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Abstract

Stereotactic radiosurgery (SRS) has been an effec-
tive modality for the treatment of benign and
malignant cranial disease for over 50 years. Just as
SRS revolutionized the practice of neurosurgery,
stereotactic ablative radiotherapy (SAbR) in extra-
cranial sites is now challenging conventional
wisdom with regard to the practice of radiation
oncology. This clinical paradigm change has been
enabled in large part through a century of techno-
logical development described in this chapter.

1 Introduction

The field of stereotactic ablative radiotherapy (SAbR),
beginning with stereotactic radiosurgery (SRS) and
later applied to extracranial disease sites (often referred
to as stereotactic body radiation therapy—SBRT), has
deep roots, with origins in both the surgical and thera-
peutic radiology disciplines dating back over a century.
Since the initial development in 1951, SRS has been
well studied through extensive collaboration between
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physicists, radiation oncologists and neurosurgeons.
SRS has been refined into an important element in the
treatment of brain metastases, cerebral vascular mal-
formations, trigeminal neuralgia and selected primary
brain tumors and functional disorders. Modern cranial
SRS can be performed noninvasively yet with an
extremely high degree of accuracy, and on an outpa-
tient basis. New developments in tumor targeting,
image guidance and patient repositioning technology
have also allowed for the extension of SRS to lesions
outside the central nervous system, including those in
close proximity to the spinal cord, where similar con-
cerns about limiting dose to normal tissues apply.
Image guidance now plays a particularly important role
in the application of SAbR. As a result, recent clinical
results in sites including lung, liver and spine suggest an
accelerating paradigm shift to high dose-per-fraction
delivery in the field of radiation oncology.

2 Early Radiotherapy Experience

The discovery of the ionizing radiation, first observed
emanating from a cathode ray tube by Wilhelm
Roentgen in late 1895, is well known. It is relevant to
note, however, that while this provided the first
conclusive evidence of ‘‘X-rays,’’ it was almost cer-
tainly not the first time they were actually produced,
as researchers including Plucker, Crookes and Lenard
had experimented with cathode tubes as early as the
mid-1800s. Motivated in large part the observation
that these invisible ‘‘X-rays’’ were related to fluores-
cence, Henri Becquerel, followed Roentgen’s work
with the subsequent discovery of naturally occurring
radioactive materials in January 1896. Roentgen
would be recognized with the very first Nobel Prize in
physics in 1901, and Becquerel similarly recognized
(with Marie and Pierre Curie) in 1903.

The significance of these revolutionary breakthroughs
was immediately apparent. It is now widely accepted that
the first therapeutic X-ray application occurred on 29
January 1986, within weeks of Roentgen’s announce-
ment (Grubbé 1933). Interestingly, it is likely that these
first therapeutic applications actually predated those used
for diagnostic purposes. The first diagnostic application
likely occurred on 29 February 1896, when in preparation
for a surgical procedure, physicians attempted to image
the head of a child suffering from an accidental gun
shot (Daniel 1896). The imaging procedure was not

successful, though it is relevant to note that three weeks
later the child lost all hair in the area corresponding to
irradiated region.

The early history of the use of X-rays in thera-
peutic applications is widely varied and filled with
numerous anecdotal accounts. Conditions ranging
from eczema, psoriasis, acne, ringworm, portwine
stain and hyperthyroidism were common (Tyler
1918). Superficial malignancies were also treated
effectively. A major advancement in ‘‘therapeutic
radiology’’ occurred with the development of the high
vacuum X-ray tube in 1913 by William Coolidge.
Within 10 years, and for continuing through several
decades, tube potentials in excess of 200 kV would
enable therapy of deeper seated tumors. In these early
years of radiotherapy, the lack of penetration of low
energy X-rays was a well-known shortcoming. To
address this, a number of mechanisms were designed
to facilitate multi-beam delivery. Notable efforts
included the concentric cone approach of Kohl (1906)
and Henschke (1938) (Fig. 1a), the pendulum tech-
nique of Teschendorf (1953) (Fig. 1b) and the spiral
technique of Bischoff (1950, 1952). Bischoff’s design
was subsequently manufactured and sold by Siemens
Reiniger Werke (Erlangen, Germany) (Fig. 1c).
Without employing stereotactic localization, these
approaches set the foundation for a fundamental
radiosurgery principle, namely, dosimetric compact-
ness achieved by targeting with many intersecting,
non-overlapping beams.

In the early clinical experience, the prevailing
treatment wisdom was that ‘‘… therapeutic doses ought
to be applied with the highest possible intensity in a
short time…’’ (Matoni 1924). It was also well known,
however, that ‘‘doses large enough to destroy all of the
tumor cells cannot be safely given to adequately large,
nonsuperficial areas’’ (Garland 1934). Through the first
three decades of the twentieth century then, the onco-
logic applications of ionizing radiation were met with
limited success. During this era, little was known of the
response of cells and tissue as a function of basic
radiological characteristics such as time, dose, dose
rate. The development of fractionated delivery begin-
ning in the 1920s would change the field in a most
profound way. The origins of fractionation are univer-
sally attributed to Claudius Régaud, a professor at the
Pasteur Institute and director of the radiophysiological
laboratory at the Radium Institute (later renamed the
Curie Institute after founder and director Marie Curie)
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at the University of Paris. In observing that gross
effects were markedly different when radiation was
given slowly, such as with radium sources, Régaud
began a systematic investigation on the effects of
ionizing radiation on spermatogenic cells in rabbit
testes (Regaud 1922; Regaud and Ferroux 1927). The
resulting observations succinctly stated: ‘‘It is impos-
sible to sterilise a rabbit’s testicle by a very strong dose
of X-rays in a single exposure, without producing a
radio-dermatitis. But it is, on the contrary, easy to
sterilise this organ, without producing any lesion of the
skin, if the same dose is given in five fractions spaced
over five to ten days’’ (Regaud 1929). Régaud extended
these observations to clinical practice, with the sub-
sequent observation that ‘‘The application of this bio-
logical technique has made it possible to obtain much
higher percentages of cure, in such cancers as those of
the skin, cervix uteri, mouth, pharynx, larynx, antrum
of Highmore, etc., whilst preserving the integrity of the
normal tissues far more effectually than as formerly

possible’’ (Regaud 1929). The principles of fraction-
ation were subsequently adopted and widely promoted
for clinical practice by Henri Coutard (1932, 1937,
1940). To the current day, the clinical practice of
radiotherapy owes its existence to the work of pioneers
including Régaud and Coutard and others. Yet aside
from the possible exception of tumor reoxygenation,
fractionated radiation delivery is a suboptimal approach
to achieving cure. The ability to safely deliver an
ablative dose, demonstrated initially through stereo-
tactic approaches, may significantly improve efficacy of
the radiation modality.

3 Origin of Stereotaxis

Stereotaxis is a method for locating points within
the brain using an external, three-dimensional (3D)
frame of reference, in order to perform a neurological
procedure in a minimally invasive manner. The origin

Fig. 1 Early examples of
converging beam apparatus
designed to compensate
for the poor depth dose
characteristics inherent
in kV X-ray sources.
a The concentric cone
device proposed by Kohl
and Henschke; b the
pendulum approach of
Teschendorf; c Bischosf’s
spiral technique, which was
subsequently manufactured
and sold by Siemens
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and development of stereotaxis, from initial conception
and evaluation in animal models to use in humans,
share a parallel though independent path with the origin
and development of therapeutic radiation. Both date
from the early twentieth century, and both saw major
progress leading to successful, widespread clinical
application beginning at the mid-century mark. The
convergence of the two fields at this time is the main
subject of this chapter.

3.1 The Stereotactic Method:
Horsley and Clarke

It is well known that stereotactic method is the product of
Robert Clarke, an engineer, physiologist and surgeon,
who, together with neurosurgeon Victor Horsley,
devised an instrument for simulating and making lesions
at exact locations within the brains of experimental
animals. The concept originated with Clarke in 1895, the
original device was constructed in 1905 and first used in
1906 (Clarke and Horsley 1906; Fodstad et al. 1991;

Jensen et al. 1996). The definitive paper was published in
1908 (Horsley and Clarke 1908), after which the two
pioneers ceased further collaboration (Fodstad et al.
1991). Together with other colleagues, Clarke went on to
publish functional atlases of both primates and cats
(Fodstad et al. 1991). The original device, manufactured
by Swift & Son, currently resides in the Science Museum
in London (Fig. 2a). Two subsequent copies of Clarke’s
frame were constructed; one device, brought to the
United States by neurosurgeon Ernest Sachs, who had
trained under Horsely, is located in the Department of
Neurosurgery at UCLA. In the subsequent decades,
several efforts were made to improve on the Clarke-
Horsley device to make it suitable for human use.
The most notable of these efforts was that of Aubrey
Mussen (1922) (Fig. 2b), a neuroanatomist/physiolo-
gist who worked briefly with Horsley and Clarke.
Despite these efforts, there is no evidence that a
Clarke-Horsley-type device was ever used on humans.
In fact, human stereotaxis would not occur for over
40 years following the landmark work of Clarke and
Horsley.

