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Chapter 2
Introduction to QCD and Collider Physics

2.1 Quantum Chromodynamics (QCD)

Quantum chromodynamics (QCD) is the theory of the strong interaction, describing
the interactions of the quarks and gluons, using the SU(3) non-Abelian gauge theory
of color charge [1]. The expression for the classical QCD Lagrangian density is
given by:

L = −1

4
F A

αβ Fαβ
A +

∑

flavors

q̄a(iγμ Dμ − m)abqb, (2.1)

where the sum runs over the n f different flavors of quarks (n f = 6 in the SM), and
α, β, γ are Lorentz indices. Throughout this entire chapter, we will work with the
convention that repeated indices are implicitly summed over. F A

αβ is the field strength

tensor derived from the gluon field AA
α :

F A
αβ = [∂αAA

β − ∂βAA
α − gs f ABCAB

α AC
β ] (2.2)

The capital indices A, B and C run over the eight degrees of freedom of the gluon
field. Note that it is the third (non-Abelian) term in the above expression that makes
the gluons have self-interactions. This means that, unlike the photon in QED, the
carrier of the color force is itself colored, a property that is giving rise to asymptotic
freedom (see further in the text). The numbers f ABC are structure constants of the
SU(3) group. Quark fields qa (a = 1, 2, 3) are in triplet color representation, with
colors red (r), green (g) and blue (b).

The strong coupling strength gs in Eq. 2.2 is used to define the strong coupling
constant αs = g2

s /4π. D in Eq. 2.1 stands for the covariant derivative, which takes,
acting on triplet and octet fields respectively, the form:

(Dα)ab = ∂αδab + ig(tCAC
α )ab (2.3)
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(Dα)AB = ∂αδAB + ig(T CAC
α )AB, (2.4)

where t and T are matrices in the fundamental and adjoint representations of SU(3)
respectively.

2.1.1 Perturbative QCD (pQCD)

By adding a gauge-fixing term to the classical QCD Lagrangian (Eq. 2.1):

Lgauge−fixing = − 1

2λ
(∂αAA

α )2, (2.5)

and a so-called ghost Lagrangian which is derived from a complex scalar field ηA

and is needed because the theory is non-Abelian:

Lghost = ∂αηA†(Dα
ABηB), (2.6)

any process can be calculated in a perturbative way using Feynman rules which are
obtained from replacing covariant derivatives by appropriate momenta. The Feynman
rules in a covariant gauge are given in Fig. 2.1. However, a perturbative calculation
generally requires 4-dimensional integrations over intermediate momentum states
arising from gluon quantum fluctuations, which suffer from ultraviolet divergences.

A renormalization procedure is needed to remove these divergences, which essen-
tially means that the Lagrangian is rewritten so that bare masses and coupling
strengths are eliminated in favor of their physically measurable counterparts, giving
rise to a renormalized Lagrangian [2]. Modified Feynman rules are derived from this
Lagrangian and singularities in the contributions from individual diagrams are now
absorbed by the physical quantities, leading to a finite result at the end.

Several renormalization methods are possible, and the exact definitions of physical
quantities—masses and coupling constants—depend on the specific renormalization
scheme used in the theory, but common to all schemes is the inclusion in the renormal-
ized Lagrangian of a new, arbitrary parameter, with the dimension of mass, needed
to define the physical quantities.This parameter is often called the renormalization
scale μR . It appears in the intermediate parts of a calculation, but cannot ultimately
influence the relations between physical observables.

A consequence of renormalization is that the definition of the physically observ-
able quantities not only depends on μR, but also becomes scale dependent; when the
theory is normalized at a scale μR but then applied to a very different scale Q (of
the order of the momentum invariants of the reaction), the coupling constants and
masses adjust to that scale, a process which is commonly referred to as the running
of the coupling constants and masses.

