
Chapter 2
Capacity Planning

Martin Utley and Dave Worthington

Abstract In this chapter, we discuss some of the modeling methods available for
use by health care organizations in determining the level of resources to make
available for the delivery of a service or a set of services. We focus mainly on the
insights available from different forms of queuing model but discuss also the role
of simulation modeling. We then outline the challenges faced in populating
capacity planning models with appropriate parameter estimates before closing with
some remarks on the non-technical, cultural barriers to effective capacity planning.

2.1 Introduction

Scheduling in health care is often concerned with matching the demand for a
service to the resources available to provide that service. At its simplest, this might
involve scheduling for an outpatient clinic’s patients who have identical and
wholly predictable needs that can be met by a single clinician. Toward the other
end of the spectrum is the composition of surgical theatre lists that balance the
clinical urgency of the candidate patients and administrative wait time targets,
account for heterogeneous, stochastic operating times and the prospect of emer-
gency cases and enable targets to be met regarding theatre utilization, overtime
and elective cancelation rates.
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Other chapters in this book set out Operations Research (OR) methods that can
be used to foster efficient scheduling in health care, a major intellectual and
organizational challenge and an area where OR has a considerable amount to offer.
The pressure for efficient scheduling within health care stems from the fact that, in
virtually all health care contexts, there are limits on the resources available to
deliver services. Where resources are abundant to the point of excess, scheduling
does not arise as a problem. Also, where resources are not at all adequate, the
benefits of efficient scheduling can be marginal—system performance being
determined by the lack of resources, however efficiently they are used. Given these
considerations, it is fair to say that efficient and effective scheduling becomes
a priority once there is a reasonable balance between the demands on a service and
the resources available.

In this chapter, we focus on modeling methods for capacity planning, the
process by which organizations determine the broad level of resources they make
available for the delivery of a service or a set of services. Specifically we define
capacity planning to be ‘‘deciding on the amount of beds, staff, consulting rooms,
equipment, etc. sufficient to enable an organization to meet demand for one or
more packages of care while achieving specified service standards’’.

Section 2.2 considers modeling approaches based on estimating the ‘‘unfettered
demand’’ for resources associated with delivering a service, by which we mean the
amount of each resource that would be used in a specified period of time if there
were no constraints on any resource at any point in the system. Typically, this
demand is the result of stochastic processes and, while the expected demand is a
useful quantity for organizations to know, the intrinsic variability in this quantity is
also of considerable importance when planning capacity.

Estimating unfettered demand is often amenable to intuitive, analytical tech-
niques which can be quite insightful, and this aspect is emphasized. We introduce
the notion of reserve capacity and the tension that variability introduces between
the efficient use of resources and service standards based on accommodating a
target proportion of requests for service. This leads to the central notion that, to
estimate capacity requirements, you need to estimate or know demand, variability
in demand and the desired service standards.

While modeling unfettered demand gives useful insights about capacity
requirements, it cannot explicitly account for the impact that having finite
resources available will have on the performance of a system. In Sect. 2.3 we
introduce models designed to incorporate finite resource levels and their conse-
quences more directly. Here there is scope for generating insights using analytical
queueing models, but often simulation models are required for a detailed picture.

In Sect. 2.4 we discuss some of the issues that confront modelers and organi-
zations when trying to populate capacity planning models with parameter esti-
mates, with particular focus on the use of historical data. In Sect. 2.5 we give some
closing remarks, touching on the potential role of simple ‘‘rule of thumb’’
approaches to capacity planning and some of the cultural and managerial chal-
lenges to ensuring that the benefits of careful capacity planning are realized. We do
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not attempt to provide an expert view here, but rather to flag to modelers some of
the non-technical issues to be aware of.

2.2 Estimating Unfettered Demand Using Analytical Models

In Sect. 2.2.2, we consider capacity requirements in terms of the number of staffed
beds that should be made available for the delivery of an inpatient service. Of
course for some health services, capacity might be considered primarily in terms of
the theatre time allocated to a specialty, the number of appointments a clinic offers
or the number of CT-scanners available. Modeling the requirements for these and
other key resources can be approached by applying similar techniques to those
outlined here. Also, in many cases, the models outlined in Sect. 2.2.2 can be
augmented to give a way of simultaneously estimating the capacity requirements
for a range of different resources associated with the same service. First, we
consider briefly the problem of estimating the overall number of patients to
anticipate.