Fig. 2 Early examples of
stereotactic frames. a The
original device of Horsely and
Clarke (courtesy of the
Science Museum, London);
b the Mussen frame; c an
early Leksell frame; d an
early version of the
Todd–Wells frame
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3.2 Clinical Applications
of the Stereotactic Method:
Spiegel and Wycis

In 1933, Martin Kirschner, a German neurosurgeon,
developed a stereotactic apparatus for a skull approach
for treatment of trigeminal neuralgia (Kirschner 1933).
However, the first successful cranial application of ste-
reotactic surgery in humans is credited to the team of
Ernest Speigel and Henry Wycis in the Department of
Experimental Neurology at Temple University in Phila-
delphia (Speigel et al. 1947). Their original frame, using a
Cartesian coordinate systems and similar in design and
operation to the Clarke-Horsley device, was fixed to a
patient’s head by means of a plaster cast. The frame and
cast were removable, allowing separate imaging and
surgery sessions. Contrast radiography, ventriculography
and later pneumoencephalography permitted the visual-
ization of intracranial reference points from which the
location of target structures of interest could be deter-
mined. Initial applications were for psychosurgery, ‘‘…in
order to reduce the emotional reactivity by a procedure
much less drastic than frontal lobotomy’’ (Speigel et al.
1947). The authors envisioned further application for
pain (lesioning of the spinothalamic tract and Gasserian
ganglion), movement disorders (pallidotomy), and
draining of fluid from cysts (Speigel et al. 1947).

3.3 Widespread Development
of Stereotactic Apparatus
and Techniques

The work of Speigel and Wycis spawned an enormous
interest in the development and application of stereotactic
apparatus. The most notable development was the device
constructed by Lars Leksell (1949) (Fig. 2c). In contrast
to the Cartesian coordinate system of the Speigel-Wycis
device, Leksell’s frame employed used three polar coor-
dinates (angle, depth and anterior–posterior location).
This ‘‘arc-quadrant’’ device provided maximum flexibil-
ity in choosing probe entry point and trajectory, and was
therefore much easier to use. The frame has been modified
over the ensuing years, but remarkably remains very
similar in function and appearance to the original 1949
device. Only two years after its development, Leksell
would use his frame to target narrow beams of radiation
(Leksell 1951). Following the invention of X-ray com-
puterized tomography, Leksell was also quick to build a

CT-compatible device (Leksell and Jernberg 1980).
Other developments in stereotactic frames included the
efforts of Talairach (1949, 1952), Narabayashi (1952),
Reichert and Mundinger (1955) and Wells and Todd
(1998) (Fig. 2d). The Talairach frame is particularly
notable as it was used in the first stereotactic radiosurgery
procedure ever performed using a linear accelerator (Betti
and Derechinsky 1982). Similarly, modification to the
Todd–Wells device resulted in a widely used commercial
frame (Brown et al. 1980). The Brown-Roberts-Wells
(BRW) coordinate system is the foundation of present day
frames made by both Integra Radionics (Burlington, MA)
and BrainLAB (Feldkirchen, Germany).

4 The Development of Stereotactic
Radiosurgery

By most accounts the concept of using small cross-
firing beams of charged particles to ablate or alter the
function of cranial structures originated with John
Lawrence and Cornelius Tobias in the late 1940s
(Tobias et al. 1955; Lawrence et al. 1962; Larsson
1996). Only a few years earlier, the Nobel physics
laureate, Robert R. Wilson, had pointed out that
protons would have a distinct physical advantage in
treating human disease (Wilson 1946). At the time,
John’s brother Ernest O. Lawrence, Nobel laureate
himself for invention of the cyclotron, was director of
the Radiation Laboratory in Berkeley, California.
John Lawrence was a Harvard Medical School grad-
uate, already known for pioneering work in the field
of nuclear medicine which he had been conducting at
the Radiation Laboratory since the mid-1930s. Tobias
was a graduate student in nuclear physics at the
University of California, Berkeley; his Ph.D. com-
mittee consisted of Ernest Lawrence, Emilio Segre
and Luis Alvarez, all current or future Nobel laure-
ates. Tobias began working with John Lawrence in
1939, prior to receiving his degree; their relationship
continued for several decades.

4.1 Lars Leksell and the Early Experience
with Stereotactic Radiosurgery

Aware of the work in Berkeley, Lars Leksell, a neu-
rosurgeon working in Sweden, proposed applying the
burgeoning methodology of stereotaxis as a means to

Historical Development of Stereotactic Ablative Radiotherapy 13



more accurately guide cross-firing radiation beams
(Larsson 1996). In the seminal paper in the field,
Leksell coined the term stereotactic radiosurgery,
with the radiation beam ‘‘…directed to the exact
center of the semicircular arch of the stereotactic
instrument….’’ with the target subsequently ‘‘…irra-
diated through a large number of small portals by
fixing the semicircular frame at different angles and
moving the beam guide transversely along the frame.
In this way the whole convexity of the head can be
used for the entrance of the beams, which all meet and
cross in the structure in question’’ (Leksell 1951).
There are several interesting comments of note in this
short, three-page manuscript. First, the word ‘‘radio-
surgery’’ appears only in the title of the manuscript,
nowhere within the text itself. Second, Leksell admits
that ultrasound was investigated prior to applying
‘‘Roentgen radiation.’’ Finally, even at the inception,
Leksell realized that ‘‘radiation of a higher energy’’
than the 200 kV system presently available was
highly desirable.

There is some uncertainty as to when the first
clinical radiosurgery application actually occurred.
While Leksell’s original manuscript includes a picture
of a patient in a stereotactic frame, coupled to an
X-ray tube, no treatment information is provided.
Bjore Larsson recalls the first patient being treated in
1955 (Larsson 1996). In a later manuscript, Leksell
described radiosurgery delivered to two patients with
tic douloureux treated in 1953 (Leksell 1971). These
patients received doses of 1,650 and 2,220 R deliv-
ered at 280 kV through 21 and 20 portals with 6 and
10 mm diameter beams, respectively. Both patients
had significant, durable relief of their pain.

4.2 Particle Beam Radiosurgery:
Uppsala, Berkeley and Cambridge

Larsson and Leksell soon discarded kV X-rays in
favor of 185 MeV protons at the Gustaf Werner
Institute in Uppsala, Sweden (Larsson et al. 1958,
1963; Leksell et al. 1960). In parallel, the Berkeley
group began systematic irradiation of the pituitary
gland in patients with advanced cancers, using
340 MeV protons generated by the 184 inch syn-
chrocyclotron at the Radiation Laboratory (Lawrence
1957). Under the guidance of Lawrence and Jacob
Fabrikant, the Berkeley radiosurgery program thrived

until the early 1990s; the synchrocyclotron was
decommissioned in 1987 and the Bevalac in 1993.
In 1961, neurosurgeon Raymond Kjellberg began a
radiosurgery program using the 165 MeV proton
beam facility in Cambridge, Massachusetts (Kjellberg
et al. 1968). The Harvard program specialized in
arteriovenous malformations and skull base tumors
such as chordomas and chondrosarcomas; thousands
of patients with these and other histologies were
treated before the original cyclotron was decommis-
sioned in 2002. It should be noted that the facilities in
Uppsala, Berkeley and Cambridge were never inten-
ded for clinical use, but were constructed for physics
research. That radiosurgery programs were devel-
oped, and many patients successfully treated, is
particularly remarkable, and a testament to the efforts
of these early pioneers.