The running of the coupling constant αs is controlled by the β function [3], which
is derived from the statement that a physical observable cannot depend on μR:
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Fig. 2.1 Feynman rules for QCD in a covariant gauge from gluons (curvy red lines), fermions (solid
blue lines) and ghosts (dotted black lines) [1]

Q
∂αs

∂ Q
≡ 2βQCD = − β0

2π
α2

s − β1

4π2 α3
s − O(α4

s ), (2.7)

with

β0 = 11 − 2

3
n f (2.8)
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β1 = 51 − 19

3
n f (2.9)

Given that αs is known (from experiment) at a certain scale Q0, Eq. 2.7 can be
used to calculate its value at any other scale Q:

log(Q2/Q2
0) =

αs (Q)∫

αs (Q0)

dα

β(α)
(2.10)

Equation 2.10 is solvable using the leading-order (LO) term of β(α) only, which
gives:

αs(Q) = αs(Q0)

1 + β0
2π

αs(Q0) ln(Q2/Q2
0)

≈ αs(Q0)
(

1 − β0

2π
αs(Q0) ln(Q2/Q2

0)
)

(2.11)
Another way to solve Eq. 2.7 is by introducing a dimensional parameter 
, repre-
senting the mass scale at which αs becomes infinite. This way, we get:

αs(Q) = 4π

β0 ln(Q2/
2)

[
1 − 2β1

β2
0

ln[ln(Q2/
2)]
ln(Q2/
2)

+ O(ln−2(Q2/
2))

]
(2.12)

Note that in Eqs. 2.11 and 2.12 the running of αs with Q is logarithmic, so that
we do not need to worry too much about choosing Q precisely.

Equation 2.12 illustrates the hallmark of QCD, namely asymptotic freedom:
αs → 0 as Q → ∞. It also shows that QCD becomes strongly coupled at Q ∼ 
,

which is at about 200 MeV. This implies that perturbative methods can be used in the
short-distance limit, at scales Q much larger than 
. The fact that the strong force
becomes strong at larger distances, means that color charged particles cannot be iso-
lated singularly and cannot be observed as states that propagate over macroscopic
distances, a property which is called confinement. Only color singlet states composed
of quarks and gluons, i.e. hadrons, can be observed. We will talk about hadronization
in Sect. 2.5. Perturbative methods are no longer a valid approximation in this area.

Experiments usually report the strong coupling at the scale corresponding to
the Z mass (MZ = 91.2 GeV). The world average of αs(MZ ) is determined from
measurements which are based on QCD calculations in complete next-to-next-to
leading order (NNLO) perturbation theory, giving αs(MZ ) = 0.1182 ± 0.0027 [4].

2.2 The Parton Model

The high-energy interactions of hadrons are described by the QCD parton model
[5, 6]. The basic idea of this model is that the hard scattering between two hadrons
can be understood as the interaction between the partons—quarks and gluons with
their masses neglected—that make up the hadrons.
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A hadron consists of a number of valence quarks (e.g. uud for the proton) and an
infinite sea of gluons and light quark-antiquark (qq̄) pairs. The valence quarks carry
the hadron’s electric charge and baryon quantum numbers. When probed at a scale
Q, the sea contains all quark flavors with mass mq � Q. The gluons carry about
50% of the proton’s total momentum. A parton distribution function (PDF) is used
to denote the probability distribution that a quark, antiquark or gluon carries a given
fraction of the momentum of the hadron.

The sea is not static, there is a continuous movement of gluons splitting and
recombining into qq̄ pairs, and both quarks and gluons can emit and absorb gluons
as well. These processes imply that the transverse momenta of partons inside the
hadron are not restricted to small values, and that the PDFs describing the partons
depend on the scale Q that the hadron is probed with, a behavior which is known as a
violation of Bjorken Scaling. At leading order, the dependence on Q is logarithmic.

If q(x,Q) is the PDF describing quark Q, then q(x, Q)dx represents the probability
that Q carries a momentum fraction between x and x +dx when the hadron is probed
at a scale Q.

Each hadron has its own set of PDFs and separate PDFs are used for describing
the sea and the valence quarks; the PDFs for the valence quarks are flavor specific,
but QCD guarantees flavor number conservation of the sea quarks.