2.2.1 Estimating the Number of Patients to Cater For

How to model the number of patients that a service should be designed to cater for
depends on the nature of the service and the nature of the health economy. For
conditions such as cancer or heart disease and in societies that aspire to universal
access to care for such conditions, models to forecast future patient numbers may
be based on demographic projections for a particular catchment area, allied with
fixed or projected age-specific incidence and prevalence rates. The number of
patients to cater for may also be based on considerations of what makes a finan-
cially viable or successful service and also, in some settings, considerations of
market share. Whatever benefits accrue when different institutions compete (either
explicitly or implicitly) for patients, competition introduces additional uncertainty
in terms of patient numbers. In general, additional uncertainty increases capacity
requirements across a health economy, particularly in systems looking to guar-
antee patient choice over provider. This is not a problem, so long as it is recog-
nized that many health care costs are driven by having the capacity in place to treat
patients (staff, equipment, etc.) rather than by actually treating them.

In a context where plans are being made to increase access to a service that is
not widely available (as has been the case for, say, the expansion of bariatric
surgery services in some countries) it may not be feasible to attempt to meet the
full demand for the service. Here, the number of patients to cater for may be driven
and limited by the number of specialist staff available. In this context, capacity
planning may be concerned with identifying the level of other resources to provide
in order to ensure that efficient use can be made of scarce specialist skills while
meeting service standards for those patients who do gain access to the service.
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2.2.2 Demand Associated with Known Level of Patient Numbers

Having made an attempt to estimate the overall number of patients per year (for
example) that might be expected to access or seek to access a service, there comes
the task of translating this into the day-to-day or shift-to-shift demand for key
resources. In this section we illustrate the extent to which variability in arrivals and
variability in the resources used in the management of individual patients influence
the capacity required to cater for a given number of patients, ensuring that a given
proportion of requests for service can be met (other service standards are con-
sidered in later sections).

Starting from the simplest case, we present models that incorporate different
sources of uncertainty and variability, using the illustrative context of an intensive
care unit that admits patients following surgery. These models are discrete in time
in that arrivals to the unit all happen at integer time units (assumed here to be days
but potentially staff-shifts or hours) and patients stay on the unit for an integer
number of time units prior to discharge.

Model 1. Suppose first that, each and every day, N patients are operated upon and
each requires a bed in the intensive care unit for exactly L days. The demand for
beds in this instance will be constant and equal to N 9 L. Supplying N 9 L staffed
beds will allow all demand to be met with certainty. Supplying less than
N 9 L staffed beds would render the planned surgical program infeasible.

Model 2. If, as is typical, length of stay is variable, there will be inevitable
variation in demand. Gallivan et al. (2002) developed a simple model to illustrate
the variation in demand introduced by variation in length of stay. Suppose that
N patients are admitted on a particular day and that the probability of a patient
remaining on the unit for at least i days is pi. The distribution of bed demand from
this tranche of arrivals, j days after they arrived, is given by the binomial distri-
bution with N trials each of probability pi. Extending this, if N such patients are
admitted each and every day the probability of n beds being required on a given
day is given by the coefficient of sn in the polynomial.

QðsÞ ¼
Y1

i¼0

ð1� piÞ þ pis½ �N ð2:1Þ

where s is a dummy variable between 0 and 1. The product in Eq. 2.1 is over a
series of binomial expansions, each of which represents the bed demand associated
with a single day’s admissions.

Figure 2.1 shows the impact of a degree of variability in length of stay (top left
hand corner of figure) on the distribution of demand (bottom right). Despite the
fact that, in this example, over 80% of patients stay just one day, the long tail on
the length of stay distribution results in demand occasionally being three or more
staffed beds above the average demand of 8–9. In this instance, the model can be
used to estimate that, in order for capacity to be sufficient to meet demand on 95%
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of days, the capacity provided should be about 30% above the expected daily
demand. This illustrates the main use of models of unfettered demand: that of
gauging the proportion of time that a system would be overloaded if capacity was
in fact finite and set to a particular value.

Model 3. The model described above can be extended to incorporate numerous
additional sources of variability and complexity (Utley et al. 2003). Suppose that
any given surgical patient does not attend for surgery with probability v . Suppose
further that the number of planned surgical patients is not constant but, on the dth
day of the period of interest, is given by Nd. Suppose further still that, in addition
to the post-operative patients, there is a probability qed of there being e emergency
admissions to the unit on the dth day of the period of interest.

In this case, the probability of n beds being required on the dth day of operation
is given by the coefficient of sn in the polynomial.