4.3 The Advent of the Gamma Knife

Despite significant clinical success throughout the late
1950s and 1960s, particle radiosurgery presented
significant shortcomings. Physics research was the
main priority at particle facilities, and as a result,
access for biological studies and patient treatment was
limited. That none of the facilities were hospital-
based caused added difficulty for practitioners, as well
as anxiety for patients. Motivated by Leksell, the
Department of Physical Biology at the Gustaf Werner
Institute in Uppsala, headed by Larsson, the Radiation
Physics Department physics unit at the University of
Lund, headed by Kurt Lidén, and the Department of
Clinical Radiation Physics at the National Institute
of Radiation Protection in Stockholm, headed by
Rune Walstam, began a combined effort to devise a
radiosurgery device ‘‘suitable for use in a hospital’’
(Larsson 1996). As a side note of some historic
significance, Walstam was also head of Medical
Radiation Physics at the Karolinska Institute, a posi-
tion in which he succeeded Rolf Sievert and was in
turn succeeded by Anders Brahme. Earlier, Lidén had
presented a preliminary analysis recommending the
use of high energy (10–20 MV) Roentgen radiation
(X-rays) and suggesting a design with the collimator
as close as possible to the patient in order to minimize
the geometric penumbra (Lidén 1957; Sarby 1974;
Larsson et al. 1974). The result of the collaboration
was the ‘‘Gamma Knife I,’’ installed at the Hospital
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Sofiahemmet in Stockholm in December, 1967. The
original device consisted of 179 60Co sources dis-
tributed within at spherical sector of 70� latitude and
160� longitude (Larsson et al. 1974; Larsson 1996).
Collimators were designed to provide a beam with a
2.5 9 7.5 mm cross-section with a penumbra width
of 0.5 mm at the beam focus (Sarby 1974). Interest-
ingly, much of the original work on collimator design
and optimization was performed on a 6 MeV linear
accelerator (Varian) (Larsson et al. 1974). In addition
to collimator design, Bert Sarby, working at the
National Institute of Radiation Protection, also per-
formed the original dosimetry studies (Sarby 1974),
and with Hans Dahiln, devised a methodology for
calculating the dose distribution resulting from the
179 superimposed beams (Dahlin 1970, 1971; Dahlin
and Sarby 1975).

The first two patients were treated in December of
1967 in an experimental hall at the Atomic Energy
Corporation in Studsvik, Sweden, prior to moving the
unit to the Hospital Sofiahemmet (Larsson 1996).
While the device was envisioned and designed for the
treatment of functional disorders, early applications
also included the treatment of both benign and
malignant tumors, as well as vascular malformations
(Larsson 1996).

By the mid 1970s, the cobalt sources in Gamma
Knife I had decayed significantly. Based on the
existing clinical experience, a redesigned device was
constructed and installed at the Karolinska Hospital in
1975 (Larsson 1996). This ‘‘Gamma Knife II’’ shared
many similarities with subsequent commercial devi-
ces, notably, circular as opposed to rectangular col-
limators. It was even envisioned that the new device
might be used for fractionated treatments (stereotactic
radiotherapy—SRT) (Leksell et al. 1987; Larsson
1996). Based on the personal relationships between
Leksell, Ned Langdon and Robert Rand, professors of
radiation oncology and neurosurgery, respectively, at
UCLA, the original Gamma Knife was given to
UCLA as a gift from the Karolinska Institute and the
government of Sweden. Langdon had visited the
Karolinska Institute in 1976 and was responsible for
securing the necessary approvals to receive the
Gamma Knife. Leksell was eager to have the unit
used by a major U.S. research center. The unit arrived
by ship in San Pedro, California on the morning of
July 20, 1980. Later that evening it was loaded on a
truck and driven 29 miles to UCLA, under police

escort, where it arrived at 2 am on July 21 (UCLA
1980). The unit saw limited clinical and research use
before it was returned to Elekta in the early 1990s.
Figure 3a shows the original Gamma Knife in use at
UCLA.

The first commercial Gamma Knife was installed
at the University of Pittsburgh in May, 1987 (Luns-
ford et al. 1987). Modifications to the original model
U Gamma Knife (Fig. 3b) delivered to UPMC,
including the models B (Fig. 3c), C and 4C (Fig. 3d),
adopted a modified source orientation relative to
patient anatomy and allowed for simpler source
replacement. In 2007, Elekta released the Perfex-
ionTM gamma unit. The design and operation of the
Perfexion are quite different from the Gamma Knife
models, with 192 cobalt source arranged in a conical,
rather than spherical, configuration (Lindquist and
Paddick 2007). Additionally, the 192 sources are
divided into eight independent sectors, each of which
can dynamically change collimation between 4, 8 and
16 mm circular apertures, as well as a fully blocked
position. Through 2008, over 500,000 patients had
been treated worldwide on various Gamma Knife
models. More detail on design, operation and plan-
ning for Gamma Knife can be found in Chapter 2 of
this volume.

Another important effort of note was that of the
group at the University of Valencia in Spain. Begin-
ning in 1975, Juan Luis Barcia-Salorio, Professor of
Neurosurgery, and Gregorio Hernández, Professor of
Physics, developed a stereotactic head frame and
subsequently, a specialized collimator to a fixed
cobalt device which was then rotated around a
patient’s head; the first treatment was for a carotid
cavernous fistula (Barcia-Salorio et al. 1982). Barcia-
Salorio was a pioneer in the application of radiosur-
gery to epilepsy and vascular disease.

Over the years there have been several attempts to
replicate the success of the Gamma Knife. The most
notable is the Rotating Gamma System designed by
OUR New Medical Technology Development in
Shenzen, China (Goetsch et al. 1999). The first U.S.
installation at the UC Davis Cancer Center in Sacra-
mento, California in 2002 (Kubo and Araki 2002),
though few of the units have been delivered outside of
China. The successor to OUR, GammaStar Medical
Group headed by Shipeng Song, has had tremendous
success within China with gamma units designed for
both cranial and extracranial radiosurgery. A second
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Chinese company, MASEP Infini Medical Science
Technology Development Co., Ltd. (Shenzhen, China)
is developing a next-generation gamma unit similar to
the PerfexionTM.

4.4 Linac Radiosurgery

The application of electron linear accelerators to
therapeutic radiology was first proposed by Henry
Kaplan, chairman of the Department of Radiology at
Stanford University, in the late 1940s. Shortly there-
after, Kaplan undertook a collaboration with Edward
Ginzton, Stanford Professor of Physics and Electrical
engineering, resulting in the development of the first
medical linear accelerator, a 4 MeV device that was
used to treat a child with retinoblastoma in January,
1956 (Ginzton et al. 1957; Jones et al. 1995). With the
subsequent development of isocentric device which
could rotate 360�, the first of which was built by
Varian and installed at UCLA in 1960, linear accel-
erators quickly became the essential tool for radio-
therapy (Levy 1998). While stereotactic radiosurgery
was becoming a routine procedure throughout the

1960s and 1970s, the linacs of that era lacked the
accuracy characteristics required for such an appli-
cation. This was clearly appreciated by Larsson
and colleagues as they began the pioneering work
which produced the first Gamma Knife: ‘‘The choice
between the two alternatives, i.e. roentgen or gamma
radiation, should be based on technical, clinical and
economical rather than physical considerations.
If radiation surgery will reach a position as a standard
procedure, improved electron accelerators for roent-
gen production, adapted for the purpose, would seem
a most attractive alternative’’ (Larsson et al. 1974).

4.4.1 Initial Experience with Linac
Radiosurgery

Working in Buenos Aires, Argentina, neurosurgeon
Osvaldo Betti and Engineer Victor Derechinsky
modified a Varian Clinac 18 for use in radiosurgery;
the first patient was treated in 1982 (Betti and
Derechinsky 1982, 1984). Recognizing that the couch
was the weakest mechanical link, Derechinsky
designed a specialized chair which supported the
patient and to which a Talairach stereotactic frame
could be affixed. In the first iteration of the ‘‘Betti

Fig. 3 Evolution of the
GammaKnife: a the original
device, repainted and in use at
UCLA Medical Center in the
early 1980s; b a Model U; c a
Model B; d a Model 4C
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chair,’’ the patient was physically rotated about a
horizontal axis while the gantry rotated about a per-
pendicular horizontal axis, for providing multiple,
convergent beam delivery. The initial chair was sub-
sequently replaced with one that rotated about a
vertical axis. In all, three Betti-Derechinsky systems
were installed and used, in Paris and Lille, France
in addition to the original in Buenos Aires.
Interestingly, a copy of the Betti-Derechinsky system
was also constructed and used in Bordeaux, France
(M. Derechinsky (2010) Personal communication; V.
Bourel (2010) personal communication). Illustrations
from the patent awarded to Derechinsky and Betti in
1986 are shown in Fig. 4a, with a picture of the ori-
ginal Buenos Aires system in Fig. 4b. Betti and
physicist Victor Bourel visited UCLA in 2000
(Fig. 4c) shortly before installing a Novalis unit in
Buenos Aires. Shortly after construction of the ‘‘Betti
chair,’’ a group in Vicenza, Italy, led by neurosurgeon
Federico Colombo, developed a stereotactic frame
and linac-based SRS system. On an amusing note, the
Vicenza group often referred to the Betti chair as a
‘‘Cyclothrone.’’

