
1 Introduction and Problem Formulation

In this chapter, we provide an introduction to covariate shift adaptation toward
machine learning in a non-stationary environment.

1.1 Machine Learning under Covariate Shift

Machine learning is an interdisciplinary field of science and engineering study-
ing that studies mathematical foundations and practical applications of systems
that learn. Depending on the type of learning, paradigms of machine learning
can be categorized into three types:

• Supervised learning The goal of supervised learning is to infer an underly-
ing input–output relation based on input–output samples. Once the underlying
relation can be successfully learned, output values for unseen input points can
be predicted. Thus, the learning machine can generalize to unexperienced situ-
ations. Studies of supervised learning are aimed at letting the learning machine
acquire the best generalization performance from a small number of training
samples. The supervised learning problem can be formulated as a function
approximation problem from samples.

• Unsupervised learning In contrast to supervised learning, output values
are not provided as training samples in unsupervised learning. The general
goal of unsupervised learning is to extract valuable information hidden behind
data. However, its specific goal depends heavily on the situation, and the
unsupervised learning problem is sometimes not mathematically well-defined.
Data clustering aimed at grouping similar data is a typical example. In data
clustering, how to measure the similarity between data samples needs to
be predetermined, but there is no objective criterion that can quantitatively
evaluate the validity of the affinity measure; often it is merely subjectively
determined.



4 1 Introduction and Problem Formulation

• Reinforcement learning The goal of reinforcement learning is to acquire
a policy function (a mapping from a state to an action) of a computer agent.
The policy function is an input–output relation, so the goal of reinforcement
learning is the same as that of supervised learning. However, unlike supervised
learning, the output data cannot be observed directly. Therefore, the policy
function needs to be learned without supervisors. However, in contrast to unsu-
pervised learning, rewards are provided as training samples for an agent’s
action. Based on the reward information, reinforcement learning tries to learn
the policy function in such a way that the sum of rewards the agent will receive
in the future is maximized.

The purpose of this book is to provide a comprehensive overview of theory,
algorithms, and applications of supervised learning under the situation called
covariate shift.

When developing methods of supervised learning, it is commonly assumed
that samples used as a training set and data points used for testing the
generalization performance1 follow the same probability distribution (e.g.,
[195, 20, 193, 42, 74, 141]). However, this common assumption is not fulfilled
in recent real-world applications of machine learning such as robot control,
brain signal analysis, and bioinformatics. Thus, there is a strong need for theo-
ries and algorithms of supervised learning under such a changing environment.
However, if there is no connection between training data and test data, noth-
ing about test data can be learned from training samples. This means that a
reasonable assumption is necessary for relating training samples to test data.

Covariate shift is one of the assumptions in supervised learning. The sit-
uation where the training input points and test input points follow different
probability distributions, but the conditional distributions of output values
given input points are unchanged, is called the covariate shift [145]. This means
that the target function we want to learn is unchanged between the training
phase and the test phase, but the distributions of input points are different for
training and test data.

A situation of supervised learning where input-only samples are available in
addition to input–output samples is called semisupervised learning [30]. The
covariate shift adaptation techniques covered in this book fall into the cate-
gory of semisupervised learning since input-only samples drawn from the test
distribution are utilized for improving the generalization performance under
covariate shift.

1. Such test points are not available during the training phase; they are given in the future after
training has been completed.



1.2. Quick Tour of Covariate Shift Adaptation 5

1.2 Quick Tour of Covariate Shift Adaptation

Before going into the technical detail, in this section we briefly describe the
core idea of covariate shift adaptation, using an illustative example. To this
end, let us consider a regression problem of learning a function f (x) from its
samples {(x tr

i , y tr
i )}ntr

i=1. Once a good approximation fuction f̂ (x) is obtained,
we can predict the output value y te at an unseen test input point xte by means
of f̂ (x te).

Let us consider a covariate shift situation where the training and test input
points follow different probability distributions, but the learning target func-
tion f (x) is common to both training and test samples. In the toy regression
example illustrated in figure 1.1a, training samples are located in the left-hand
side of the graph and test samples are distributed in the right-hand side. Thus,
this is an extrapolation problem where the test samples are located outside the

Figure 1.1
A regression example with covariate shift. (a) The learning target function f (x) (the solid line),
training samples (◦), and test samples (×). (b) Probability density functions of training and test
input points and their ratio. (c) Learned function f̂ (x) (the dashed line) obtained by ordinary least
squares. (d) Learned function f̂ (x) (the dashed-dotted line) obtained by importance-weighted least
squares. Note that the test samples are not used for function learning.