QdðsÞ ¼
Yd

i¼0

½vþ ð1� vÞðð1� piÞ þ pisÞ�Nðd�iÞ
X1

e¼0

qeðd�iÞðð1� piÞ þ pisÞe
" #

ð2:2Þ

Again, simple binomial expansions form the building blocks of this expression.
Equation 2.2 gives the transient result for the full distribution of demand for a unit
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Fig. 2.1 The impact of variability in length of stay on bed demand
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that is empty prior to the first day of operation. With the focus here on strategic
capacity planning, it is worth considering demand after some period M that rep-
resents a maximum length of stay, before which any steady-state behavior will not
emerge. Also, it can be useful to work with the expected demand and its variance
rather than the full distribution. Obtaining expressions for these quantities is rel-
atively straightforward, involving the application of standard results concerning
generating functions. If the expectation and variance for the number of emergency
admissions on day d are given by E(ed) and Var(ed), the expectation and variance
of the total demand on day d, td say, are given by

EðtdÞ ¼
XM

i¼0

ðNðd�iÞð1� vÞ þ Eðeðd�iÞÞÞpi d�M ð2:3Þ

and

VarðtdÞ ¼
XM

i¼0

ðNðd�iÞð1� vÞ
�

þ Eðeðd�iÞÞÞpið1� piÞ þ p2
i ðNðd�iÞvð1� vÞ

þVarðeðd�iÞÞÞ
�

d�M:

ð2:4Þ

These expressions provide a means of exploring the impact of different sources of
variability on the variations in day-to-day demand and, hence, the capacity
required to meet demand to a certain standard.

It is possible within such a modeling framework to estimate capacity require-
ments for a system incorporating different streams of patients with different length
of stay and attendance characteristics and cyclic or otherwise varying patterns of
planned and emergency admissions (Utley et al. 2003; Gallivan and Utley 2005).
As an aside, the linear form of Eq. 2.2 in terms of the number of patients planned
for admission on a particular day introduces the potential for using integer pro-
gramming techniques to determine schedules of cyclic planned admission that
smooth out demand over the cycle (Gallivan and Utley 2005).

In terms of strategic capacity planning, the key insight obtained from such
models is that the greater the variability in a system, the greater the capacity
required to meet a given service standard on availability or timely access to the
service. Another insight is that, given that the variance in demand is (given rea-
sonable assumptions around the variance of emergency admissions) linear in terms
of overall patient numbers, there are economies of scale in capacity planning.
Essentially, the reserve capacity (as expressed as a proportion of expected
demand) required to meet a service standard diminishes with increasing mean
demand. In designing services, there can be a tension here between ring-fencing
capacity for particular patient groups (to reduce variability) and the economies of
scale suggested by having larger pools of capacity. These models can be used
effectively to explore the potential trade-offs (in terms of capacity requirements)
between smaller pools of capacity dedicated to more homogeneous patient groups
versus larger pools of capacity with more heterogeneous case-mix (see for
example Utley et al. 2008).
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Similar approaches can also be developed to estimate unfettered demand along
a chain of clinical environments or, more generically, for the occupancy of states
within any unfettered multi-state system that can be characterized with a simple
tree structure (Utley et al. 2009). Such models can be used in capacity planning
across environments (either within a single institution or across different institu-
tions), for example to balance provision of acute and rehabilitation services as
illustrated in Fig. 2.2.

The appeal of using estimates of unfettered demand in capacity planning lies in
the simplicity of the approach and the ability to obtain an impression of the
capacity required in order for a system to operate reasonably smoothly. In the next
section we examine some of the intrinsic limitations that come with this approach
and outline some of the other modeling approaches available.

2.3 Capacity Planning Using Queueing Models

2.3.1 Preamble

The models described in Sect. 2.2 can be used to estimate how often additional
resources, above some notional level, would be called upon to meet all demand, or
conversely how much resource to provide in order for provision to be adequate
roughly 80, 90 or 95% of the time.

At a more detailed level of capacity planning we may need to consider how in
practice any demand exceeding the agreed level of capacity would be managed. Is
there some spare resource from a neighboring service or from a staffing agency
that can be called upon when required? Does the excess demand simply get turned
away, for instance referrals for intensive care diverted to another provider? If so,
simple modifications of the previous models are possible to improve their accu-
racy. Does excess demand build up in a queue as with hospital waiting lists or
outpatient waiting rooms? If so queueing models which reflect this aspect can be
used to analyze and understand the impact of capacity constraints on system
performance.