Linac radiosurgery came to the fore in the late
1980s through the pioneering efforts at four academic
centers, located in Heidelberg, Montreal, Boston and
Gainesville; Table 1 provides a summary of the early

linac SRS practitioners and the techniques employed.
Most used specially constructed circular collimators
with radiation delivered in one or more arcs at
discrete couch positions. The group at the German
Cancer Center (DKFZ) in Heidelberg used a
commercial Reichert-Mundinger stereotactic frame
modified to mount on the couch of a Siemens linac
(Hartmann et al. 1985). Concurrently, a large group at
the Joint Center for Radiation Therapy and Harvard
Medical School on Boston, led by Dr. William
Saunders, and later, Dr. Jay Loeffler, was developing
a system that would profoundly impact the adoption
of linac radiosurgery (Saunders et al. 1988; Loeffler
et al. 1989). At the time, mechanical characteristics of
the many moving components continued to be the
major impediment to a more routine of linacs for
radiosurgery. Central among these was the linac
couch. To address this, Wendell Lutz constructed a
floor stand to immobilize and precisely position a
patient’s head independent of the radiotherapy couch,
without reference to room lasers or light field (Lutz
et al. 1984, 1986, 1988). Intrinsic to the system was a
patient-specific QA process in which a radio-opaque
ball mounted to a BRW ring was attached to the
floor stand. After establishing the patient’s target
coordinates on the floor stand, a series of films at
eight representative gantry and couch positions were

Fig. 4 The original linac
radiosurgery system with:
a drawings from patent
awarded to Derechinsky and
Betti in 1986; b a photograph
of the original ‘‘Betti chair,’’
installed in Buenos Aires,
Argentina; c from left—
Carsten Sommerfeld, Tim
Solberg, Osvaldo Betti, and
Victor Bourel during a visit to
the UCLA Novalis facility
in 2000
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obtained (Saunders et al. 1988; Lutz et al. 1988). In
this manner patients could be accurately localized
without depending on external marks or room lasers.
The procedure of obtaining isocenter ball shots is now
universally referred to as the ‘‘Winston-Lutz’’ test,
though largely in the context of machine QA, and not
patient QA as originally designed. Lutz left for the
University of Arizona in 1985, where he continued to
manufacture floor stands and collimators which he
sold at his cost for approximately $14,000. Floor-
stand linac radiosurgery systems became quite com-
mon over the subsequent decade. Figure 5a shows
example of one of the initial floor stand, with an early
patient treatment at the Joint Center in Fig. 5b.

The floor stand development efforts were com-
plemented by those of a number of Harvard scientists
in localization, dosimetry and treatment planning. A
method for localization of intracranial targets using a
pair of radiographs was developed by Bob Siddon and
Norman Barth (Siddon and Barth 1987). This method,
with submillimeter accuracy, continues to be the gold
standard for AVM localization to this day. Much of
the initial cone dosimetry was performed by Roger

Rice (Rice et al. 1987). Both Barth and Rice were
Harvard post-docs at the time. Siddon wrote the ori-
ginal treatment planning system on a Mac II; this was
subsequently rewritten on a specialized graphics
computer (Kooy et al. 1991). Svensson (1989) and
Tsai et al. (1991) made significant contributions to
furthering quality assurance efforts. A linac radio-
surgery conference held in Boston in 1987 included
many notable scientists and clinicians from through-
out the world (Fig. 6).

While the floor-stand approach addressed a major
source of inaccuracy, namely the linac couch, the
gantry rotation characteristics of existing linacs of that
time was also quite poor. To address this, a group at the
University of Florida in Gainesville, led by Frank Bova
and Bill Friedman, followed on the work of the Harvard
group, by designing an isocentric arm which coupled
the source and collimator, through a high precision
bearing, to the floor stand, thereby improving the
accuracy associated with gantry rotation (Fig. 7a)
(Friedman and Bova 1989). To avoid torque on the
linac head, a gimble-type bearing was developed to
hold the tertiary circular collimators. These efforts

Table 1 The initial LINAC radiosurgery experience

Reference First Tx Energy (MV) Patient support Frame

Betti and Derechinsky (1982, 1984) 1982 10 Institution-designed chair Talairach

Colombo et al. (1985) 1982 4 Linac couch Institution-designed

Hartmann et al. (1985) 1985 15 Linac couch Reichert-Mundinger

Lutz et al. (1984, 1986, 1988) 1986 6 Floor stand BRW

Podgorsak et al. (1987, 1988) 1986 6 and 10 Linac couch Institution-designed

Friedman and Bova (1989) 1988 6 Floor stand BRW

Fig. 5 a An original floor
stand and irradiation approach
from the Brigham and
Women’s Hospital/Joint
Center for Radiation Therapy;
b a photograph of an early
SRS treatment at the Brigham
and Women’s Hospital. From
left: Jay Loeffler, Eben
Alexander III, Bob Siddon
and Chee Wai Cheng
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resulted in the first complete, commercial linac radio-
surgery system—the SRS 200 (Philips Medical
Systems). The SRS 200 system included the Gaines-
ville floor-stand apparatus and CT-based treatment
planning system, a BRW stereotactic frame and other
components from Radionics, and circular collimators
with nominal diameter from 10 to 32 mm in 2 mm
increments. In an era when vendors also distributed
source code, enhancements to the treatment planning
system, including MR imaging and planning capabili-
ties (by the group at Vanderbilt University) were
developed by several SRS200 customers. An SRS 200
system was installed on a Clinic-18 at UCLA Medical
Center in 1989 (Fig. 7); approximately 450 radiosur-
gery patients were treated between 1990 and early
1996. Thanks to the work of the Harvard and Gaines-
ville groups, floor-stand linac radiosurgery systems
became quite common over the subsequent decade.
Gainesville ‘‘Linac Scalpel’’ changed commercial

hands several times, from Philips to Medtronic Surgical
Navigation Technologies (Minneapolis, MN) to Zmed
(Boston, MA), which were subsequently acquired by
Varian Medical Systems (Palo Alto, CA) in 2003.

Another significant early contribution occurred at
McGill University in Montreal, where a group directed
by Luis Souhami and Ervin Podgorsak modified two
linacs for radiosurgery. A single plane rotation tech-
nique was developed for a 6 MV linac (EMI Medical,
Sunnyvale, CA) while a technique employing simul-
taneous and continuous gantry and treatment couch
rotation was developed for a 10 MV linac (Varian
Clinac-18). The ‘‘dynamic radiosurgery’’ approach was
used for targets in close proximity to important struc-
tures and where a sharp dose gradient was required.
The group used a frame of their own design (Olivier
et al. 1986), mounted to either of the linac couches.
A treatment planning system supporting both CT and
MR was developed by Pike et al. (1987a, b).

Fig. 6 An early linac SRS
symposium in Boston in 1987.
Those in attendance included:
Eric Cosman, Ken Winston,
Peter Black, Peter Heilbrun,
Goran Svennson, Bob Siddon,
Dennis Leavitt, Frank Bova,
Bill Saunders, John Adler and
Rock Mackie

Fig. 7 Drawing from the
1993 patent awarded to Frank
Bova and Bill Friedman. The
commercial version of the
Bova-Friedman design
(Philips SRS200) is shown in
clinical use at UCLA in 1992
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4.4.2 The Advent of Micro-Multileaf
Collimators

Through the mid-1990s, radiosurgery, whether deliv-
ered by cobalt, linac or particle beams, was performed
using circular collimators. Because most tumors are not
spherical in shape, the use of circular collimators often
necessitated a compromise between plan quality,
treatment time and dose heterogeneity. Leavitt et al.
(1991) were the first to address the issue offield shaping
by adding two sets of upstream independent trimmers
(‘‘vanes’’) to the auxiliary circular radiosurgery colli-
mators. The trimmers were motor controlled, and could
rotate about the beam axis as well translate in and out.
With a single isocenter, the authors demonstrated
markedly improved conformality over circular colli-
mation alone. A similar, albeit non-dynamic approach
was subsequently developed and implemented by
Hacker et al. (1997). This methodology became avail-
able commercially in the XKnife planning system
(Radionics, Inc., Boston, MA).

