
Chapter 2
Step 1: Clustering Data

2.1 Introduction

2.1.1 Clustering

Clustering reduces the size of the data by replacing individual genes with artifi-
cial super-genes that can be treated as single nodes for the purposes of network
inference. By clustering genes that work together as a preprocessing step, we can
improve the accuracy of the resulting network by reducing variance due to noise
on individual genes. The goal is to generate clusters while losing the minimum
amount of information in the dataset (and perhaps even make certain relationships
stronger!). For example, if there are two genes that both behave in exactly the same
way across the experimental conditions of interest, then little to no information is
lost if you treat them as though they were a single “gene”.

There are many different clustering algorithms available. The basic idea in all
clustering algorithms is to group data that are alike together based on some measure
of similarity. A classic example is the K-Means algorithm. K-Means takes a param-
eter k that specifies the number of clusters to generate. In the random start method,
K “centroids” are chosen at random (e.g. these may be the expression profiles of
k genes). Then (step 1) each expression profile is compared with all the centroids
and is assigned to the most similar one. The expression profiles corresponding to
a given centroid are called a cluster. Next (step 2), for each cluster a centroid that
better represents the expression profiles of that cluster is chosen. Steps 1 and 2 are
repeated until there is no further change in cluster membership. Then the whole pro-
cedure begins again with a new set of initial centroids. After trying something like
100 different sets of centroids, the algorithm starts with the best clustering found,
where best means that each centroid is closest on the average to all the members. 1

1 Other schemes such as kmeans++ have also been proposed [1], but we like the random starting
point approach for its sheer simplicity.

11J. M. Lingeman and D. Shasha, Network Inference in Molecular Biology,
SpringerBriefs in Electrical and Computer Engineering,
DOI: 10.1007/978-1-4614-3113-8_2, � The Author(s) 2012

12 2 Step 1: Clustering Data

2.1.2 Biclustering

Biclustering is a method of clustering across both rows and columns, i.e. across
gene expressions and conditions. Biclustering begins with a matrix where each col-
umn corresponds to an experiment and each row is a gene. Traditional clustering
attempts to shuffle the rows into groups based on their expression values. However,
this works poorly when grouping genes by expression values for different experi-
ments, because genes may behave quite differently across experimental conditions,
as we have mentioned above. Biclustering solves this by allowing the shuffling of
both genes and experiments. This allows clusters to be selected based on a subset
of experimental conditions rather than all of the experimental conditions in a given
gene’s row.

Genes may end up in more than one bicluster. Biologically, this makes sense, as
a single gene may interact with different sets of genes in different conditions. For
example, gene X may be part of cluster Y under condition A, but part of cluster Z
under condition B.

2.2 cMonkey

2.2.1 What it Does

Finding the best biclustering (according to virtually any reasonable criterion) is NP-
complete. cMonkey [26] combines biological intuition with heuristics to come to
high quality biclusters in all cases we have tested.

2.2.2 The Data

The data used can be broken up into three types: expression data, upstream DNA
sequence data, and (where available) experimentally verified network connections.
The expression data are steady-state data, though time-series data can be used as
well.

2.2.3 The Strategy

The algorithm starts by seeding biclusters with genes that are co-expressed across
most if not all conditions (this is the basic strategy, though there are variants). After
that, a gene or condition can be associated with a bicluster based on a score that is
formulated as a probability of association with the current members of that biclus-

2.2 cMonkey 13

ter. A gene can be associated with many biclusters depending on whether its score
exceeds a certain threshold (using several different criteria). As the membership of
biclusters changes, a particular gene may move in or out of a particular bicluster.

The criteria to determine whether a gene and/or experiment should belong with
a bicluster are expression similarity, promoter similarity, and known network con-
nections. We first show how to calculate the score that determines whether a gene
or experimental condition should be associated with a bicluster based on expression
(2.2.3.1). Second we describe the calculation of a score based on DNA motifs (small
binding portions of a promoter) to determine whether the promoter of a gene war-
rants that gene’s association with a bicluster (2.2.3.2). Third we describe how to use
known network edges (e.g. metabolic edges) to determine whether a gene should be
associated with a bicluster (2.2.3.3). Finally, we show how all these different criteria
can be combined using a heuristic technique called simulated annealing into a single
regression score (2.2.3.4 and Equation (2.4)).