ICU Ward Rehabilitation

Demand

Probability

Fig. 2.2 Estimating demand across a number of clinical environments
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Two major types of queueing models are described in this section, which we
will refer to as (i) analytical and (ii) simulation models. Analytical models are
typically represented by formulae, which means that they are usually easy to apply
(e.g. using a spreadsheet), and often provide valuable insights. Simulation models
often require specialist software and are designed to allow the generation and
evaluation of ‘what if …’ scenarios and produce quasi-empirical results rather than
direct insights. However they are much more adaptable than analytical models and
hence, with sufficient work, can be used to produce more accurate predictions of
system behavior. The main components and basic behavior of queueing models are
introduced in Sect. 2.3.2. Analytical queueing models together with capacity
planning insights that they provide are described in Sect. 2.3.3. Section 2.3.4
outlines the potential value of simulation-based queueing models in this context.

2.3.2 Queueing Models in General

Before introducing analytical and simulation queueing models further we start by
considering their common characteristics. The key characteristics of a queueing
system are a ‘service’ that takes a period of time to deliver, the ‘servers’ who
deliver the service and ‘customers’ who demand the service. When customers
arrive to find all the servers busy they wait in a queue until a server becomes
available. In a health care capacity planning context there are many examples of
queueing systems, including outpatient clinics, emergency rooms, waiting lists for
elective surgery, telephone advice lines, emergency ambulances, etc.

While in these situations models of unfettered demand give a good starting
point for capacity planning, it is often necessary to consider the impact of queueing
more precisely to characterize the relationship between capacity and system per-
formance, particularly when providing substantial reserve capacity is not an
option. The key components of the analysis of queuing systems are the arrival
process (of customers), the service process, the number of servers (the capacity)
and the queueing regime. We consider each briefly.

Arrival Process

Almost all analytical queueing models and many simulation models assume
that arrivals occur ‘at random’, or equivalently as a ‘Poisson process’. This is
often a good representation of reality, especially if arrivals result from a large
population within which individuals have a small probability of demanding the
service under consideration. Exceptions to this sort of arrival process occur
when arrivals are controlled in some manner, e.g. they are given appointments
or grouped before arrival, which is where scheduling can have a big impact.
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Even in such instances, the level of referrals for a service month-to-month can
often be treated as the result of a Poisson process.
A Poisson process is defined by its underlying arrival rate. If the underlying rate
is constant it is often denoted by k; when it varies over time with known peaks
and troughs it is referred to as time-dependent and is denoted by k(t). Note that
even when the arrival rate is constant, the number of arrivals in a fixed period of
time varies stochastically. For example, if arrivals occur as a Poisson process
with mean rate of 5 per hour, the number of arrivals in one hour will have a
Poisson distribution with mean 5.

Servers

In the capacity planning context, the ‘servers’ will often relate to the resources
that are being planned. So, for example, the beds might be the servers when
planning the size of an Intensive Care Unit (ICU), or the staff on duty might be the
servers in an Accident and Emergency (A&E) department. However, the question
should always be asked about whether the key resource has been identified. In the
ICU setting the ability to treat patients is often limited by the number of staff
available rather than the number of beds, and in A&E the bottleneck might
sometimes be the number of cubicles rather than the number of staff. Often it
makes sense to model capacity requirements for a number of resources.

Service Process

The service process refers to the length of time that the server needs to deliver the
service. In an ICU where beds are the key resource, the patient’s length of stay is
the service process of interest from the capacity planning perspective. In the A&E
setting, where patients are often managed using different resources (e.g. staff) as
they progress, there are a number of service processes, e.g. initial assessment,
X-ray, blood tests, final assessment and treatment.

Queueing Regime

Once patients have arrived in a queueing system the ‘queueing regime’
describes the way in which they are selected from the queue. For many capacity
planning decisions the queueing regime is immaterial, and it can often be
assumed that the regime is simply first-in-first-out (FIFO) which puts no
restriction on the choice of modeling method.

In addition to these common components of queueing systems, the behavior
that they exhibit also has some common features. For example consider a simple,
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single-server outpatient clinic which nominally runs from 9 a.m. to 12 noon and in
which 18 patients are given appointments, one every 10 min from 9 a.m. to 11:50
a.m. However, some arrive early, some arrive late and some do not arrive, with the
overall effect that they arrive as a Poisson process with an underlying rate of 5 per
hour between 9 a.m. and 12 noon. While appointments are every 10 min, con-
sultations are typically shorter, with an average of 6 min. However, the consul-
tation times vary, with a standard deviation of 4 min, so that quite often a
consultation takes longer than the allotted 10 min. Using a suitable queueing
model (see Brahami and Worthington 1991) for details, Fig. 2.3 graphs the
average number of patients in the clinic over the planned duration of the clinic and
beyond.