Modeling studies by both Leavitt et al. (1991) and
Nezdi et al. (1991, 1993) generated increasing interest
in more sophisticated field shaping apparatus. As a
result, a group at the German Cancer Research Center
(DKFZ) in Heidelberg group, who earlier had pro-
duced a number of significant developments, devel-
oped the first micro-multileaf collimators using for
cranial radiosurgery (Schlegel et al. 1992). Two

designs with 3 mm wide leaves were constructed, one
in which the leaves were positioned manually, and a
second with motorized, computer-controlled leaves.
Both mounted directly to the auxiliary device holder
on most linacs. The ModuLeaf MLC technology was
commercialized by a DKFZ spinoff (MRC Systems,
Heidelberg, Germany), and was subsequently sold to
Siemens Medical Solutions (Malvern, PA) (Fig. 8a).

Shiu et al. (1997) described the development and
characteristics of a miniature multileaf collimator
designed specifically for small field cranial radiosur-
gery. The MLC consisted of 15 pairs of leaves pro-
jecting a width of 4 mm at isocenter, for a maximum
field size of 6 9 6 cm2. Treatment planning was
facilitated using the XKnife system (Radionics, Bur-
lington, MA). A 27 leaf pair version with a maximum
field size of 13.4 9 10.8 cm2 was subsequently com-
mercialized by Radionics (Fig. 8b). Concurrently, the
m3, a 52 leaf micro-MLC was developed jointly by
BrainLAB GmbH (Heimstetten, Germany) and Varian
(Fig. 8c). The m3 had 14 pairs of 3 mm leaves located
in the center of the field, 6 pairs of 4.5 mm leaves in the
middle and 6 pairs of 5.5 mm leaves at the periphery for
a maximum field size of 10.2 9 10.0 cm2. Physical and
dosimetric characteristics of the m3 have been descri-
bed by Cosgrove et al. (1999) and Xia et al. (1999). In
the ensuing years, the Radionics and BrainLAB micro-
MLC have been installed on a variety of linacs, and

Fig. 8 Micro-Multileaf
collimators from a MRC
systems (later Siemens);
b Radionics; c BrainLAB;
d 3D Line
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continue to be used to this day in the treatment of many
patients every year. Meeks et al. (2000) described a
double-focused miniature MLC developed in con-
junction with Wellhofer Dosimetrie (Schwarzenbruck,
Germany).

4.4.3 Dedicated Linac Radiosurgery Systems
Through the 1990s, the use of linacs in radiosurgery
remained controversial, based largely on the assertion
by some practitioners that linac-based systems, with
multiple moving parts, could not match the accuracy of
gamma units. While the work of Friedman and Bova
rendered this argument largely specious, it remained
a common perception. In part to counter this argument,
several notable efforts aimed at developing linacs
dedicated exclusively to radiosurgery applications
were initiated. Their efforts culminated in a robot-
mounted linac (CyberKnife, Accuray, Santa Clara,
CA), a C-arm multi-rotation-axis linac (Mitsubishi
Electric Ltd., Tokyo, Japan), a conventional linac sin-
gle energy 6 MV photon with a fixed 10 cm diameter
primary collimator (600SR, Varian) and a linac with
an integrated micro-multileaf collimator (Novalis,
BrainLAB). Each of these are described briefly.

4.4.3.1 The CyberKnife

In 1989, John Adler, a neurosurgeon working at Stan-
ford University, conceived the idea of new radiosur-
gery device consisting of a compact, robot-mounted
linac. Adler approached Schonberg Radiation Corpo-
ration (Santa Clara, CA) for assistance in building a
linac with the necessary requirements (size, weight,
energy, dose rate, etc.). SRC was founded by Peter and

Russell Schonberg; Russell had previously worked as
manager of electrical systems at Varian Associates
where he worked on the development of medical linear
accelerators. Russell also developed a portable electron
linac which eventually became the Mobitron (IntraOp
Medical, Santa Clara, CA) (Schonberg 1987). Patent
number 5,207,223 was awarded in 1993 to Adler and
the Schonberg brothers, and assigned to Accuray.
A diagram form the patent award and a photo of the
original prototype at Stanford are shown in Fig. 9.

Originally called the Neurotron 1000 (Adler 1993;
Cox and Murphy 1995), the first system consisted of a
300 pound, 6 MeV x-band (9.3 GHz) SRC linac,
mounted to an industrial robot (GMF, Auburn Hills,
MI) (Adler and Cox 1996; Adler et al. 1997). The
robotic configuration eliminated the isocentric con-
straint of radiation delivery. From the time of its
inception the system was intended to facilitate frame-
less radiosurgery, performed using a stereo pair of
X-rays (Guthrie and Adler 1991a, b; Adler 1993), and
the Accuray founders deserve considerable credit as
pioneers in image-guided radiotherapy (IGRT). In 2001
the CyberKnife received FDA approval to treat indica-
tions anywhere in the body. Using anthropomorphic
phantoms, submillimeter accuracy has been demon-
strated in cranial and spinal applications (Chang et al.
2003; Yu et al. 2004). CyberKnife is now a mainstay in
both cranial and extracranial stereotactic treatments.

4.4.3.2 The 600SR

To address the burgeoning radiosurgery market, Varian
released a linac dedicated to radiosurgery applications
in 1994. The first 600SR unit was installed at Brigham

Fig. 9 Drawing from the
1993 patent awarded to John
Adler, Russell Schonberg and
Peter Schonberg, with an
early version of the
CyberKnife
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and Women’s Hospital in Boston; subsequent 600SR
installations included: the Thomas Jefferson Univer-
sity in Philadelphia (Andrews et al. 2006), the
Rigshospitalet in Copenhagen, Apollo Cancer Insti-
tute in Delhi, India, the Klinikum Der Westfalische
Wilhelms-Universitat in Munster, Germany and the
University of California, Los Angeles. Modeled after
the 600C, the 600SR was a single energy 6 MV linac,
with a redesigned flattening filter and a fixed primary
collimator 10 cm in diameter. The smaller flattening
filter resulted in dose rates up to 800 MU/min in
clinical mode, and nearly 1,300 MU/min in service
mode. Radiation was delivered in the conventional
rotational manner, with an MU/degree range from 0.3
to 20.0 to facilitate both high (SRS) and low (SRT)
dose-per-fraction delivery. The machine had no
movable diaphragms, and the lighter treatment head
coupled with reduced counterweight and the new
Varian ETR couch resulted in a compound accuracy
(gantry, couch and collimator rotations) of \0.9 mm
as measured with a Winston-Lutz test (Das et al.
1996). All of the 600SR units were packaged with
stereotactic hardware (frames, collimators and QA
equipment) and treatment planning systems (XKnife)
from Radionics.

4.4.3.3 The Mitsubishi C-arm Linac

In 1996, Mitsubishi Electric Company, Limited
(Tokyo, Japan) introduced a unique linac with two
rotational axes designed for radiosurgery. The linac
head was mounted on a C-arm which rotated 60�
about a horizontal axis perpendicular to the gantry
rotational axis. The unit operated at 4 or 6 MV, with a
variable dose rate to 450 MU/minute, and circular
collimators from 0.5 to 3.5 cm in diameter (Tamaki
et al. 2000). The linac was also equipped with a 120
leaf MLC, with the central 80 leaves projecting 5 mm
and the outer 40 leaves projecting 10 mm at isocenter
(Nakagawa et al. 2003). Another unique feature
included a small CCD video camera attached to the
center of the linac gantry used to determine geomet-
rical accuracy; an isocenter precision of ± 0.8 mm,
including C-arm, gantry and table rotations, was
reported, ± 0.8 mm. (Nakagawa et al. 2003).