The basic idea is that at each step of the algorithm, we calculate the probability
that each gene g and each experiment e belongs in bicluster k, given the genes and
experiments already in k. Based on that probability, the gene-experiment may be
added to the bicluster. Biclusters are initialized by randomly choosing one of several
methods (discussed in section 2.2.3.4). The probability of movement decreases over
time (in the spirit of simulated annealing). The algorithm converges to a set of stable
biclusters. The probability that a gene or condition should belong to a given bicluster
is calculated for each of the types of data used at each iteration. These probabilities
are then combined using a regression model, giving an overall probability that a
given gene belongs to each bicluster.

We present the details of the algorithm below as four discrete steps. First, we
calculate a likelihood score for each type of data separately. Then, we combine the
scores into one value. Finally, we go over cMonkey’s iterative procedure, putting
all of the previous steps together. The net result is the likelihood a gene or condi-
tion/experiment should belong to a given bicluster.

2.2.3.1 Using the Expression Data

Expression data are used to create a likelihood that a given gene or experiment “be-
longs” to a given bicluster. We calculate the likelihood that xi j, gene i’s expression
value in experiment j, is in a bicluster k with:

p(xi j) =
1√

2π

(
σ2

j + ε2
)exp

(
−1

2

(
xi j− x̄ jk

)2
+ ε2

σ2
j + ε2

)
, (2.1)

where σ2
j is the variance of experiment j, ε is an error term, representing unknown

error in the expression values, and x̄ jk is the mean expression level of experiment
j over the genes in bicluster k. The variance over all of j is used instead of the
variance of only the genes in bicluster k. This is done to help weed out experiments

14 2 Step 1: Clustering Data

where there is not much variation between genes, i.e., experiments where genes are
more likely to be correlated by random chance.

Once we have the likelihood that each measurement xi j belongs to each bicluster
k, we can calculate the likelihood that each gene and experiment belongs to a given
bicluster. To calculate the likelihood that a gene i belongs to a bicluster, we take the
product of the likelihoods that gene i is in bicluster k across all experiments j.

prob gene i belongs to bicluster k = ∏
j∈Jk

p(xi j). (2.2)

Similarly, we calculate the likelihood that an experiment j belongs to a bicluster by
taking the product of the likelihoods that experiment j is in bicluster k across all
genes i.

prob condition i belongs to bicluster k = ∏
i∈Ik

p(xi j). (2.3)

cMonkey then assigns a gene to a bicluster over the conditions of that bicluster if the
probability of that gene belonging to a bicluster is greater than a randomly generated
value between 0 and 1. Finally, we create a co-expression p-value for each gene i
with respect to each bicluster k and for each experiment j with respect to each
bicluster k, labeled rik and ri j, respectively. These values are created by integrating
over the normal distribution based on (2.1).

2.2.3.2 Using the Upstream DNA Sequence Data

Upstream DNA sequence data are used to identify whether or not a gene i shares
DNA motifs with other genes in a bicluster k. A DNA motif is a sequence of DNA
bases that are likely to be a target of transcription factors. So if two genes share the
same motifs then they may have similar biological functions. The MEME algorithm
[2] is used to identify these motifs, and the counterpart algorithm MAST [2] is used
to calculate the p-value that a given sequence matches motifs found by MEME.
MEME is used to create a set of the motifs found in the genes in each bicluster.
MAST is then used to calculate a p-value sik of how likely it is that a gene i contains
the motifs found in bicluster k. Intuitively, what we are checking is whether or not
a gene shares similar biological functions (based on their DNA) with the rest of the
genes in a given bicluster.

2.2.3.3 Using the Association Network Data

cMonkey also uses known association network data to help create biclusters. The
network data can be obtained from the KEGG [16], Predictome [23] and Prolinks [3]
databases. These datasets contain known network associations between genes. The
basic idea here is to add genes to a cluster based on how many network associations
that gene has in common with the genes in that cluster. The more associations a

2.2 cMonkey 15

gene has in common with a cluster, the more likely it is that the gene belongs in
that cluster. A p-value qn

ik is calculated for each gene/cluster/network set, where n is
each one of the different types of association networks (e.g., KEGG or Prolinks).