For example, for the proton at a scale of about 1 GeV, we can write:

u(x, Q) = uv(x, Q) + us(x, Q) (2.13)

d(x, Q) = dv(x, Q) + ds(x, Q) (2.14)

Taking into account quark number conservation, the following sum rules apply:

1∫

0

dx uv(x, Q) = 2 (2.15)

1∫

0

dx dv(x, Q) = 1 (2.16)

And experimentally, it was found that:

∑

q

1∫

0

dx x[q(x, Q) + q̄(x, Q)] ≈ 0.5, (2.17)

meaning that the quarks carry only about half of the proton’s momentum (and the
gluons the other half).
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When a quark emits a gluon, it can acquire a large momentum kT with probability
proportional to αsdk2

T /k2
T at large kT . This splitting diverges in the collinear region

(kT → 0). This is not a physical divergence; it simply means that perturbative QCD
is not a valid approximation in this region.

The way to solve this is to renormalize the PDFs by introducing a factorization
scale μ f . Similar to the renormalization scale, the factorization scale absorbs the
divergences coming from interactions that are not calculable in perturbation theory.
This way, the PDFs become scale dependent, just like the strong coupling constant
discussed in the previous section.

Perturbative QCD carries no absolute prediction of the PDF, but does predict how
the PDF scales with Q; these are the so called DGLAP (Dokshitzer–Gribov–Lipatov–
Altarelli–Parisi) evolution equations [7–9]:

t
∂

∂t

(
qi (x, t)
g(x, t)

)
= αs(t)

2π

∑

qi ,q̄ j

1∫

x

d z

z

(
Pq j →qi g(z, αs(t)) Pg→qi q̄i (z, αs(t))
Pq j →gqi (z, αs(t)) Pg→gg(z, αs(t))

)

(
q j (x/z, t)
g(x/z, t)

)

(2.18)
Here, t = −Q2, qi, j (x, t) and g(x,t) are the quark and gluon parton distribution

functions respectively, and the functions Pa→bc(z) are the so called unregularized
splitting kernels [1]. We will derive the DGLAP equations in Sect. 2.4

The DGLAP evolution equations specify the evolution of the parton density func-
tions in the same way as the β function (Eq. 2.7) specifies the evolution of the strong
coupling constant. When solving Eq. 2.18 to the leading order, the term ∂t/t will
cause the PDFs to obey a logarithmic dependence on t = −Q2.

The DGLAP equations do allow for the evolution of the PDFs from a certain
reference scale Q0 onwards, but data are still needed to determine its value at the
scale Q0. Deep inelastic lepton-hadron scattering measurements are an excellent
tool for probing PDFs and the reference scale is typically chosen around 1 GeV. Note
that PDFs are universal, i.e. they can be determined from one type of experiment
(e.g. e− p collisions) and used in another (e.g. pp collisions). In the past, leading-
order matrix elements together with lowest order running of αs (see Eq. 2.11)
were used for the fit. Nowadays, also next-to-leading order (NLO) and even NNLO
PDFs—resulting from a fit to NLO or NNLO matrix elements and a higher order
running of αs—have become available.

Historically there are two major collaborations working on PDFs: the CTEQ
[10], and the MRST [11], nowadays MSTW [12], collaboration. Figure 2.2 shows
the MRST2004NLO PDFs multiplied with x, for the up and down quark and the
gluon inside the proton at Q2 = 104 GeV2. The gluon distribution is scaled with a
factor 1/10 in order to fit into the plot. Note that the gluon distribution dominates at
small values of x.
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Fig. 2.2 Proton parton
distribution functions
multiplied with x. The gluon
distribution is scaled with a
factor 1/10 [11]

2.3 Hard Scattering Processes in Hadron Collisions

When two hadrons collide at high energy, most of the collisions involve only soft
interactions of the constituent quarks and gluons. Such interactions cannot be treated
using perturbative QCD, because αs is large when the momentum transfer is small.
In some collisions however, two quarks or gluons will exchange a large momen-
tum. In those cases, the elementary interaction takes place very rapidly compared
to the internal time scale of the hadron wavefunctions, so the lowest order(s) QCD
prediction should accurately describe the process.