4.4.3.4 The Novalis

Shortly after delivering the last 600SR to UCLA, Varian
extended their collaboration with BrainLAB with an
agreement to integrate the BrainLAB m3 collimator

onto the 600SR platform. The result was the Novalis-
Shaped Beam Radiosurgery System, the first of which
was installed at UCLA in 1997; the first Novalis treat-
ment occurred in early 1998. The succession of Novalis
units, from the original UCLA device to the current day
Novalis Tx, is shown in Fig. 10. The ability to treat
increasingly more complex geometric targets using a
single isocenter produced dose distributions that are both
more conformal and more homogeneous than traditional
techniques (Solberg et al. 2000a, b; Andrews et al. 2006).
The development of dynamic arc delivery, in which the
leaves move during rotational delivery to continuously
shape to the beams-eye-view projection of the target,
further improved conformality and reduced average
treatment times to approximately 15 min (Solberg et al.
2001). Circular collimators mounted beneath the MLC
enabled the Novalis to become the first linac system used
routinely in the treatment of trigeminal neuralgia
(Solberg et al. 1998; Goss et al. 2003; Smith et al. 2003).
In 2000, BrainLAB provided an IMRT solution for
the Novalis, with inverse planning based on the dynami-
cally penalized maximum likelihood (DPL) algorithm
described by Llacer (1997). Theoretical and practical
characteristics of the DPL algorithm, including perfor-
mance under gated operation, have been described by
several authors (Chetty et al. 2000; Arellano et al. 2000;
Solberg et al. 2000a, b; Llacer et al. 2001; Hugo et al.
2002; Agazaryan et al. 2003). In 2001 BrainLAB
introduced their image guidance system based on ste-
reoscopic X-ray imaging. The first generation utilized
two ceiling-mounted diagnostic tubes projecting on a
single couch-mounted flat panel detector (Fig. 10b).
Later generations were implemented with the two tubes
recessed in the floor, projecting on two opposing ceiling-
mounted detectors (Fig. 10c). The current BrainLAB/
Varian offerings include the Novalis Tx (Fig. 10d)
(Chang et al. 2008) and the Novalis powered by
TrueBeam STx.

5 The Development of Stereotactic
Body Radiation Therapy

The success of cranial SRS as an efficient, potent
means of local tumor treatment eventually prompted
several groups to evaluate analogous strategies of
high dose-per-fraction treatment to extracranial
tumors in a variety of sites away from the nervous
system. Very much influenced by Leksell’s use of a
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rigid frame to stabilize the head during cranial SRS,
initial efforts by several groups in Sweden, Arizona,
New York, Houston and elsewhere followed a frame/
fiducial-based paradigm for localization of extracra-
nial targets. With the advent and now widespread
adoption of in-room image guidance, the frame-based
approaches have been largely relegated to history.
Nevertheless, many patients were successfully treated
with doses using frame-based approaches, and the
field is indebted to these early pioneers in demon-
strating what can be clinically achieved through the
accurate administration of ablative dose of radiation.
Though the acronym SBRT (stereotactic body radia-
tion therapy) is widely used to describe extracranial
application, a more appropriate nomenclature, ste-
reotactic ablative radiotherapy (SAbR), has been
proposed by Loo et al. (2011). In this chapter, SBRT
and SAbR are used synonymously.

5.1 The Karolinska Experience
and the Stereotactic Body Frame

Beginning in 1990, a group from the Karolinska Hos-
pital in Stockholm, Sweden, began development of a
methodology for SBRT localization that, due largely its

non-invasive nature, found broad clinical acceptance in
the intervening years (Lax et al. 1994; Blomgren et al.
1995). The system consisted of an immobilization box
with embedded CT fiducials, and a device for com-
pressing the chest to limit respiratory motion (Fig. 11).
Localization accuracy was limited to ‘‘5–8 mm in 90%
of setups,’’ due to large difficulty in reproducing the
patient’s position within the box between imaging and
treatment sessions. A unique feature of the body frame
was a mechanism for abdominal compression, which
was very effective for limiting motion due to respiration
(Negoro et al. 2001). The system was commercialized
by Elekta AB (Stockholm, Sweden) as the Stereotactic
Body Frame� and used clinically at a number of
institutions throughout the world (Wulf et al. 2000;
Nagata et al. 2002; McGarry et al. 2005; Hansen et al.
2006). Elekta recently discontinued the Stereotactic
Body Frame.

5.2 The Tucson Experience with Spinal
Radiosurgery

A methodology for radiosurgery of targets involving
and adjacent to the spine was described by Hamilton
and Lulu (1995). The system consisted of a shallow

Fig. 10 Evolution of the
Novalis: a the original device
at UCLA in 1997; b the
UCLA device with original
ExacTrac X-ray system in
1999; c a Novalis with
upgraded ExacTrac X-ray
system; d the Novalis Tx
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rigid box, with lateral dimensions compatible with CT
imaging (Fig. 12). Patients were placed within the
box in a prone position, and under anesthesia, small
clamps were attached to one or two spinous processes
adjacent to the intended target. These clamps were
rigidly attached to two semicircular metal arches
secured to the box. The stereotactic space was defined
relative to a small radio-opaque sphere using the
coordinate system of the CT scanner. Imaging, plan-
ning and treatment were performed in a single setting
with the patient rigidly fixed for the duration of the
procedure. The authors reported localization uncer-
tainties of 2.0 mm in a worst case scenario. This
prototype spinal system was subsequently used in the
treatment of nine patients (Hamilton et al. 1995,
1996). Doses delivered were understandably conser-
vative, ranging from 8 to 10 Gy, with distributions
constructed in such a way that no portion of the spinal
cords received more than 3 Gy. An attempt to com-
mercially market the ‘‘Arizona’’ spinal radiosurgery
system proved unsuccessful.

5.3 Other Frame-Based Approaches
to SBRT

In the late 1990s the group at the German Cancer
Center (DKFZ) in Heidelberg described the devel-
opment and clinical application of a stereotactic body
frame. A metal arch with v-shaped fiducials, rigidly
mounted to a full length carbon fiber board, estab-
lished a CT-based coordinate system in the standard
manner (Lohr et al. 1999). Patients were fixed to the
frame through the use of a torso-length body cast.
Fixation of the patient within the frame can be
obtained with a vacuum pillow, or, as presented here,
with a Scotchcast body cast. Mean overall accuracy of
the system was reported as B3.6 mm. The authors
recommended repeat CT imaging immediately prior
to treatment, ‘‘…since an acceptable result of repo-
sitioning could be achieved in only less than one-half
of the patients on the first attempt’’ (Herfarth et al.
2000). Extracranial targeting accuracy could be
improved by supplementing the body cast with a head

Fig. 11 a The Elekta
Stereotactic Body Frame,
based on the original design
of Lax and Blomgren; b the
abdominal compression
feature of the SBF is very
effective at reducing motion
associated with respiration
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fixation. An abdominal compression device added
subsequently proved effective in reducing respiratory
motion. The system was commercialized by Leibinger
(Freiburg, Germany: Fig. 13b), and went through a
series of commercial hands before being discontinued
by Stryker (Kalamazoo, MI).

6 SRS and SBRT in the Era of Image
Guidance

Targets outside the skull are not readily amenable to
fixation using rigid frames, and therefore in present
day applications, image guidance is a prerequisite for
extracranial SRS and SBRT. As with frame-based
radiosurgery, ‘‘frameless’’ technologies were initially
developed to facilitate surgical applications. The first
reference depicting frameless capabilities was pub-
lished by Roberts et al. (1986), who described a
method for registering CT data with an operating
microscope for neurosurgical applications. Sub-
sequent investigators refined this approach (Kato et al.
1991; Guthrie and Adler 1991a, b; Tan et al. 1993),
and frameless neuro-navigation is now commonplace.

6.1 Image-Assisted Frame-Based SBRT

Obvious shortcomings in accuracy of frame-based
approaches prompted early SBRT-practitioners to
develop image-based methods for target verification.
Initial approaches certainly incorporated portal imaging.

Yenice et al. (2003) described frame-based SBRT
combined with daily CT imaging performed just prior
to each treatment. To facilitate improved reproduc-
ibility, the patient was setup initially in a standing
position, after which the frame and patient were tilted
backwards into a horizontal treatment position. The
authors were able to demonstrate a localization
accuracy of within 1 mm (1r) in any direction. Daily
CT was eventually replaced with localization based
on electronic portal imaging, with little loss of tar-
geting accuracy (Lovelock et al. 2005).