6 1 Introduction and Problem Formulation

training region. Note that the test samples are not given to us in the training
phase; they are plotted in the graph only for illustration purposes. The prob-
ability densities of the training and test input points, ptr(x) and pte(x), are
plotted in figure 1.1b.

Let us consider straight-line function fitting by the method of least squares:

min
θ1 ,θ2

[
ntr∑
i=1

(
f̂ (x tr

i )− y tr
i

)2

]
,

where

f̂ (x)= θ1x + θ2.

This ordinary least squares gives a function that goes through the training sam-
ples well, as illustrated in figure 1.1c. However, the function learned by least
squares is not useful for predicting the output values of the test samples located
in the right-hand side of the graph.

Intuitively, training samples that are far from the test region (say, training
samples with x<1 in figure 1.1a) are less informative for predicting the output
values of the test samples located in the right-hand side of the graph. This gives
the idea that ignoring such less informative training samples and learning only
from the training samples that are close to the test region (say, training samples
with x > 1.2 in figure 1.1a) is more promising. The key idea of covariate shift
adaptation is to (softly) choose informative training samples in a systematic
way, by considering the importance of each training sample in the prediction
of test output values. More specifically, we use the ratio of training and test
input densities (see figure 1.1b),

pte(x tr
i )

ptr(x tr
i )
,

as a weight for the i -th training sample in the least-squares fitting:

min
θ1 ,θ2

[
ntr∑
i=1

pte(x tr
i )

ptr(x tr
i )

(
f̂ (x tr

i )− y tr
i

)2

]
.

Then we can obtain a function that extrapolates the test samples well (see
figure 1.1d). Note that the test samples are not used for obtaining this function.
In this example, the training samples located in the left-hand side of the graph
(say, x < 1.2) have almost zero importance (see figure 1.1b). Thus, these sam-
ples are essentially ignored in the above importance-weighted least-squares



1.3. Problem Formulation 7

method, and informative samples in the middle of the graph are automatically
selected by importance weighting.

As illustrated above, importance weights play an essential role in covariate
shift adaptation. Below, the problem of covariate shift adaptation is formulated
more formally.

1.3 Problem Formulation

In this section, we formulate the supervised learning problem, which includes
regression and classification. We pay particular attention to covariate shift and
model misspecification; these two issues play the central roles in the following
chapters.

1.3.1 Function Learning from Examples
Let us consider the supervised learning problem of estimating an unknown
input–output dependency from training samples. Let

{(x tr
i , y tr

i )}ntr
i=1

be the training samples, where the training input point

x tr
i ∈X ⊂R

d, i = 1,2, . . . ,ntr

is an independent and identically distributed (i.i.d.) sample following a
probability distribution Ptr(x) with density ptr(x):

{x tr
i }ntr

i=1

i.i.d.∼ Ptr(x).

The training output value

y tr
i ∈Y ⊂R, i = 1,2, . . . ,ntr

follows a conditional probability distribution P(y|x) with conditional density
p(y|x).

y tr
i ∼ P(y|x= xtr

i ).

P(y|x) may be regarded as the superposition of the true output f (x) and
noise ε:

y= f (x)+ ε.



8 1 Introduction and Problem Formulation

We assume that noise ε has mean 0 and variance σ 2. Then the function f (x)
coincides with the conditional mean of y given x.

The above formulation is summarized in figure 1.2.

1.3.2 Loss Functions
Let loss(x, y, ŷ) be the loss function which measures the discrepancy between
the true output value y at an input point x and its estimate ŷ. In the regression
scenarios where Y is continuous, the squared loss is often used.

loss(x, y, ŷ)= (ŷ− y)2.

On the other hand, in the binary classification scenarios where Y ={+1,−1},
the following 0/1-loss is a typical choice since it corresponds to the misclassi-
fication rate.

loss(x, y, ŷ)=
{

0 if sgn(ŷ)= y,

1 otherwise,

where sgn(ŷ) denotes the sign of ŷ:

sgn(ŷ) :=

⎧⎪⎪⎨⎪⎪⎩
+1 if ŷ> 0,

0 if ŷ= 0,

−1 if ŷ< 0.

Although the above loss functions are independent of x, the loss can generally
depend on x [141].

Figure 1.2
Framework of supervised learning.