The cross section for such a process can be written as a factorized product of short
and long distance processes:

σ(P1, P2) =
∑

i, j

∫
dx1dx2 fi (x1, μ

2
F ) f j (x2, μ

2
F )σ̂i, j (μ

2
R, μ2

F ), (2.19)

where P1 and P2 denote the momenta of the incoming hadrons. Figure 2.3 shows this
schematically. The momenta of the partons that participate in the hard interaction
are p1 = x1 P1 and p2 = x2 P2. The functions fi (x1, μ

2
F ) and f j (x2, μ

2
F ) are the

usual QCD quark or gluon PDFs, defined at a factorization scale μF , which take into
account the long-distance effects. It is in this sense that μF can be thought of as the
scale which separates long- and short-distance physics.

The short-distance cross section for the scattering of partons of types i and j is
denoted by σ̂i, j . Since the coupling is small at high energy, σ̂i, j can be calculated as
a perturbation series in αs .
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Fig. 2.3 The parton model
description of a hard
scattering process

At leading order, σ̂i, j is identical to the normal parton scattering cross section
and the dependence on μF disappears, but at higher order, long-distance parts in the
parton cross section need to be removed and factored into the parton distribution
functions.

Note that if calculated to all orders, the cross section should be independent of
the factorization and renormalization scales:

∂σ

∂μF
= ∂σ

∂μR
= 0 (2.20)

In practice, one is restricted to calculations at low orders, for which the residual
dependence on μF and μR can be appreciable.

Equation 2.19 is a prediction of the cross section with partons in the outgoing state.
Experiments however, measure hadrons and not partons due to confinement. The non-
perturbative process that transforms partons into hadrons is called hadronization and
this will be discussed in Sect. 2.5. But first we will discuss parton showers in the
next section.

2.4 Parton Branching

As discussed in Sect. 2.3, the hard collision between two hadrons, can be understood
as the collision between two partons. The first terms in the perturbative QCD expan-
sion, usually suffice to describe successfully the hard interaction between these two
partons, because the scale of this process is large.

However, in some regions of the phase space, higher order terms are enhanced and
cannot be neglected. For example, we have seen in Sect. 2.2 about the parton model
that when a quark emits a gluon, perturbation theory fails to describe the process in
the collinear region.
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Fig. 2.4 Schematic illustration of the hard scattering process and the softer showers. For initial
state branchings, t is increasing towards the hard scattering by means of successive small-angle
emissions (t0 < t1 < t3). The opposite is true for final state branching, where t is decreasing after
every branching (t4 > t5 > t6 > t7)

Enhanced higher-order terms occur in processes where a soft gluon is emitted or
when a gluon or light quark splits into two almost collinear partons. Parton branching
is the common name for these soft and collinear configurations.

In collision processes, parton branching typically happens for the ingoing and
outgoing quarks and gluons of the hard interaction. The incoming quark, initially
with low virtual mass-squared and carrying a fraction x of the hadron’s momen-
tum, moves to more virtual masses and lower momentum fractions by successive
small-angle emissions, and finally undergoes the hard scattering which happens at a
scale Q. After the collision, the outgoing parton of the hard scattering process has ini-
tially a large positive mass-squared, which then gradually decreases by consecutive
parton emissions.

Figure 2.4 shows schematically a hard hadron collision. Two hadrons (A and B)
are coming in and one incoming parton in each hadron gets selected, and undergoes
a hard scattering, resulting in outgoing partons. The hard scattering of the incoming
partons which happens at a scale Q, can be calculated using perturbative QCD. But
all incoming and outgoing partons undergo branchings as well, giving rise to the so
called parton showers (and to scale dependent PDFs). A lower order perturbative
calculation fails to describe the shower behavior, but perturbative QCD calculations
become too complicated at higher orders to be of practical use. We will show that an
approximate perturbative treatment of QCD to all orders is adequate at describing
the branching physics.

A distinction needs to be made between partons that are incoming lines in the
Feynman diagram describing the hard interaction, and partons that are outgoing lines.
An incoming parton has a negative (virtual) mass-squared. Therefore its branching
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process is called spacelike, giving rise to initial state showers. The opposite is true for
outgoing branching partons. These partons have a positive mass-squared and their
branching is said to be timelike. They give rise to final state showers.