2.2.3.4 Putting it all together: The cMonkey Iterative Procedure

cMonkey starts by “seeding” each bicluster with an initial set of genes and experi-
ments. Five different methods are used for seeding the initial biclusters:

1: A single random gene
2: Using co-expressed genes from another clustering method
3: Using semi-co-expressed genes (by correlation of expression values)
4: Using highly connected genes (from the association network)
5: Using genes with a common motif (from the upstream DNA sequence)

Many seeding strategies are used in order to introduce variance into the initializa-
tion of the algorithm. This helps keep the algorithm from getting caught in a local
minimum early on.

cMonkey uses simulated annealing to select the biclusters. Simulated annealing
is a probabilistic global optimization algorithm where a temperature parameter starts
“hot” and “cools” over time. When the temperature is hot, genes and experiments
are allowed to move much more freely between biclusters. This allows many com-
binations to be formed early on. As the temperature cools, moves between clusters
become less and less likely, based on how “good” the move is. A gene that has a
high affinity with a bicluster, as then constituted, has a higher probably of moving
to it than one that doesn’t. As the temperature cools, the biclusters “harden”, until
only the genes that are extremely good matches for a bicluster have any chance of
actually moving to that bicluster. The maximum number of moves that can be made
at each iteration is set by a parameter to be a small value, by default 5. Establishing
a maximum is done to ensure that a bicluster cannot change too much in a single
iteration.

In addition to the temperature parameter used in simulated annealing, the weights
on the importance of each data type also change at each iteration. For example,
Reiss et al. state that early in the procedure, DNA motifs are not very useful, as
it is unlikely that any particular cluster has enough similar motifs to give a reliable
signal. However, some of the association network data can be extremely informative
early on. Thus, at the beginning of the algorithm, association network data are given
a higher weight than the motif data. As the annealing continues and clusters become
more and more numerous, using DNA motifs makes more sense, so the weight on
DNA motifs is increased over time.

A constrained logistic regression is used to combine each data type’s score into a
single joint likelihood. First, the scores are standardized to have mean 0 and standard
deviation 1, with log(z̃ik)= log(zik)−µk/σk (where z is a stand-in for the expression
(r), sequence (s), or association network qn p-value). This is done so that one type of
score doesn’t overpower the others simply because it tends to have better p-values

16 2 Step 1: Clustering Data

than the others. Then, we combine the scores into a single value, on which we will
perform the regression:

gik = r0log(r̃ik)+ s0log(s̃ik)+ ∑
n∈N

qn
0log(q̃n

ik), (2.4)

where r0, s0, and qn
0 are the weights that are specified by the current annealing

iteration for the expression, sequence, and network scores, respectively. The idea
here is to weight each type of p-value based on how important we think it is given
where in the annealing process we are.

The constrained logistic regression is then defined as:

πlk ≡ p(ylk = 1|Xk,Si,Mk,N) ∝ exp(β0 +β1glk), (2.5)

where l is used to define a gene or experiment (replacing i and j from before). πik
is then the likelihood that a given gene or experiment l belongs to bicluster k.

cMonkey puts all of these methods together into a single iterative procedure.
(i) Create random biclusters using a random initialization method for each bicluster,
and start at a high annealing temperature. (ii) Calculate the joint likelihood that each
gene/experiment belongs in each bicluster. (iii) For each gene / experiment add or
drop it from each bicluster according to the probabilities:

p(add|πlk) = e−πlk/T ;p(drop|πlk) = e−(1−πlk)/T , (2.6)

where T is the current annealing temperature or until the maximum number of
moves per iteration is achieved (the default value is 5) and πlk is the likelihood that
a given gene or experiment l belongs to bicluster k, as defined in Equation (2.5). (iv)
Lower the annealing temperature, then repeat steps (ii) - (iv) until the temperature
reaches 0 or its minimum value. By default, the annealing temperature begins at
0.15 and goes down in even steps to 0.05 over 100-150 iterations.