1.3. Problem Formulation 9

1.3.3 Generalization Error
Let us consider a test sample (x te, y te), which is not given in the training phase
but will be given in the test phase. xte ∈ X is a test input point following a
test distribution Pte(x) with density pte(x), and y te ∈ Y is a test output value
following the conditional distribution P(y|x = xte) with conditional density
p(y|x = x te). Note that the conditional distribution is common to both train-
ing and test samples. The test error expected over all test samples (or the
generalization error) is expressed as

Gen= E
xte

E
yte

[
loss(x te, y te, f̂ (x te; θ))] ,

where Exte denotes the expectation over x te drawn from Pte(x) and Eyte denotes
the expectation over y te drawn from P(y|x = x te). The goal of supervised
learning is to determine the value of the parameter θ so that the generaliza-
tion error is minimized, that is, output values for unseen test input points can
be accurately estimated in terms of the expected loss.

1.3.4 Covariate Shift
In standard supervised learning theories (e.g., [195,20,193,42,74,141,21]), the
test input distribution Pte(x) is assumed to agree with the training input distri-
bution Ptr(x). However, in this book we consider the situation under covariate
shift [145], that is, the test input distribution Pte(x) and the training input
distribution Ptr(x) are generally different:

Ptr(x) �= Pte(x).

Under covariate shift, most of the standard machine learning techniques do
not work properly due to the differing distributions. The main goal of this
book is to provide machine learning methods that can mitigate the influence of
covariate shift.

In the following chapters, we assume that the ratio of test to training input
densities is bounded, that is,

pte(x)
ptr(x)

<∞ for all x ∈X .

This means that the support of the test input distribution must be contained in
that of the training input distribution. The above ratio is called the importance
[51], and it plays a central role in covariate shift adaptation.



10 1 Introduction and Problem Formulation

1.3.5 Models for Function Learning
Let us employ a parameterized function f̂ (x; θ) for estimating the output value
y, where

θ = (θ1, θ2, . . . , θb)
� ∈�⊂R

b.

Here, � denotes the transpose of a vector or a matrix, and� denotes the domain
of parameter θ .

1.3.5.1 Linear-in-Input Model The simplest choice of parametric model
would be the linear-in-input model:

f̂ (x; θ)=
d∑

k=1

θk x (k)+ θd+1, (1.1)

where

x= (x (1), x (2), . . . , x (d))�.

This model has linearity in both input variable x and parameter θ , and the
number b of parameters is d + 1, where d is the dimensionality of x. The
linear-in-input model can represent only a linear input–output relation, so its
expressibility is limited. However, since the effect of each input variable x (k)

can be specified directly by the parameter θk , it would have high interpretabil-
ity. For this reason, this simple model is still often used in many practical
data analysis tasks such as natural language processing, bioinformatics, and
computational chemistry.

1.3.5.2 Linear-in-Parameter Model A slight extension of the linear-in-input
model is the linear-in-parameter model:

f̂ (x; θ)=
b∑
�=1

θ�ϕ�(x), (1.2)

where {ϕ�(x)}b�=1 are fixed, linearly independent functions. This model is linear
in parameter θ , and we often refer to it as the linear model. Popular choices of
basis functions include polynomials and trigonometric polynomials.

When the input dimensionality is d = 1, the polynomial basis functions are
given by

{ϕ�(x)}b�=1={1, x, x 2, . . . , x t},



1.3. Problem Formulation 11

where b= t + 1. The trigonometric polynomial basis functions are given by

{ϕ�(x)}b�=1={1, sin x, cos x, sin 2x, cos2x, . . . , sin cx, coscx},
where b= 2c+ 1.

For multidimensional cases, basis functions are often built by combining
one-dimensional basis functions. Popular choices include the additive model
and the multiplicative model. The additive model is given by

f̂ (x; θ)=
d∑

k=1

c∑
�=1

θk,�ϕ�(x
(k)).

Thus, a one-dimensional model for each dimension is combined with the others
in an additive manner (figure 1.3a). The number of parameters in the additive
model is

b= cd.

The multiplicative model is given by

f̂ (x; θ)=
c∑

�1,�2 ,...,�d=1

θ�1,�2 ,...,�d

d∏
k=1

ϕ�k (x
(k)).

Thus, a one-dimensional model for each dimension is combined with the oth-
ers in a multiplicative manner (figure 1.3b). The number of parameters in the
multiplicative model is

b= cd .

Figure 1.3
Examples of an additive model f̂ (x) = (x (1))2 − x (2) and of a multiplicative model f̂ (x) =
−x (1)x (2)+ x (1)(x (2))2.



