNR and distortion
for both the subband and fullband cases.
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Another way to measure the distortion of the desired speech signal due to the
complex gain is the speech distortion index [1, 4, 5], which is defined as the mean-
square error between the desired signal and the filtered desired signal, normalized
by the variance of the desired signal, i.e.,

υsd [H(k, m)] = E
{|H(k, m)X (k, m) − X (k, m)|2}

φX (k, m)

= |H(k, m) − 1|2 , k = 0, 1, . . . , K − 1 (2.29)

in the subband case and

υsd [H(:, m)] =
∑K−1

k= 0 E
{|H(k, m)X (k, m) − X (k, m)|2}∑K−1

k= 0 φX (k, m)

=
∑K−1

k= 0 υsd [H(k, m)] φX (k, m)∑K−1
k= 0 φX (k, m)

(2.30)

in the fullband case. It can be verified that

υsd [H(:, m)] ≤
K−1∑
k= 0

υsd [H(k, m)] . (2.31)

However, the speech distortion indices are usually upper bounded by 1 for optimal
gains.

2.3.3 Mean-Square Error Criterion

Error criteria play a critical role in deriving optimal gains. The MSE [6] is, by far,
the most practical one.

In the STFT domain, the error signal between the estimated and desired signals
at the frequency-bin k and time-frame m is

E(k, m) = Z(k, m) − X (k, m)

= H(k, m)Y (k, m) − X (k, m), (2.32)

which can also be written as the sum of two uncorrelated error signals:

E(k, m) = Ed(k, m) + Er(k, m), (2.33)

where

Ed(k, m) = [H(k, m) − 1] X (k, m) (2.34)
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is the speech distortion due to the gain and

Er(k, m) = H(k, m)V (k, m) (2.35)

represents the residual noise.
The subband MSE criterion is then

J [H(k, m)] = E
[|E(k, m)|2]

= φX (k, m) + |H(k, m)|2 φY (k, m) − 2R [H(k, m)φY X (k, m)]

= φX (k, m) + |H(k, m)|2 φY (k, m) − 2R [H(k, m)φX (k, m)]

= Jd (k, m) + Jr (k, m), (2.36)

where R[·] is the real part of a complex number,

φY X (k, m) = E
[
Y (k, m)X∗(k, m)

]

= φX (k, m)

is the cross-correlation between the signals Y (k, m) and X (k, m), superscript ∗
denotes complex conjugation,

Jd [H(k, m)] = E
[
|Ed(k, m)|2

]

= |H(k, m) − 1|2 φX (k, m)

= υsd [H(k, m)] φX (k, m), (2.37)

and

Jr [H(k, m)] = E
[
|Er(k, m)|2

]

= |H(k, m)|2 φV (k, m)

= φV (k, m)

ξnr [H(k, m)]
. (2.38)

Two particular gains are of great interest: H(k, m) = 1 and H(k, m) = 0. With
the first one (identity gain), we have neither noise reduction nor speech distortion and
with the second one (zero gain), we have maximum noise reduction and maximum
speech distortion. For both gains, however, it can be verified that the output SNR is
equal to the input SNR. For these two particular gains, the subband MSEs are

J [1(k, m)] = Jr [1(k, m)] = φV (k, m), (2.39)
J [0(k, m)] = Jd [0(k, m)] = φX (k, m). (2.40)
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As a result,

iSNR(k, m) = J [0(k, m)]

J [1(k, m)]
. (2.41)

We define the subband normalized MSE (NMSE) with respect to J [1(k, m)] as

J̃ [H(k, m)] = J [H(k, m)]

J [1(k, m)]

= iSNR(k, m) · υsd [H(k, m)] + 1

ξnr [H(k, m)]

= iSNR(k, m)

{
υsd [H(k, m)] + 1

oSNR [H(k, m)] · ξsr [H(k, m)]

}
,

(2.42)
where

υsd [H(k, m)] = Jd [H(k, m)]

Jd [0(k, m)]
, (2.43)

iSNR(k, m) · υsd [H(k, m)] = Jd [H(k, m)]

Jr [1(k, m)]
, (2.44)

ξnr [H(k, m)] = Jr [1(k, m)]

Jr [H(k, m)]
, (2.45)

oSNR [H(k, m)] · ξsr [H(k, m)] = Jd [0(k, m)]

Jr [H(k, m)]
. (2.46)

This shows how this subband NMSE and the different subband MSEs are related to
the performance measures.

We define the subband NMSE with respect to J [0(k, m)] as

�J [H(k, m)] = J [H(k, m)]

J [0(k, m)]

= υsd [H(k, m)] + 1

oSNR [H(k, m)] · ξsr [H(k, m)]
(2.47)

and, obviously,

J̃ [H(k, m)] = iSNR(k, m) · �J [H(k, m)] . (2.48)

We are only interested in gains for which

Jd [1(k, m)] ≤ Jd [H(k, m)] < Jd [0(k, m)] , (2.49)

Jr [0(k, m)] < Jr [H(k, m)] < Jr [1(k, m)] . (2.50)
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From the two previous expressions, we deduce that

0 ≤ υsd [H(k, m)] < 1, (2.51)

1 < ξnr [H(k, m)] < ∞. (2.52)

It is clear that the objective of noise reduction in the STFT domain is to find
optimal gains that would either minimize J [H(k, m)] or minimize Jd [H(k, m)] or
Jr [H(k, m)] subject to some constraint.