A branching can be seen as a a → bc process, where A is called the mother and
b and c the daughters. Each daughter is free to branch as well, so that a shower-like
structure can evolve.

For a timelike branching, we assume that the mass of the mother is much higher
than the masses of the daughters. For a spacelike branching, we assume that the
daughter that will finally take part in the hard interaction has a much larger virtuality
than the other partons.

In the approximation of small angle scattering, the branching kinematics can be
described by two variables, z and t. We define z as the fraction of energy carried
by daughter b: z = Eb/Ea = 1 − Ec/Ea . The variable t can have different inter-
pretations, but always has the dimensions of squared mass. Here we will define t as
the mass squared of the mother (t ≡ p2

a) for timelike branching and as the absolute
value of the mass squared of the daughter (t ≡ |p2

b|) for spacelike branching.
In terms of z and t, the differential probability that one branching occurs is given

by:

dPa =
∑

b,c

αs

2π
Pa→bc(z)

dt

t
dz, (2.21)

where the sum runs over all branchings the parton is allowed to make. The functions
Pa→bc(z) are the so called splitting kernels. They are written as a perturbation series
and, at lowest order, can be interpreted as the probability of finding a parton of type
b in a parton of type a with a momentum fraction z. For example, for the splitting
of a gluon into a quark antiquark pair, we have at lowest order that Pg→qq̄(z) ∝
(z2 + (1− z)2). We integrate Eq. 2.21 over z in order to get the branching probability
for a certain t value:

Ia→bc(t) =
z+(t)∫

z−(t)

dz
αs

2π
Pa→bc(z), (2.22)

where we have considered one type of branching only. In principle z can vary between
0 and 1, but because most splitting kernels suffer from infrared singularities at
z = {0, 1}, we need to introduce an explicit cut-off. Physically, this can be understood
by saying that branchings close to the integration limits are unresolvable; they involve
the emission of an undetectably soft parton. Alternatively, the plus prescription of
the splitting function can be used instead of z−(t) and z+(t) [7–9].

The naïve probability that a branching occurs in the range [t, t + dt], is given by∑
b,c Ia→bc(t)dt/t, and thus the probability of no emission is 1−∑

b,c Ia→bc(t)dt/t.
This is however, not correct when we consider multiple branchings. Note that

from Heisenberg’s principle, t fills the function of a kind of inverse time squared
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for the shower evolution; t is constrained to be gradually decreasing away from the
hard scattering in final state showers, and to be gradually increasing towards the hard
scattering in initial state showers.

This means that the probability for branching at a time t needs to take into account
the probability that the parton has not branched at earlier times t0 < t. The proba-
bility that a branching did not occur between t0 and t, is given by the Sudakov form
factor [13]:

Pno−branching(t0, t) = exp

{
−

t∫

t0

dt ′

t ′
∑

b,c

Ia→bc(t
′)
}

= Sa(t), (2.23)

giving rise to the actual probability that a branching occurs at time t:

dPa

dt
= −dPno−branching(t0, t)

dt
=

(1

t

∑

b,c

Ia→bc(t)
)

Sa(t)

=
(1

t

∑

b,c

z+(t)∫

z−(t)

dz
αs

2π
Pa→bc

)
exp

⎧
⎪⎨

⎪⎩
−

t∫

t0

dt ′

t ′
∑

b, c

z+(t ′)∫

z−(t ′)

dz
αs

2π
Pa→bc

⎫
⎪⎬

⎪⎭
(2.24)

The first term in the right hand side of the above equation is the naïve branching
probability. The other term is needed to deal with the fact that partons that have
already branched can no longer branch. This is similar to the radioactive decay.

Equation 2.24 can be used to simulate jet production, and therefore forms the
basis for parton showers implemented in many Monte Carlo event generators [14].

Because inside the hadron, sea quarks and gluons undergo the same branchings
as described in this section, the evolution of PDFs can be described with the same
techniques [1]. These are the DGLAP equations, which were shown in Sect. 2.2 (see
Eq. 2.18).