12 1 Introduction and Problem Formulation

In general, the multiplicative model can represent more complex functions
than the additive model (see figure 1.3). However, the multiplicative model
contains exponentially many parameters with respect to the input dimension-
ality d—such a phenomenon is often referred to as the curse of dimensionality
[12]. Thus, the multiplicative model is not tractable in high-dimensional prob-
lems. On the other hand, the number of parameters in the additive model
increases only linearly with respect to the input dimensionality d , which is
more preferable in high-dimensional cases [71].

1.3.5.3 Kernel Model The number of parameters in the linear-in-parameter
model is related to the input dimensionality d . Another means for determining
the number of parameters is to relate the number of parameters to the number
of training samples, ntr. The kernel model follows this idea, and is defined by

f̂ (x; θ)=
ntr∑
�=1

θ�K (x, x tr
�
),

where K (·, ·) is a kernel function. The Gaussian kernel would be a typical
choice (see figure 1.4):

K (x, x ′)= exp

(
−‖x− x ′‖2

2h2

)
, (1.3)

where h (> 0) controls the width of the Gaussian function.
In the kernel model, the number b of parameters is set to ntr, which is inde-

pendent of the input dimensionality d . For this reason, the kernel model is
often preferred in high-dimensional problems. The kernel model is still lin-
ear in parameters, so it is a kind of linear-in-parameter model; indeed, letting

Figure 1.4
Gaussian functions (equation 1.3) centered at the origin with width h.



1.3. Problem Formulation 13

b= ntr and ϕ�(x)= K (x, x tr
� ) in the linear-in-parameter model (equation 1.2)

yields the kernel model. Thus, many learning algorithms explained in this book
could be applied to both models in the same way.

However, when we discuss convergence properties of the learned func-
tion f̂ (x; θ) when the number of training samples is increased to infinity,
the kernel model should be treated differently from the linear-in-parameter
model because the number of parameters increases as the number of train-
ing samples grows. In such a case, standard asymptotic analysis tools such
as the Cramér-Rao paradigm are not applicable. For this reason, statisticians
categorize the linear-in-parameter model and the kernel model in different
classes: the linear-in-parameter model is categorized as a parametric model,
whereas the kernel model is categorized as a nonparametric model. Analysis
of the asymptotic behavior of nonparametric models is generally more difficult
than that of parametric models, and highly sophisticated mathematical tools are
needed (see, e.g., [191, 192, 69]).

A practical compromise would be to use a fixed number of kernel functions,
that is, for fixed b,

f̂ (x; θ)=
b∑
�=1

θ�K (x, c�),

where, for example, {c�}b�=1 are template points for example chosen randomly
from the domain or from the training input points {x tr

i }ntr
i=1 without replacement.

1.3.6 Specification of Models
A model f̂ (x; θ) is said to be correctly specified if there exists a parameter θ∗

such that

f̂ (x; θ∗)= f (x).

Otherwise, the model is said to be misspecified. In practice, the model used
for learning would be misspecified to a greater or lesser extent since we do
not generally have strong enough prior knowledge to correctly specify the
model. Thus, it is important to consider misspecified models when developing
machine learning algorithms.

On the other hand, it is meaningless to discuss properties of learning algo-
rithms if the model is totally misspecified—for example, approximating highly
nonlinearly fluctuated functions by a straight line does not provide meaning-
ful prediction (figure 1.5). Thus, we effectively consider the situation where
the model at hand is not correctly specified but is approximately correct.



14 1 Introduction and Problem Formulation

Figure 1.5
Approximating a highly nonlinear function f (x) by the linear-in-input model f̂ (x), which is
totally misspecified.

This approximate correctness plays an important role when designing model
selection algorithms (chapter 3) and active learning algorithms (chapter 8).

1.4 Structure of This Book

This book covers issues related to the covariate shift problems, from funda-
mental learning algorithms to state-of-the-art applications.

Figure 1.6 summarizes the structure of chapters.

1.4.1 Part II: Learning under Covariate Shift
In part II, topics on learning under covariate shift are covered.

In chapter 2, function learning methods under covariate shift are introduced.
Ordinary empirical risk minimization learning is not consistent under covari-
ate shift for misspecified models, and this inconsistency issue can be resolved
by considering importance-weighted loss functions. Here, various importance-
weighted empirical risk minimization methods are introduced, including least
squares and Huber’s method for regression, and Fisher discriminant analysis,
logistic regression, support vector machines, and boosting for classification.
Their adaptive and regularized variants are also introduced. The numerical
behavior of these importance-weighted learning methods is illustrated through
experiments.