• First we note how the performance is time-dependent:

– Early in the clinic all three performance measures indicate lower levels of
congestion than later in the clinic, e.g. after 15 min the mean number of
patients in the clinic is 0.61, whereas after 30 min it is 0.75 and after 120 min
the mean has grown to 0.85;

– Also, once patients have stopped arriving, i.e. after 180 min, the levels of
congestion then decay away over the next few minutes.

• Between 90 and 180 min the congestion levels stay fairly constant. During this
period of time the system has achieved its steady state, and indeed it would stay
in steady state thereafter for as long as the underlying arrival and service rates
do not change.

• However, whether it is in a time-dependent phase or a steady-state phase, the
behavior is stochastic, i.e. the level of congestion needs to be described by a
probability distribution to give understanding to the range of queue lengths, etc.,
that could be observed at any point of time.

In terms of capacity planning, this form of model could be used to explore the
capacity required in the clinic waiting room.

Fig. 2.3 Important features of real queueing systems
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2.3.3 Some Analytical Queueing Models for Capacity Planning

Single-Server Queues

A very useful and insightful queueing model is the Pollaczek-Khintchine formulae
which are easy to use formulae for the mean number in the queue E(q)
(i.e. excluding anyone in service) and mean number in the system E(Q) (i.e.,
including anyone in service or in queue) for single-server queues at steady-state in
which arrivals occur as a Poisson process at constant rate k and service times are
described solely in terms of their mean (1/l) and coefficient of variation
(CoV = standard deviation/mean).

EðqÞ ¼
k=l
� �2ð1þ CoV2Þ

2ð1� k=lÞ
ð2:5Þ

EðQÞ ¼ k
l
þ

k=l
� �2ð1þ CoV2Þ

2ð1� k=lÞ
ð2:6Þ

For example, as the exponential distribution has CoV = 1, if service time is
exponential with mean = 1/l, then the equation for E(Q) simplifies to the well
known equation:

EðQÞ ¼ k=l

ð1� k=lÞ
ð2:7Þ

Applying any of these formulae is very straightforward. For example, applying Eq.
2.6 to our outpatient clinic example, where k = 5 patients per hour (ph), l = 10ph
and CoV = 4/6 = 2/3, gives:

EðQÞ ¼ 0:5þ 0:5ð Þ2ð1þ 4=9Þ
2ð1� 0:5Þ ¼ 31

36
¼ 0:861 ð2:8Þ

More importantly the formulae also provide important insights into the drivers of
congestion, i.e. the drivers of poor performance. Furthermore while these particular
formulae are only true for single-server systems, other formulae and further empirical
work have shown that the same insights extend to many more queueing situations.

Insights

(i) The arrival rate (k) and the service rate (l) only occur as the ratio k/l. Thus
only the ratio of arrival rate to service capacity is important. This ratio,
which is generalized for systems with S servers to k/Sl, is referred to as
traffic intensity, and is often denoted by q.
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(ii) Simple experimentation with the formulae shows that whatever the value of
CoV, the level of congestion grows with q, and that it grows increasingly
quickly as q approaches 1.0; see for example Fig. 2.4 for the cases of
CoV = 0, 1 and 2. In terms of capacity planning, this clearly indicates that
attempting to achieve high traffic intensity (which equates to high server
utilization) is unwise.

(iii) Formula (2.5) also clearly implies (and Fig. 2.4 shows some examples) that
for any fixed value of q, the level of congestion depends on the CoV of
service time, with greater variability (i.e., CoV) leading to higher congestion
levels. Further theoretical and empirical work has shown that this insight also
applies for multi-server systems.

(iv) A slightly different, but very important, insight that emerges from Eq. 2.5 is
that q and CoV are the only drivers of this particular measure of congestion.
This means that the same result would be obtained for any service time
distributions which matched each other in mean and standard deviation.
Although this finding is not the case for multiple servers or other perfor-
mance measures for single-server systems, empirical work shows that service
time mean and CoV are key drivers of performance in many other queueing
systems.

Multi-server Queues

The main easy-to-use formulae for multi-server queues hold for the steady-state
behavior of S server queues with a Poisson arrival process with underlying rate k,
and exponential service times with mean 1/l. In this case the steady-state distri-
bution of number in the system {Pn: n = 0, 1, 2,…} is given by:

Fig. 2.4 The impact of traffic intensity on congestion
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P0 ¼
XS�1

1¼0

k=l
� �i

i!
þ

k=l
� �S

S!