In the same way, we define the fullband MSE at time-frame m as

J [H(:, m)] = 1

K

K−1∑
k= 0

J [H(k, m)]

= 1

K

K−1∑
k= 0

Jd [H(k, m)] + 1

K

K−1∑
k= 0

Jr [H(k, m)]

= Jd [H(:, m)] + Jr [H(:, m)] . (2.53)

We then deduce the fullband NMSEs at time-frame m:

J̃ [H(:, m)] = K
J [H(:, m)]∑K−1
k=0 φV (k, m)

= iSNR(m) · υsd [H(:, m)] + 1

ξnr [H(:, m)]
, (2.54)

�J [H(:, m)] = K
J [H(:, m)]∑K−1
k= 0 φX (k, m)

= υsd [H(:, m)] + 1

oSNR [H(:, m)] · ξsr [H(:, m)]
. (2.55)

It is straightforward to see that minimizing the subband MSE at each frequency-bin
k is equivalent to minimizing the fullband MSE.

2.4 Optimal Gains

In this section, we are going to derive the most important gains that can help mitigate
the level of the noise picked up by the microphone.

2.4.1 Wiener

By minimizing J [H(k, m)] [Eq. (2.36)] with respect to H(k, m), we easily find the
Wiener gain
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HW(k, m) = E
[|X (k, m)|2]

E
[|Y (k, m)|2]

= 1 − E
[|V (k, m)|2]

E
[|Y (k, m)|2]

= φX (k, m)

φX (k, m) + φV (k, m)

= iSNR(k, m)

1 + iSNR(k, m)
. (2.56)

We see that the noncausal Wiener gain is always real and positive. Furthermore,
0 ≤ HW(k, m) ≤ 1,∀k, m, and

lim
iSNR(k, m)→∞ HW(k, m) = 1, (2.57)

lim
iSNR(k, m)→0

HW(k, m) = 0. (2.58)

We deduce the different subband performance measures:

J̃ [HW(k, m)] = iSNR(k, m)

1 + iSNR(k, m)
≤ 1, (2.59)

ξnr [HW(k, m)] =
[

1 + 1

iSNR(k, m)

]2

≥ 1

= ξsr [HW(k, m)] , (2.60)

υsd [HW(k, m)] = 1

[1 + iSNR(k, m)]2 ≤ 1. (2.61)

The fullband output SNR is

oSNR [HW(:, m)] =
∑K−1

k= 0 φX (k, m)

[
iSNR(k, m)

1 + iSNR(k, m)

]2

∑K−1
k= 0 φV (k, m)

[
iSNR(k, m)

1 + iSNR(k, m)

]2 . (2.62)

We observe from the previous expression that if the subband input SNR is constant
across frequencies then the fullband SNR cannot be improved.

Property 2.1 With the optimal STFT-domain Wiener gain given in (2.56), the full-
band output SNR is always greater than or equal to the fullband input SNR, i.e.,
oSNR [H(:, m)] ≥ iSNR(m).

Proof We can use exactly the same techniques as the ones exposed in [1] to show
this property.
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Property 2.2 We have

iSNR(m)

1 + oSNR [HW(:, m)]
≤ J̃ [HW(:, m)] ≤ iSNR(m)

1 + iSNR(m)
, (2.63)

{1 + oSNR [HW(:, m)]}2

iSNR(m) · oSNR [HW(:, m)]
≤ ξnr [HW(:, m)]

≤ [1 + iSNR(m)] {1 + oSNR [HW(:, m)]}
iSNR2(m)

, (2.64)

1

{1 + oSNR [HW(:, m)]}2 ≤ υsd [HW(:, m)]

≤ 1 + oSNR [HW(:, m)] − iSNR(m)

[1 + iSNR(m)] {1 + oSNR [HW(:, m)]} . (2.65)

Proof We can use exactly the same techniques as the ones exposed in [1] to show
these different inequalities.

2.4.2 Tradeoff

The tradeoff gain is obtained by minimizing the speech distortion with the constraint
that the residual noise level is equal to a value smaller than the level of the original
noise. This is equivalent to solving the problem

min
H(k,m)

Jd [H(k, m)] subject to Jr [H(k, m)] = βφV (k, m), (2.66)

where

Jd [H(k, m)] = |H(k, m) − 1|2 φX (k, m), (2.67)

Jr [H(k, m)] = |H(k, m)|2 φV (k, m), (2.68)

and 0 < β < 1 in order to have some noise reduction at the frequency-bin k. If we
use a Lagrange multiplier, μ ≥ 0, to adjoin the constraint to the cost function, we
get the tradeoff gain

HT,μ(k, m) = φX (k, m)

φX (k, m) + μφV (k, m)

= φY (k, m) − φV (k, m)

φY (k, m) + (μ − 1)φV (k, m)

= iSNR(k, m)

μ + iSNR(k, m)
. (2.69)
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This gain can be seen as a STFT-domain Wiener gain with adjustable input noise
level μφV (k, m). The particular cases of μ = 1 and μ = 0 correspond to the Wiener
and distortionless gains, respectively.