In chapter 3, the problem of model selection is addressed. Success of
machine learning techniques depends heavily on the choice of hyperparam-
eters such as basis functions, the kernel bandwidth, the regularization param-
eter, and the importance-flattening parameter. Thus, model selection is one of
the most fundamental and crucial topics in machine learning. Standard model
selection schemes such as the Akaike information criterion, cross-validation,
and the subspace information criterion have their own theoretical justification



1.4. Structure of This Book 15

Figure 1.6
Structure of this book.



16 1 Introduction and Problem Formulation

in terms of the unbiasedness as generalization error estimators. However, such
theoretical guarantees are no longer valid under covariate shift. In this chap-
ter, various their modified variants using importance-weighting techniques are
introduced, and the modified methods are shown to be properly unbiased even
under covariate shift. The usefulness of these modified model selection criteria
is illustrated through numerical experiments.

In chapter 4, the problem of importance estimation is addressed. As shown
in the preceding chapters, importance-weighting techniques play essential
roles in covariate shift adaptation. However, the importance values are usually
unknown a priori, so they must be estimated from data samples. In this chapter,
importance estimation methods are introduced, including importance estima-
tion via kernel density estimation, the kernel mean matching method, a logistic
regression approach, the Kullback–Leibler importance estimation procedure,
and the least-squares importance fitting methods. The latter methods allow
one to estimate the importance weights without performing through density
estimation. Since density estimation is known to be difficult, the direct impor-
tance estimation approaches would be more accurate and preferable in practice.
The numerical behavior of direct importance estimation methods is illustrated
through experiments. Characteristics of importance estimation methods are
also discussed.

In chapter 5, a dimensionality reduction scheme for density-ratio estima-
tion, called direct density-ratio estimation with dimensionality reduction (D3;
pronounced as “D-cube”), is introduced. The basic idea of D3 is to find a
low-dimensional subspace in which training and test densities are significantly
different, and estimate the density ratio only in this subspace. A supervised
dimensionality reduction technique called local Fisher discriminant analysis
(LFDA) is employed for identifying such a subspace. The usefulness of the D3

approach is illustrated through numerical experiments.
In chapter 6, the covariate shift approach is compared with related formula-

tions called sample selection bias. Studies of correcting sample selection bias
were initiated by Heckman [77,76], who received the Nobel Prize in economics
for this achievement in 2000. We give a comprehensive review of Heckman’s
correction model, and discuss its relation to covariate shift adaptation.

In chapter 7, state-of-the-art applications of covariate shift adaptation tech-
niques to various real-world problems are described. This chapter includes
non-stationarity adaptation in brain–computer interfaces, speaker identifica-
tion through change in voice quality, domain adaptation in natural language
processing, age prediction from face images under changing illumination con-
ditions, user adaptation in human activity recognition, and efficient sample
reuse in autonomous robot control.



1.4. Structure of This Book 17

1.4.2 Part III: Learning Causing Covariate Shift
In part III, we discuss the situation where covariate shift is intentionally caused
by users in order to improve generalization ability.

In chapter 8, the problem of active learning is addressed. The goal of active
learning is to find the most “informative” training input points so that learning
can be successfully achieved from only a small number of training samples.
Active learning is particularly useful when the cost of data sampling is expen-
sive. In the active learning scenario, covariate shift—mismatch of training and
test input distributions—occurs naturally occurs since the training input dis-
tribution is designed by users, while the test input distribution is determined
by the environment. Thus, covariate shift is inevitable in active learning. In
this chapter, active learning methods for regression are introduced in light of
covariate shift. Their mutual relation and numerical examples are also shown.
Furthermore, these active learning methods are extended to the pool-based
scenarios, where a set of input-only samples is provided in advance and users
want to specify good input-only samples to gather output values.

In chapter 9, the problem of active learning with model selection is
addressed. As explained in the previous chapters, model selection and active
learning are two important challenges for successful learning. A natural desire
is to perform model selection and active learning at the same time, that is,
we want to choose the best model and the best training input points. How-
ever, this is actually a chicken-and-egg problem since training input samples
should have been fixed for performing model selection and models should
have been fixed for performing active learning. In this chapter, several compro-
mise approaches, such as the sequential approach, the batch approach, and the
ensemble approach, are discussed. Then, through numerical examples, limita-
tions of the sequential and batch approaches are pointed out, and the usefulness
of the ensemble active learning approach is demonstrated.

In chapter 10, applications of active learning techniques to real-world prob-
lems are shown. This chapter includes efficient exploration for autonomous
robot control and efficient sensor design in semiconductor wafer alignment.


