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Actuator and Sensor Fault-tolerant Control
Design

2.1 Introduction

Many industrial systems are complex and nonlinear. When it is not easy to
deal with the nonlinear models, systems are usually described by linear or
linearized models around operating points. This notion of operating point is
very important when a linearized model is considered, but it is not always
easily understood. The objective in this chapter is to highlight the way to
seek an operating point and to show a complete procedure which includes the
identification step, the design of the control law, the FDI, and the FTC. In
addition to the detailed approach dealing with linearized systems around an
operation point, a nonlinear approach will be presented.

2.2 Plant Models

2.2.1 Nonlinear Model

Many dynamical system can be described either in continuous-time domain
by differential equations: {

ẋ(t) = f(x(t), u(t))
y(t) = h(x(t), u(t))

, (2.1)

or in discrete-time domain by recursive equations:{
x(k + 1) = f(x(k), u(k))

y(k) = h(x(k), u(k))
, (2.2)

where x ∈ �n is the state vector, u ∈ �m is the control input vector, and
y ∈ �q is the system output vector. f and h are nonlinear functions.
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These forms are much more general than their standard linear counterparts
which are described in the next section.

There is a particular class of nonlinear systems – named input-linear or
affine systems – which is often considered, as many real systems can be de-
scribed by these equations:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
ẋ(t) = f(x(t)) +

m∑
j=1

(gj(x(t))uj(t))

= f(x(t)) + G(x(t))u(t)
yi(t) = hi(x(t)), 1 ≤ i ≤ q

. (2.3)

f(x) and gj(x) can be represented in the form of n-dimensional vector of
real-valued functions of the real variables x1, . . . , xn, namely

f(x) =

⎡
⎢⎢⎢⎣

f1(x1, . . . , xn)
f2(x1, . . . , xn)

...
fn(x1, . . . , xn)

⎤
⎥⎥⎥⎦ ; gj(x) =

⎡
⎢⎢⎢⎣

g1j(x1, . . . , xn)
g2j(x1, . . . , xn)

...
gnj(x1, . . . , xn)

⎤
⎥⎥⎥⎦ . (2.4)

Functions h1, . . . , hq which characterize the output equation of system
(2.3) may be represented in the form

hi(x) = hi(x1, . . . , xn). (2.5)

The corresponding discrete-time representation is⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x(k + 1) = fd(x(k)) +
m∑

i=j

(gdj (x(k))uj(k)

= fd(x(k)) + Gd(x(k))u(k)
y(k) = hd(x(k))

. (2.6)

2.2.2 Linear Model: Operating Point

An operating point is usually defined as an equilibrium point. It has to be
chosen first when one has to linearize a system. The obtained linearized model
corresponds to the relationship between the variation of the system output and
the variation of the system input around this operating point. Let us consider
a system associated with its actuators and sensors, with the whole range of
the operating zone of its inputs U and measurements Y (Fig. 2.1).

If the system is linearized around an operating point (U0, Y0), the linearized
model corresponds to the relationship between the variations of the system
inputs u and outputs y (Fig. 2.2) such that

u = U − U0 and y = Y − Y0. (2.7)
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Fig. 2.1. System representation considering the whole operating zone
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Fig. 2.2. System representation taking into account the operating point

Then the model describing the relationship between the input u and the
output y can be given by a Laplace transfer function for single-input single-
output (SISO) systems:

Θ(s) =
y(s)
u(s)

, (2.8)

or by a state-space representation given in continuous-time for SISO or
multiple-input multiple-output (MIMO) systems:{

ẋ(t) = Ax(t) + Bu(t)
y(t) = Cx(t) + Du(t)

, (2.9)

where x ∈ �n is the state vector, u ∈ �m is the control input vector, and
y ∈ �q is the output vector. A, B, C, and D are matrices of appropriate
dimensions.

Very often, in real applications where a digital processor is used (microcon-
troller, programmable logic controller, computer, and data acquisition board,
etc.), it may be more convenient to consider a discrete-time representation:{

x(k + 1) = Adx(k) + Bdu(k)
y(k) = Cdx(k) + Ddu(k)

. (2.10)

Ad, Bd, Cd, and Dd are the matrices of the discrete-time system of appro-
priate dimensions.