The result of this procedure yields biclusters of genes and experiments. These
data can be used to create “super genes” for use in a network inference algorithm.
By taking the list of genes in a bicluster, we can then average those values together
to create the expression values over experiments for this gene. The idea behind this
is that if these genes are part of the same pathway and behave like each other, then
we can reduce the amount of noise and variance in the expression measurements by
averaging their values together.

2.2.4 Walkthrough Example on Toy Data

We will now demonstrate cMonkey in action using a small toy example. Our ex-
ample will contain only 5 genes and 5 experiments. We begin by randomly select-
ing one of the five different methods for seeding a bicluster. Let’s assume that we
choose method 1: selecting a single random gene to start a bicluster and begin with

2.2 cMonkey 17

an annealing temperature of 0.15. Gene 3 is selected to begin the bicluster. We then
calculate the joint likelihood that each gene or condition belongs in this bicluster.
Table 2.1 represents the joint probability (the result of Equation (2.4)) that each
gene/experiment belongs in a bicluster containing only gene 3.

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

Gene 1 0.8 0.2 0.01 0.3 0.02
Gene 2 0.3 0.9 0.1 0.1 0.6
Gene 4 0.5 0.6 0.4 0.3 0.2
Gene 5 0.2 0.1 0.7 0.2 0.3

Table 2.1 Score of each gene/experiment with respect to gene 3.

We can see from Table 2.1 that there are some gene/experiment combinations
that have a good chance of actually belonging to this bicluster. Specifically, Gene
1/Experiment 1 and Gene 2/Experiment 2. Given the joint probabilities in Table 2.1,
we calculate the probability of each gene/experiment being added to the bicluster
using the left side of Equation (2.6). This takes into account the current annealing
temperature, which is set to 0.15 at the beginning. This gives us Table 2.2, which
shows 1− score.

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

Gene 1 0.99 0.73 0.07 0.86 0.12
Gene 2 0.86 0.99 0.49 0.49 0.98
Gene 4 0.97 0.98 0.93 0.865 0.74
Gene 5 0.74 0.49 0.99 0.73 0.86

Table 2.2 1−Score of each gene/experiment with respect to the new gene 3 bicluster. The numbers
are high because the annealing temperature is high. As the temperature cools, these scores will
decrease.

Gene/experiment values with high joint probabilities in Table 2.1 have corre-
spondingly high numbers in Table 2.2. To decide whether or not to add a particular
gene/experiment gx to the bicluster, we select a random number between 0 and 1. If
that random number is less than the value shown in Table 1.2 for gx, then we add gx.
Otherwise, don’t add gx to the bicluster. For example, suppose we select a random
number of 0.6 for the value of gene 1/experiment 1. Because the random number is
less than the listed value, we add gene 1/experiment 1 to the bicluster. By contrast,
if, for gene 1/experiment 2, we select a random number of 0.9. We do not add that
gene/experiment combination to the bicluster.

A similar process is then carried out to decide whether or not to drop gene/experiment
pairs from the bicluster, using the right side of Equation 2.6 instead of the left. Once
this process has been carried out for each bicluster (in this example, there is only
one), the annealing temperature is dropped. Dropping the annealing temperature af-

18 2 Step 1: Clustering Data

Bicluster built around

JHQH��·V�H[SUHVVLRQ�YDOXHV

1,1 1,2 2,22,52,3

1,3

1,4

2,1

1,5

4,1

3,1 3,3 3,53,43,2

Fig. 2.1 A figure showing an example bicluster that was seeded with the expression values of gene
3. The observations are labeled as boxes, with the numbers representing “gene number, experiment
number”. Dashed boxes are the 5 freshly added observations, and solid boxes indicate observations
that were already part of the bicluster. Shown outside of the bicluster are some other observations
that did not make the cut.

fects the results of Equation 2.6, making it less likely that a move is made. This pro-
cess continues until either the minimum annealing temperature is reached or until a
maximum number of moves (additions or deletions) is made for this turn, yielding
a collection of biclusters.