Sl
Sl� k

" #�1

;

Pn ¼

k=l
� �n

n!
P0 for n� S

k=l
� �n

S! Sn�S
P0 for [ S

8
>>>>>><

>>>>>>:

ð2:9Þ

Furthermore the mean number in the system and the mean number in the queue
are given by:

EðQÞ ¼ k=lþ
k=l
� �S

kl

S� 1ð Þ! Sl� kð Þ2
P0 ð2:10Þ

EðqÞ ¼
k=l
� �S

kl

S� 1ð Þ! Sl� kð Þ2
P0 ð2:11Þ

Insights Continued

(v) Subtraction of formula (2.11) from formula (2.10) shows that the mean
number of customers in service, and hence also the mean number of servers
who are busy, is simply k/l (or Sq); and this result applies to the steady-state
behavior of all queueing systems for which k and l are well defined.

Fig. 2.5 Impact of S and traffic intensity on E(Q)
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(vi) Simple experimentation with formula (2.10) supports the insight noted ear-
lier that for any value of S, traffic intensity k/Sl is a major driver of con-
gestion. See for example Fig. 2.5, which plots E(Q) versus traffic intensity
for various values of S.

(vii) Redrawing Fig. 2.5 with its y-axis now showing mean number in the queue
per server results in Fig. 2.6, which highlights the sorts of economies of scale
that can be achieved by pooling resources of (for example) a number of
single-server systems into one multi-server system. We see in Fig. 2.6, for
example, when traffic intensity is 0.8 in a single-server system the mean
queue length per server is 3.20, whereas in 2, 5 and 10 server systems it is
respectively 1.42, 0.44 and 0.16.

Waiting Times and Queueing Times

While number in the system and number in the queue are both important mea-
sures of congestion, customers will be much more interested in ‘time in the
system’ (i.e. waiting time) and ‘time in the queue’ (i.e. queueing time). Except
for the special case of exponential service times (see for example Gross and
Harris 1985), the distributions of these two performances measures are very
difficult to obtain analytically. However, thanks to Little (1961), their mean
values (E(W) = mean waiting time, E(w) = mean queueing time) are very easy
to obtain. In particular:

E Wð Þ ¼ E Qð Þ=k ð2:12Þ

and

E wð Þ ¼ E Wð Þ � 1=l ð2:13Þ

Fig. 2.6 Economies of scale in queueing systems
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This very strong relationship to E(Q) means that all the previous insights related to
E(Q) also carry over to E(W) and E(w).

Networks of Queues

Many real queueing systems involve more than one service operation, and
hence can be represented by either a sequence of queues or a network of queues
(see Chap. 9). The key analytical model in this area is described in Jackson (1957,
1963), extending works of RRP Jackson (1954). It essentially says that under
certain conditions a network of queues can be modeled as if they were independent
queues, with arrival rates to each queue calculated from the aggregate arrival rate
to that queue from both outside and inside the network. In particular, if a network
of queues has:

• K different services (numbered i = 1, 2,…,K);
• Customers can also arrive from outside the network to service i, as a Poisson

process, at rate ki;
• Service i has an exponential distribution, with mean 1/li;
• Service i has Si servers;
• Having received service i, customers proceed to service j with probability qij, or

leave the network altogether with probability ri (thus qi1 ? qi2 +_
qiK ? ri = 1) and these probabilities are independent of the state of the network
and the history of the customers.

In this case the overall arrival rate to service i, say ai, is given formally by:

ai ¼ ki þ
XK

k¼1

akqki for i ¼ 1; 2; . . .;K

and steady-state will then exist if ai=Sili
\1 for each service i. In this case, steady-

state behavior of system i is obtained using the multi-server queueing formulae
(2.9), (2.10) and (2.11) presented earlier (with arrival rate = ai, mean service
time = 1/li, and Si servers), and it can be treated as if it is independent of the rest of
the network. Clearly this analytical model again provides easy-to-use formulae
which can be implemented in a spreadsheet, although the nature of the assumptions
means that any results will be approximate at best. However these can be obtained
quite quickly, can be valuable in producing at least an initial assessment of a
problem, and will on occasions be accurate enough for practical purposes.

Furthermore the close links between these network results and the previous
single-node results at least suggest that many of the previous insights will carry
over to networks of queues.
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Time-Dependent Queueing Models

In Sect. 2.2, we outlined a time-dependent model for unfettered demand but there
are very few easy-to-use analytical models for the time-dependent behavior of
fettered queueing systems despite their obvious importance in practice. Here we
introduce one such approach and use it to provide insights into the time-
dependent behavior of queueing systems. We also flag up important situations
where the approach does not work and discuss how this can impact on the
insights.