Motivated by a desire to treat spinal lesions, the
group at UCLA designed and constructed a series of
body frames beginning in 1993; an early version,
never used clinically, is shown in Fig. 13a. Subse-
quently, Medin et al. (2002) proposed a minimally
invasive localization technology that allowed for
high-dose, single fraction irradiation of tumors near
the spine. Under local anesthesia, three small radio-
opaque markers were permanently affixed within the
vertebral and spinous processes. The implanted fidu-
cials were localized on biplanar radiographs obtained
at the time of the planning CT. Imaging procedures
utilized an external localization box from which a
coordinate system was established (Fig. 14). At the
time of treatment, biplanar radiographs were repeated
in the treatment room using a mobile radiography
unit. The implanted fiducials were identified, and
the isocenter position was calculated based on the
geometric relationship between the target and
implanted markers obtained at the time of CT imag-
ing. In this manner, accurate target localization could

Fig. 12 The Arizona spinal
radiosurgery concept, as
illustrated in the drawings
from the patent awarded to
Hamilton and Lulu in 1994,
with the common ‘‘Z’’ fiducial
configuration for tomographic
localization
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be performed despite the fact that (a) the patient had
moved from the time of the initial CT and (b) the
target could not be directly visualized in the treatment
room. In phantoms specially constructed to evaluate
overall system accuracy, the worst case targeting error
observed was 1.17 mm. The methodology was sub-
sequently evaluated in a swine model. Radionics
briefly considered commercializing the methodology.

Two groups have combined in-room CT imaging with
linac delivery for stereotactic irradiation of intra- and
extra-cranial targets. A system combining in-room CT
with fiducial-based localization for spinal radiosurgery

has also been described by Shiu et al (2003). Patients
were immobilized in a full-body stereotactic frame and
received localization/verification CT scans immediately
prior to treatment. This was facilitated by a CT-on-rails
installed in the treatment room. With daily CT imaging,
the authors determined the overall deviation from
intended isocenter was within 1 mm for each treatment.
Capabilities were later developed to facilitate automated
registration of digitally reconstructed radiographs
(DRRs) generated from the pretreatment CT scans to
DRRs generated from the planning CT (Wang et al.
2007). Uematsu et al. (1996) reported on the treatment of

Fig. 13 a An early body
frame design constructed by
the UCLA group; b a
commercial body frame
(Leibinger), originally
designed by the Heidelberg
group

Fig. 14 The spinal
radiosurgery approach
described by Medin et al
combined frame-based
localization with kV
projection image guidance
using a mobile radiography
unit
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eight patients with primary or metastatic brain tumors.
Immobilization was performed using conventional head
masks coupled with a dental impression. Localization
was achieved by aligning the target to the axis of the CT
gantry, marking the corresponding axes with small
metallic balls, and subsequently aligning the metallic
balls to the lasers of the linear accelerator. Phantom
studies showed localization uncertainty on the order of
1 mm. Subsequently, the system has been used exten-
sively for stereotactic targeting of extracranial tumors
(Uematsu et al. 1998, 2000).

6.2 Stereophotogrammetric Methods
of Stereotactic Localization

Stereophotogrammetry is the general term applied to
the science of 3D measurement from two or more
overlapping two-dimensional (2D) images. By
obtaining images from at least two different locations
and measuring the same target in each picture, a ‘‘line
of sight’’ is developed from each camera location to
the target. If the camera location and direction are
known, the lines can be mathematically intersected to
produce the 3D coordinates of each targeted point.
The use of stereophotogrammetric techniques for
localization of patients undergoing radiation therapy
was first described by Schlegel et al. (1993) and
Menke et al. (1994). They employed video stereo-
photogrammetry as a means of evaluating the repo-
sitioning accuracy of a specially designed head holder
for fractionated radiotherapy. Shortly thereafter, Bova
et al. (1997) adopted the methodology for cranial
radiosurgery. The SPG method was sensitive enough
to detect 0.05 mm deflections in a radiosurgery head
holder.

In 1999, the group at the University of Chicago
developed a video-based system for patient position-
ing (Johnson et al. 1999). The system used two CCD
cameras to display real-time subtraction images for
analysis of misalignment of head and neck patients.
The authors showed that uncertainty could be signif-
icantly reduced (from 1r of 5–7 mm to 1r of
1–3 mm) if the system was used for online setup
correction. More recently, optical systems have seen a
resurgence in interest with the emergence of a com-
mercial technology that uses optical techniques for
real-time 3D surface tracking. (AlignRT, VisionRT
Ltd., London, UK). While most clinical applications

have focused on partial breast irradiation, the system
has been recently adopted for cranial stereotactic
radiotherapy (SRT) and general SBRT applications
(Lindgren-Turner et al. 2005; Cerviño et al. 2010;
Peng et al. 2010). Results suggest that the system
provides accuracy comparable with conventional
SRT methodologies. Further, localization can be
performed in a matter of a few seconds.

Investigators have also implemented infrared ste-
reophotogrammetry for extracranial localization.
Wang et al. (2001) described a method in which
passive infrared-reflecting spheres were affixed to
the chest and/or abdomen of radiotherapy patients
(ExacTrac, BrainLAB AG, Feldkirchen, Germany).
Phantom studies demonstrated that the position of
each IR-reflecting sphere could be determined to less
than 0.3 mm, though CT-based target localization
introduced additional uncertainties, on the order of
3 mm at the 95% confidence level. Ultimately, issues
of marker reproducibility and patient motion led the
authors to conclude that the accuracy of surface-
based IR techniques was inadequate for stereotactic
applications.

Working with investigators at the University of
Iowa, Bova and colleagues subsequently coupled their
infrared-based navigation system with ultrasound
image guidance to facilitate targeting of paraspinal
tumors (Ryken et al. 2001). System applicability was
limited to soft tissue tumors located on the dorsal
aspect of the spinal column; disease involving the
bony vertebrae, the most common site for metastatic
spread, could not be localized due to inherent limi-
tations of ultrasound imaging. The authors subse-
quently described the treatment of a single patient
presenting with a recurrent metastatic squamous cell
carcinoma at the level of T-11; a dose of 15 Gy
was delivered to the 80% isodose line. Bayouth
et al. (2007) subsequently coupled the IR-ultrasound
system with a specially designed linac to facilitate
cranial and extracranial stereotactic applications.

In a similar manner, Fuss et al. (2004) used the
stereotactic ultrasound (BAT, Best Medical Interna-
tional, Inc., Springfield, VA) to target malignancies of
the upper abdomen. Due to the challenge of visual-
izing many of these tumors directly on ultrasound, the
authors described the use of adjacent vascular struc-
tures as surrogates for target position. They reported
that the technique was useful in 95.8% of setups, a
significant improvement from traditional ultrasound
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methodologies. Despite these advances, ultrasound
imaging remains challenging in the vast majority of
tumor sites, and the use of stereotactic ultrasound is
now largely restricted to applications in prostate
cancer (Chinnaiyan et al. 2003; Fuller et al. 2006;
Peignaux et al. 2006).

6.3 Orthogonal kV Localization
(X-Ray Stereophotogrammetry)

The principles of stereophotogrammetry can be readily
extended to X-ray imaging for direct visualization of
internal anatomical structures, with the accuracy nec-
essary for stereotactic applications. The application of
X-ray imaging in stereophotogrammetric analysis (also
known as Roentgen stereophotogrammetry) was first
described by Selvik and colleagues (Selvik 1990;
Johnsson et al. 1992; Axelsson et al. 1996).

Shirato et al. (1999, 2000) and Shimizu et al.
(2001) described a system consisting of three room-
mounted X-ray tube—image intensifier pairs, used for
both localization and tumor tracking. The use of three
imaging systems allowed for continuous 3D imaging,
regardless of the position of the gantry position,
which could obscure only one pair at a time. Con-
tinuous tracking was facilitated through the use of an
implanted gold marker, which was recognized auto-
matically using a pattern matching algorithm. The
imaging system was synchronized with linac, with an
uncertainty between intended and delivered target on
the order of 1 mm.