Parameter Name What it does Default Value

m Maximum number of moves per it-
eration

5

Tmax The starting annealing temperature 0.15
Tmin The ending annealing temperature 0.05
Tstep The number of steps between Tmax

and Tmin

100

2.3 Factor Analysis for Bicluster Acquisition (FABIA)

2.3.1 What it Does

Factor Analysis for Bicluster Acquisition (FABIA) [14] biclusters genes and exper-
iments using Factor Analysis. Factor Analysis takes a set of data (in our case, the
expression values of genes in experiments) and explains them in terms of an of-
ten smaller set of parameters called factors. In a non-genetic context, consider lung

2.3 Factor Analysis for Bicluster Acquisition (FABIA) 19

cancer data about people. Imagine that the data are rows of people with lung cancer
and columns are indirect data that are correlated with a direct cause of the cancer
(age, socio-economic status, location, etc.). What FABIA tries to do is explain the
underlying relationship between indirect data. For example, a direct cause of lung
cancer such as asbestos exposure (i.e., a “factor”) may be partially explained by a
combination of other features correlated with the direct cause, such as whether or
not a person lived in a time and area where asbestos exposure was common. FABIA
uses Expectation-Maximization [6] to generate the biclusters. Biclusters are then
ranked by mutual-information content, and weaker members of each bicluster are
optionally pruned with a threshold.

2.3.2 The Data

FABIA uses steady-state data. The experiments can be genetic or external pertur-
bations, and should be normalized to have mean 0 and standard deviation 1. Time-
series experiments may also be used, but they will be treated as individual steady-
state experiments.

2.3.3 The Strategy

FABIA tries to find a set of factors z that explain observed expression values in
X . To do this, we need to find a good set of weights called “factor loadings” that
connect a factor in z to the observation in X . Which genes are part of a given factor
zi is decided by the factor loadings in λ associated with zi. We also want to model
the measurement noise ε of each observation and then remove that noise in order to
calculate an “idealized” expression value (see Figure 2.2).

Formally, this can be modeled as:

X =
p

∑
i=1

λiz̃i + ε = Λ z̃+ ε, (2.7)

where ε is additive noise, p is the number of biclusters, λi is a sparse vector of factor
loadings, and z̃i is the ith value in a vector of z̃ factors. The approach to fitting this
model uses some advanced techniques.

For this model, we want to find the parameters Λ and Ψ that best explain the data.
Ψ = Cov(ε) is a matrix that represents the covariance of the noise of the expression
values in X . Λ (the factor loadings) represents the connections between factors in z
and observations in X . We find parameters to best explain X using the Expectation-
Maximization (EM) [6] algorithm.

Expectation-maximization (EM) is an iterative method for finding the maximum
likelihood of a set of parameters. FABIA uses a special kind of EM algorithm group

20 2 Step 1: Clustering Data

Observations (x)

1RLVH��Q�

/RDGLQJV��d�

Factors (z)

A B C

1 2

Q
1

Q
2

Q
3

Fig. 2.2 A figure showing the relationships between the different elements of FABIA. In this case,
the two factors (z) explain the three observations (x) through factor loadings (λ). Factor 1 connects
observations A and B. Factor 2 connects observations A and C. FABIA treats these factors as
biclusters, giving us 2 biclusters where bicluster 1 contains A and B, and bicluster 2 contains A
and C.

called “variational EM” [10] [24]. This implementation of the variational EM algo-
rithm places a Laplacian prior on the problem to enforce sparsity. This is similar to
the constraint that l1 optimization uses: non-zero values are implicitly penalized, so
“weak” connections will quickly drop to zero, yielding a more parsimonious result.
For variational EM, this is done by optimizing for the variational parameters ξ that
are part of the Lagrangian dual formulation of the problem. By optimizing the vari-
ational parameters, we obtain a lower bound on the likelihood of the model. The
goal is to find a maximum value for this lower bound. FABIA uses variational EM
to search for the combination of Λ and Ψ that fits the data the best. This works in
two steps. First, the expectation (E) step calculates the expected log-likelihood of
the current parameters, i.e., how likely it is that the current parameters fit the data
better than a null model. Next, the maximization (M) step computes a new set of
model parameters Λ and Ψ that maximize the expected log-likelihood from the pre-
vious E-step. These two steps are repeated until a maximum number of iterations is
reached or the model is changing too slowly.