There are some queueing systems with time-dependent arrival rates k(t) in
which the rate of change of arrival rate relative to the throughput of the system is
sufficiently slow that the system more or less achieves the steady state associated
with any arrival rate instantaneously. In these cases system behavior can be
approximated by a pointwise stationary approximation (PSA). This implies that the
behavior at any time t0 is simply approximated by the steady-state behavior of the
equivalent constant arrival rate system, with fixed arrival rate k(t0).

The implication of this approximation is that whenever the PSA is appropriate,
all the insights previously identified as associated with steady-state behavior
continue to hold.

However there are many important time-dependent queues in health care for
which this approach will not work well, and hence for which the insights will not
necessarily hold. For example, for the outpatient clinics modeled previously in
Fig. 2.3, the PSA would predict that the mean number of patients in the clinic
immediately jump to their steady-state values at 9 a.m., and immediately drop
back to zero at 12 noon. Figure 2.3 shows how the queue size can be expected to
lag substantially behind the response predicted by the PSA. In cases where it is
important to reflect this lagged behavior (for instance in determining staffing
requirements over the course of a day in an emergency room), simulation models
are often used.

2.3.4 Simulation-Based Queueing Models

As noted earlier, simulation models often require specialist software and are used
in ‘what if…’ mode to produce quasi-empirical results rather than direct insights.
However they are much more adaptable than analytical models and hence with
sufficient work are capable of producing more accurate results.

One of the earliest queue modeling studies in health care was by Bailey (1952),
who used manual simulation experiments to investigate the queueing process
occurring in hospital outpatient departments. He came to the conclusion that
‘‘a substantial amount of the patients’ waiting time may be eliminated without
appreciably affecting the consultant.’’

Using simple simulation analyses of the clinic bottleneck (i.e. the consultation
with the doctor) he revealed a number of characteristics of the clinics, including:
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• Disproportionate patient waiting time compared to actual consultation time;
• An over-riding consideration to the requirement that the consultant is kept fully

occupied;
• A large amount of room (which is often in short supply) just for those waiting.

These insights about the running of outpatient clinics have in fact proven to
hold good in many subsequent studies, with simple recommendations such as
ensuring that doctors arrive in time for the start of a clinic, and giving patients
appointment times that ensure a reasonable balance between the time that patients
will wait and the chance that the doctor is idle. See for example Worthington et al.
(2005) for one of a number of reviews of such work.

Since that time there have been many studies using simulation-based queueing
models to address a wide range of health care capacity planning issues. These have
been reviewed on a number of occasions and from various perspectives. Jun et al.
(1999) review about 30 years of research, identifying work that focuses on allo-
cation of resources (including bed, room and staff sizing and planning). Fletcher
and Worthington (2009) concentrate on simulation modeling of emergency flows
of patients, categorizing models under the following areas of hospital activity:
A&E, bed management, surgery, intensive care, diagnostics and whole systems
models. Günal and Pidd (2010) have a wider remit and use the categories: A&E,
inpatients, outpatients, other hospital units and whole systems. Both papers note
the very limited amount of work on whole systems models. Brailsford et al. (2009)
have an even more ambitious remit and apply a very structured process to review a
stratified sample of simulation and other modeling approaches in health care.

The potential of simulation-based models to provide ‘what if’ analyses of many
health care capacity planning issues is clear. However this approach needs to be
viewed with care. The record of application of models reviewed in these various
surveys is not high, and their flexibility can easily tempt the modeler to pursue an
unnecessarily complex model. As suggested by Proudlove et al. (2007) in health
care modeling, a combination of simplicity and supportive presentation is more
important than aiming at a complex and detailed representation.

2.4 Populating Capacity Planning Models

The models outlined in the previous sections vary in terms of the amount of data or
parameter estimates required for their use. These range from having to know mean
arrival rates and resource use/service time per patient to knowing or estimating
seasonal patterns of arrival, full distributions of service times and resource use and
transfer rates between different environments for different sub-groups of the
patient population.

For this reason, in addition to the strengths and weaknesses of alternative
modeling approaches for capacity planning set out above, the level of information
or data available to populate a model is an important consideration in adopting a
modeling approach. As demonstrated in Sects. 2.2 and 2.3 it is clear that in
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planning capacity for a service, it is important to have estimates for the expected
referral or arrival rate, the variability in arrivals, the mean use per patient of the
key resources considered and the variability in this use from patient to patient. In
instances where a network of environments or services are associated with
delivering care for the patient population concerned, the anticipated flows between
each service might be required, or at the very least an estimate of how many times
(on average) a patient uses each service in the network during an episode of care.