Presently, both the CyberKnife and Novalis com-
mercial systems provide room-mounted stereophoto-
grammetry capabilities coupled to their respective
SRS/SBRT linacs. Because the imaging system is
permanently mounted in the treatment room, targeting
can be performed without the need for additional
‘‘localization boxes.’’ The CyberKnife has two ceil-
ing-mounted diagnostic X-ray units projecting
through the patient to two opposing amorphous sili-
con detectors recessed within the treatment room
floor. The biplanar imaging system provides capa-
bilities for frameless stereotactic radiosurgery (Mur-
phy 1997), and Initial CyberKnife applications were
for the treatment of cranial disease, treated in a single
or multiple fractions (Adler et al. 1999). However, the
integrated image guidance system employed by the
CyberKnife also makes it suitable for stereotactic

irradiation of treat extra-cranial tumors. Murphy et al.
(2000) have described modifications to the original
CyberKnife to facilitate stereotactic irradiation of
spinal and other tumors adjacent to rigid bony anat-
omy. Clinical applications of CyberKnife technology
have grown rapidly, and many investigators have now
reported their clinical experience in spine, lung, liver,
pancreas and other extracranial sites.

Similarly, the Novalis system incorporates stereo-
scopic X-ray component for localization of extracra-
nial targets with an infrared (IR) component to
facilitate patient setup and allow for patient position
monitoring. In contrast to the CyberKnife, the kV
X-ray component consists of two floor-mounted
X-ray tubes and two opposing amorphous silicon
(aSi) flat panel detectors mounted to the ceiling. Each
X-ray tube/detector pair is configured to image
through the linac isocenter with a coronal field of
view of approximately 18 cm in both the superior-
inferior (S–I) and left–right (L–R) directions at iso-
center. The X-ray localization system can be operated
in two modes: matching of implanted radio opaque
markers and automated registration of X-ray and
digitally reconstructed radiographs (DRRs) using an
iterative edge matching algorithm. Comprehensive
evaluations of targeting accuracy have been reported
by Yan et al. (2003).

6.4 Volume-Guided Localization

In-room volumetric X-ray guidance, specifically kV
and MV cone-beam CT, has become commonplace in
radiotherapy. Cone-beam CT is now a widely utilized
modality for localization of SRS and SBRT patients
(Fukuda 2010; Kim et al. 2011; Galerani et al. 2010;
Worm et al. 2010; Wang et al. 2010). The initial
experience is briefly described here.

Two groups from Germany successfully imple-
mented kV cone-beam CT localization for intracranial
radiosurgery and extracranial stereotactic body radi-
ation therapy treatments. Boda-Heggemann et al.
(2006) used volumetric kV imaging to assess the
positioning accuracy and reproducibility in 21
patients undergoing cranial or head and neck irradi-
ation. Automatic 3D–3D matching was used to reg-
ister cone-beam images to the planning CT. While the
study addressed only conventional versus cone-beam
localization (i.e., there was no absolute reference on
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which to judge cone-beam localization itself), the
authors nevertheless concluded that their experience
supported a paradigm shift to purely image-guided
setup for all intracranial precision radiotherapy pro-
cedures. Subsequently, Guckenberger et al. 2007a, b)
used kV cone-beam CT for localization of patients
receiving stereotactic radiosurgery for the treatment
of brain metastases. They concluded that frameless
radiosurgery based on image guidance with registra-
tion of the bony anatomy could be performed accu-
rately and efficiently.

The same group has extended their cone-beam CT
localization approach to SBRT treatment of lung
tumors (Guckenberger et al. 2007a, b). Cone-beam
CT imaging was determined to be of value in evalu-
ating intrafraction variation in tumor position as well
as for minimizing setup errors. Based on their anal-
ysis, the authors suggested that a 5 mm isotropic ITV-
to-PTV margin was sufficient to account for intra-
fraction effects. Duggan et al. (2007) used a similar
localization technique in SBRT of lung cancer
patients, incorporating deep inspiration breath hold
for both the reference and cone-beam CTs.

Chang et al. (2007) evaluated the accuracy of kV
cone-beam localization relative to fiducial-based ste-
reotactic targeting. In phantom studies, an uncertainty in
the cone-beam CT setup procedure of 1.34 ± 0.33 mm
was observed. The investigators concluded that locali-
zation based on cone-beam CT image guidance was
equivalent to that of currently used frame-based stereo-
tactic radiosurgery systems. Letourneau et al. (2007)
have developed a phantom for end-to-end dosimetric
and geometric accuracy testing of cone-beam image
guidance radiosurgery-type applications. To evaluate
their methodology, a treatment plan was designed for
single fraction radiosurgery of a spinal target. Image-
guided setup was performed, and the phantom was
irradiated according to the treatment plan. About
97.1% ± 1.5% of measurement points were within 3%
of the calculated dose or within 2 mm distance to
agreement.

6.5 Future Developments in
Image-Guided SRS and SBRT

Future developments in image-guided SRS/SBRT will
focus on two essential lines of investigation: continued
improvement of imaging and delivery technology, and

the radiation biology of large doses per fraction. While
the latter is beyond the scope of this chapter, it is
important to note the rapidly growing body of work in
the development and application of preclinical stereo-
tactic irradiation (DeSalles et al. 1996; Sun et al. 1998;
DeSalles et al. 2001; DesRosiers et al. 2003; Jahan et al.
2006, 2007; Stojadinovic et al. 2006, 2007; Lotan et al.
2006; Walsh et al. 2006; Graves et al. 2007; Deng et al.
2007; Matinfar et al. 2007; Wong et al. 2008; Solberg
et al. 2008; Matinfar et al. 2009; Saha et al. 2010;
Cho et al. 2010; Zhou et al. 2010; Song et al. 2010;
Medin et al. 2011).

With regard to technology, two devices have been
recently proposed that provide tighter integration of
imaging and delivery components. In 2006, a collabo-
ration between scientists at three Japanese universities
and institutes, working together with engineers at
Mitsubishi Heavy Industries, Ltd. (Tokyo, Japan), con-
structed a next-generation system with capabilities for
2D and 3D localization and real-time tumor tracking
(Kamino et al. 2006, 2007a, b; Takayama et al. 2009).
A 6 MV C-band linear accelerator and micro-multileaf
collimator are mounted on a computer-controlled gim-
bal which allows the linac to pan and tilt; an opposing flat
panel provides beam-eye-view electronic portal images.
The imaging subsystem consists of 2 kV sources and
opposing detectors and can be operated in stereoscopic
mode (radiographic or fluorographic) or can be rotated
during image acquisition for reconstruction of volu-
metric (cone-beam) images. A cone-beam CT data set
can be acquired in as few as 16 s. All components are
housed in an O-ring gantry approximately 3.3 m in
diameter which can rotate 360� about the table axis. The
entire O-ring gantry can also rotate ± 60� about a ver-
tical (skew) axis.

In April, 2010, Varian announced a new linac,
TrueBeamTM, with a significant redesign of major
components, including the accelerator, bending mag-
nets, flattening filters and carousel assembly and beam
control systems. Further, the control systems allow
sequencing and automated control of the couch, gantry
and collimators with both on-board imaging and
delivery (Lovelock et al. 2010). One of the most unique
characteristics in the addition of flattening filter-free
(FFF) photon modes, which generate dose rates of
1,400 MU/min and 2,400 MU/min at 6 and 10 MV,
respectively. The FFF modes are well suited to ste-
reotactic applications, as the beam profile is relatively
flat for small fields (Naqvi et al. 2010). A detailed
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analysis of dosimetric characteristics of both standard
and FFF modes has been provided by Hrbacek et al.
(2011). The standard mode photon beams are clinically
interchangeable with the Varian C-series linacs (Naqvi
et al. 2010), and modeling of both the standard and
FFF modes is accurately accommodated by the AAA
algorithm of the Eclipse treatment planning system
(Hrbacek et al. 2011). The TrueBeam is available in
two configurations: with the standard Millennium MLC
(0.5 cm wide leaves), or as the TrueBeam STx, with the
HD-120 MLC (0.25 cm wide central leaves).

7 Conclusions

Stereotactic radiosurgery, with roots over a century old,
has become a standard of care in the management of
cranial disease. The success of SRS has subsequently
stimulated application in extracranial disease sites. Just
as SRS revolutionized the practice of neurosurgery,
SBRT is now challenging conventional wisdom with
regard to the practice of radiation oncology. This par-
adigm change has been facilitated in large part through
technological development which continues to this day.
Future development, in combination with a better
understanding of the biological response to large dose-
per-fraction irradiation and molecular approaches to
optimize response ensure that SRS and SBRT will play
an increasingly important role in the treatment of can-
cer for decades to come.
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