The fullband output SNR is

oSNR
[
HT,μ(:, m)

] =
∑K−1

k= 0 φX (k, m)

[
iSNR(k, m)

μ + iSNR(k, m)

]2

∑K−1
k= 0 φV (k, m)

[
iSNR(k, m)

μ + iSNR(k, m)

]2 . (2.70)

Property 2.3 With the STFT-domain tradeoff gain given in (2.69), the fullband
output SNR is always greater than or equal to the fullband input SNR, i.e.,
oSNR

[
HT,μ(:, m)

] ≥ iSNR(m),∀μ ≥ 0.

Proof We can use exactly the same techniques as the ones exposed in [1] to show
this property.

From (2.70), we deduce that

lim
μ→∞ oSNR

[
HT,μ(:, m)

] =
∑K−1

k= 0 φX (k, m)iSNR2(k, m)∑K−1
k= 0 φV (k, m)iSNR2(k, m)

≤
K−1∑
k=0

iSNR(k, m).

(2.71)
This shows the trend of the fullband output SNR of the tradeoff gain.

The fullband speech distortion index is

υsd
[
HT,μ(:, m)

] =
∑K−1

k= 0
μ2φX (k, m)

[μ + iSNR(k, m)]2

∑K−1
k= 0 φX (k, m)

. (2.72)

Property 2.4 The fullband speech distortion index of the STFT-domain tradeoff
gain is an increasing function of the parameter μ.

Proof It is straightforward to verify that

dυsd
[
HT,μ(:, m)

]

dμ
≥ 0, (2.73)

which ends the proof.

It is clear that

0 ≤ υsd
[
HT,μ(:, m)

] ≤ 1, ∀μ ≥ 0. (2.74)

Therefore, as μ increases, the fullband output SNR increases at the price of more
distortion to the desired signal.
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The tradeoff gain can be more general if we make the factor β dependent on the
frequency, i.e., β(k). By doing so, the control between noise reduction and speech
distortion can be more effective since each frequency-bin k can be controlled inde-
pendently of the others. With this consideration, we can easily see that the optimal
gain derived from the criterion (2.66) is now

HT,μ(k, m) = iSNR(k, m)

μ(k) + iSNR(k, m)
, (2.75)

where μ(k) is the frequency-dependent Lagrange multiplier. This approach can now
provide some noise spectral shaping for masking by the speech signal [7–12].

2.4.3 Maximum Signal-to-Noise Ratio

Let us define the K × 1 vector

h(m) = [H(0, m) H(1, m) · · · H(K − 1, m)]T , (2.76)

where the superscript T denotes transpose of a vector or a matrix. The filter h(m)

contains all the subband gains. The fullband output SNR can be rewritten as

oSNR [H(:, m)] = oSNR [h(m)]

= hH (m)DφX (m)h(m)

hH (m)DφV (m)h(m)
, (2.77)

where the superscript H denotes transpose-conjugate and

DφX (m) = diag [φX (0, m), φX (1, m), . . . , φX (K − 1, m)] , (2.78)

DφV (m) = diag [φV (0, m), φV (1, m), . . . , φV (K − 1, m)] , (2.79)

are two diagonal matrices. We assume here that φV (k, m) 
= 0,∀k, m.

In the maximum SNR approach, we find the filter, h(m), that maximizes the
fullband output SNR defined in (2.77). The solution to this problem that we denote
by hmax(m) is simply the eigenvector corresponding to the maximum eigenvalue of
the matrix D−1

φV
(m)DφX (m). Since this matrix is diagonal, its maximum eigenvalue

is its largest diagonal element, i.e.,

max
k

φX (k, m)

φV (k, m)
= max

k
iSNR(k, m). (2.80)

Assume that this maximum is the k0th diagonal element of the matrix
D−1

φV
(m)DφX (m). In this case, the k0th component of hmax(m) is 1 and all its other

components are 0. As a result,
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oSNR [hmax(m)] = max
k

iSNR(k, m)

= iSNR(k0, m). (2.81)

We also deduce that

oSNR [h(m)] ≤ max
k

iSNR(k, m), ∀h(m). (2.82)

This means that with the Wiener, tradeoff, or any other gain, the fullband output SNR
cannot exceed the maximum subband input SNR, which is a very interesting result
on its own.

It is easy to derive the fullband speech distortion index:

υsd [hmax(m)] = 1 − φX (k0, m)∑K−1
k= 0 φX (k, m)

, (2.83)

which can be very close to 1, implying very large distortions of the desired signal.
Needless to say that this maximum SNR filter is never used in practice since

all subband signals but one are suppressed. But this filter is still interesting from a
theoretical point of view.
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