Although not a parameter required in order to run many of the models dis-
cussed, an understanding of the desired service standards is essential for using
models to inform capacity plans. These might be expressed as maximum can-
celation rates for elective patients, or average waiting times or queue sizes for an
outpatient clinic.

Typically, those planning a new service will have limited data from which to
work and there may be considerable uncertainty in terms of model parameters. In
these circumstances, the additional insights of complex models above what can be
obtained from simpler models may be limited, or rather the relevance and credi-
bility of these insights may be undermined by doubts as to whether the calibration
of the model is sufficiently robust.

Planners looking to estimate future capacity requirements for an existing ser-
vice are in a better position to estimate parameters but face difficulties of a dif-
ferent nature. The existence of reliable local data concerning the current operation
and performance of a system can lead to planners and modelers using these data as
direct estimates for model parameters. However, typically an organization will
have data on, say, the number of patients admitted to a service rather than the
actual demand for admission, since records may not be kept of patients turned
away/diverted to another provider or of those who, seeing the queue in a walk-in
center, decide not to join the queue. As another example, bed capacity models
require estimates concerning clinically necessary length of stay, whereas historical
data on length of stay will include any delays to discharging or transferring a
patient caused by a shortage of capacity at another point in the system and perhaps
instances where discharge was expedited due to pressure to admit an urgent case.
Being aware of these potential limitations of historical data is important (partic-
ularly if one aim of the capacity planning exercise is to improve rather than simply
scale up or scale down a service) since they are often linked to historical capacity
provision and the service standards accepted in the past. Essentially, if one is not
careful when interpreting data as model input, one risks carrying forward unde-
sirable features of past system performance.

Another issue in calibrating capacity planning models is that changing capacity
may influence the demands made of a service. For services where it is known or
likely that there is latent, unmet demand or the prospect of genuine supply-induced
demand, historical referral or arrival rates should clearly be used with particular
care. The influence of increased capacity on referral rates can be modeled
explicitly using dynamic models in which referrer behavior is influenced by, for
example, waiting times. Another approach is to simply explore scenarios where
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referral/arrival rates are increased above and beyond any demographic trends to
account for latent demand.

If one of the motivations or likely consequences of the capacity planning
exercise concerned is to widen (or restrict) access to a service, it should also be
recognized that case-mix (in terms of the severity of patients and resource use per
patient) may change.

2.5 Final Thoughts

As indicated in the earlier sections of this chapter, it is possible to build capacity
planning models that are highly complex and that incorporate the fine detail of a
system as well as the key drivers to system performance. It is perhaps worth
reflecting that, although additional complexity and detail in models can add value
and in some circumstances will be warranted, there can be diminishing returns in
terms of the utility of model output as models get more and more complex, take
longer to develop and require more parameter estimates, etc. Indeed, there is an
argument that, rather than use or configure explicit capacity planning models each
time they undertake a capacity planning exercise, it might sometimes be just as
beneficial for organizations to adopt a set of capacity planning rules based on the
cumulative experience of capacity modeling of various forms. Such rules might
include pooling resources wherever this is consistent with good clinical manage-
ment, planning on the basis of working at bed utilization of 85%, with lower
targets for smaller environments and services where instant access is imperative.
Another rule might be to accept lower utilization of relatively cheap resources (for
instance portering) where shortages hinder access to or the efficient use of very
expensive or scarce resources.

Service configuration or reconfiguration that is informed by the considerations
outlined in this chapter should achieve the aim of establishing a reasonable balance
between demand and capacity, providing a basis for effective and efficient
scheduling to enhance performance.

That said, planning is never enough and the right operational culture is required
for the balance of capacity provided across a system to be associated with the
performance anticipated from models. Reserve capacity will not have the desired
effect on system performance in an organization where the flow of patients is only
stimulated by the push of new arrivals at the front door. Proactive discharge
planning and a pull through the system must be maintained somehow even when
the system seems to be running smoothly. Having appropriate financial arrange-
ments in place helps but ultimately this is a challenge for leadership within health
care organizations.

In some health systems, the shift in working culture between the world as it is
and the world as Operations Researchers would like it to be is vast and modelers,
in their work, should be mindful of the barrier that this represents. The challenge
of getting managers and clinicians who have spent their lives working at capacity
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to realize that an idle porter, a few empty beds downstream and a nurse spending
half a day doing some online training because they are not needed on the ward are
good things is one that goes way beyond the technical challenges of building and
using models.
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