The DGLAP equations are not applicable in all regions of phase space. As a
matter of fact, it turns out that when ln(t/
2) � ln(1/x), i.e. for small values of
x, not all leading terms are included; important contributions in terms of ln(1/x)

are neglected. The resummation of terms proportional to αs ln(1/x) to all orders,
retaining the full t dependence and not just the leading ln(t) is accomplished by the
Balitsky–Fadin–Kuraev–Lipatov (BFKL) [15, 16] equation.

2.5 Hadronization

Due to color confinement, quarks and gluons cannot propagate freely over macro-
scopic distances. When two quarks are close together, the strong force between them
is relatively weak (asymptotic freedom), but when they move farther apart, the force
becomes much stronger (confinement). The potential between the quarks increases
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linearly with their mutual separation, and at some distance, it becomes much easier
to create a new quark-antiquark pair than to keep pulling against the ever-increasing
potential. This process is repetitive and the newly created quarks and antiquarks will
combine themselves into hadrons.

In a collision experiment, all outgoing partons will therefore undergo parton show-
ering and transform themselves into hadrons, forming jets, i.e. sprays of hadrons,
which are then experimentally detected. The process is called hadronization.

Hadronization cannot be calculated in perturbative QCD, because it happens in a
region where αs is too strong. But still, jets are very useful for our understanding of
QCD. The reason is that by the uncertainty principle, a hard interaction at a typically
large scale Q occurs at a distance scale of the order of 1/Q, while the subsequent
hadronization processes occur at a much later time scale characterized by 1/
, where

 is the scale at which the strong coupling becomes strong. The interactions that
change quarks and gluons into hadrons, certainly modify the outgoing state, but they
occur too late to modify the original probability for the event to happen, which can
therefore be calculated in perturbation theory. Each hadron appears in the final state
roughly in the same direction as the quark or gluon it originated from. The cross
section for a single hadron is therefore closely related to the underlying partonic
direction, and for a good jet finding algorithm, the extension to jet cross sections can
be made. We will talk about jets in detail in later chapters.

Popular models describing hadronization are the Lund string model [17] and the
cluster model [18]. In all models, color singlet structures are formed out of color
connected partons, and are decayed into hadrons preserving energy and momentum.

2.6 Monte Carlo Event Generators

As already mentioned in the introductory chapter, particle collision experiments
are of high importance for testing theories. In order to be able to interpret scattering
experiments in terms of an underlying theory, a comparison between events simulated
according to that specific theory and data is needed. Since nature is fundamentally
probabilistic, the generated events need to exhibit the same statistical fluctuations.
Pseudo-randomness can be computed using suited Monte Carlo techniques.

The generation of an event is done using a factorized approach, and the major
steps are:

1. the hard scattering process
2. initial and final state radiation (i.e. parton showers)
3. hadronization and beam remnants
4. multiple interactions

The first three steps were discussed in this chapter, but more generator-specific
information can be found in Ref. [14].

Besides a hard scattering, additional interactions between partons occur in the
event, which are called multiple interactions and cannot be neglected.
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A beam remnant is what remains of the incoming beam after one of its partons has
initiated the hard scattering. Because the beam remnants are no longer color neutral,
they need to be included into the calculation.

Due to its high complexity, the hard scattering is usually calculated at leading
order. Programs with higher order scatterings exist, but these programs do not include
the other steps of the event generation (i.e. they are not complete).

The work in this thesis is done using four generators:

• PYTHIA [14, 19]
• NLOJET++ [20]
• JETRAD [21]
• GravADD [22]

PYTHIA is a complete, multi-purpose event generator with leading-order matrix
elements. Within many experimental collaborations, this program has become the
standard for providing event properties in a wide range of reactions, within and
beyond the Standard Model, with emphasis on those that include strong interactions,
directly or indirectly, and therefore multihadronic final states. While the first releases
were coded in Fortran [14], more current releases have been written in C++ [19] .

NLOJET++ and JETRAD use a next-to-leading order (NLO) description of the
hard scattering, but parton showers, hadronization, beam remnants and multiple
interactions are not implemented. NLO Monte Carlo techniques will be the topic
of Chap. 3 .

GravADD is a complete generator for black holes and gravitational scattering in
large extra dimensions, in addition to standard QCD processes. See Chap. 5 for a
detailed description.
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