Once we’ve obtained a good estimate of the parameters Λ and Ψ , we can rank
the resulting biclusters according to how much information each contains about the
data. We do this by calculating the mutual information between the data X and the
factors of each bicluster zT

i . The information content of a bicluster will grow with
the number of nonzero values (i.e., the size of the bicluster) in each λi, so in general,

2.3 Factor Analysis for Bicluster Acquisition (FABIA) 21

the larger the biclusters are then the more information about X they contain. Finally,
each bicluster may optionally be pruned by taking the absolute value of the factors
and factor loadings for each bicluster, and selecting only the values that are above a
certain threshold.

2.3.4 Walkthrough Example on Toy Data

FABIA works by iteratively adjusting the loading matrix Λ and the covariance ma-
trix of the noise Ψ . Imagine that we are working with a very small dataset of only 9
observations (3 genes, 3 experiments). We are looking to fit these 9 observations into
3 factors (biclusters). Λ is then a 3x9 matrix initialized randomly to values between
0 and 1. Ψ is initialized to be:

Ψ = diag(CoV(x)−ΛΛ
t). (2.8)

The variational parameters ξ are initialized to be 1.
Our initial guess, a randomly generated matrix, is a mess. It is likely that it is

fully connected, i.e., there is an edge from each observation to each bicluster. This
is obviously not a useful result, so we want to begin pruning the edges that don’t
belong. We then enter the E-step of the EM algorithm, where we calculate the log-
likelihood that the current parameters Λ and Ψ fit the data better than a null model.
The likelihood that each observation xi is a factor z j is calculated. Obviously, at this
point that, likelihood is going to be very low, as we have a random model right now.

Next, we use this likelihood in the M-step in order to find new matrices Λ and Ψ

that better explain the model. To update Λ , a convex quadratic problem is solved.
The basic idea though is that we use the likelihood from the E-step that each obser-
vation in X belongs to a given factor in z, given the rest of the observations currently
in that factor. The factor loading in Λ new is then updated to reflect the likelihood
that an observation xi is in factor z j. Small values of factor loadings are penalized
and forced to 0. Then, Ψ is updated using the updated Λ new. The basic idea behind
updating Ψ is to use the new information available from Λ new and from the likeli-
hoods calculated during the E-step to estimate the variance in the observations X . If
an observation strongly belongs into a bicluster, then maybe that gene really does
have a very high or very low value, and it isn’t simply a noisy observation. In this
case, the value in Ψ is reduced.

At the end of the M-step we have a slightly better guess as to which genes actually
belong to each bicluster. For our example, let’s say that Λ now looks like Table
2.3. We can see that observation 8 seems to strongly belong to factor 1, and that
observation 5 strongly belongs to factor 2. There are also several small values. These
are likely to drop to 0 in following iterations as their small values are penalized. As
more EM iterations are performed, these numbers will slowly change until either
the numbers converge to values and stop changing or we hit the maximum number

22 2 Step 1: Clustering Data

Obs. 1 Obs. 2 Obs. 3 Obs. 4 Obs. 5 Obs. 6 Obs. 7 Obs. 8 Obs. 9

Factor 1 0 0.5 0.3 0.1 0 0.2 0.9 0.4 0.2
Factor 2 0.1 0 0 0.9 0.5 0 0.2 0.1 0.6
Factor 3 0.2 0.1 0 0.4 0.3 0.1 0 0.5 0.3

Table 2.3 Example Λ matrix after 1 Expectation-Maximization step.

of iterations. The matrix Λ is then a map between our factors and observations, and
this map is used to create the biclusters.

Parameter Name What it does Default Value

p Maximum number of biclusters Depends on data
cyc Maximum number of iterations 500

	2 Step 1: Clustering Data
	2.1 Introduction
	2.1.1 Clustering
	2.1.2 Biclustering

	2.2 cMonkey
	2.2.1 What it Does
	2.2.2 The Data
	2.2.3 The Strategy
	2.2.4 Walkthrough Example on Toy Data

	2.3 Factor Analysis for Bicluster Acquisition (FABIA)
	2.3.1 What it Does
	2.3.2 The Data
	2.3.3 The Strategy
	2.3.4 Walkthrough Example on Toy Data