In the sequel, linear systems will be described in discrete-time, whereas
nonlinear systems will be considered in continuous-time. For the simplicity of
notation and without loss of generality, matrix Dd is taken as a zero matrix,
and the subscript d is removed.

2.2.3 Example: Linearization Around an Operating Point

To illustrate the notion of the operating point, let us consider the following
example. In the tank presented in Fig. 2.3, the objective is to study the be-
havior of the water level L and the outlet water temperature To. An inlet flow
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rate Qi is feeding the tank. An electrical power Pu is applied to an electrical
resistor to heat the water in the tank.

Fig. 2.3. Tank with heater

• Qi is the inlet water flow rate
• Ti is the inlet water temperature considered as constant
• Qo is the outlet water flow rate
• To is the outlet water temperature
• L is the water level in the tank
• Pu is the power applied to the electrical resistor
• S is the cross section of the tank

The outputs of this MIMO system are L and To. The control inputs are
Qi and Pu. The block diagram of this system is given in Fig. 2.4.

Fig. 2.4. The input/output block diagram

Assuming that the outlet flow rate Qo is proportional to the square root
of the water level in the tank (Qo = α

√
L), the water level L will be given by

the following nonlinear differential equation:

dL(t)
dt

=
1
S

(Qi(t) − Qo(t)) =
1
S

(Qi(t) − α
√

L(t)). (2.11)
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Based on the thermodynamics equations, the outlet water temperature To

is described by the following nonlinear differential equation:

dTo(t)
dt

=
Pu(t)

SL(t)μc
− To(t) − Ti(t)

SL(t)
Qi(t), (2.12)

where c is the specific heat capacity, and μ is the density of the water.
The objective now is to linearize these equations around a given operating

point: OP = (Qi0, Pu0, Qo0, To0, L0). Around this operating point, the system
variables can be considered as

Qi(t) = Qi0 + qi(t); Pu(t) = Pu0 + pu(t); Qo(t) = Qo0 + qo(t);
To(t) = To0 + to(t); L(t) = L0 + lo(t).

(2.13)

The linearization of (2.11) around the operating point OP is given by

dl(t)
dt

=
1
S

qi(t) − α

2S
√

L0

l(t). (2.14)

Similarly, the linearization of (2.12) around the operating point OP is
given by

dto(t)

dt
= −To0 − Ti

SL0
qi(t) +

1

SL0μc
pu(t)

− 1

L2
0

(
Pu0

Sμc
− To0 − Ti

S
Qi0

)
l(t)

− Qi0

SL0
to(t).

(2.15)

Considering the following state vector x =
[
l to

]T
, the linearized state-

space representation of this system around the operating point is then given
by

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ(t) =
[

l̇(t)
ṫo(t)

]
=

[
− α

2S
√

L0

0

a b

] [
l(t)
to(t)

]
+

[ 1
S

0
c d

][
qi(t)
pu(t)

]

y(t) =
[

l(t)
to(t)

]
=
[

1 0
0 1

] [
l(t)
to(t)

] , (2.16)

where

a = − 1
L2

0

(
Pu0

Sμc
− To0 − Ti

S
Qi0

)
; b = − Qi0

SL0
;

c = −To0 − Ti

SL0
; d =

1
SL0μc

.
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Numerical Application

Study the response of the system to the variation of the input variables as
follows: qi = 10 l/h and pu = 2 kW . The numerical values of the system lead
to the following state-space representation:

ẋ(t) =
[

l̇(t)
ṫo(t)

]
=
[−0.01 0

0 −0.02

] [
l(t)
to(t)

]
+
[

0.01 0
−0.03 0.04

] [
qi(t)
pu(t)

]
. (2.17)

The simulation results of the linearized system in response to the variation
of the system inputs in open-loop around the operating point are shown in
Fig. 2.5.

Fig. 2.5. The variation of the system inputs/outputs

It can be seen that initial values of these variables are zero. The zero here
corresponds to the value of the operating point. However, the real variables
Qi, Pu, L, and To are shown in Fig. 2.6.

Later on, if a state-feedback control has to be designed, it should be based
on the linearized equations given by (2.16).
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Fig. 2.6. The actual values of the system inputs/outputs

2.3 Fault Description

During the system operation, faults or failures may affect the sensors, the
actuators, or the system components. These faults can occur as additive or
multiplicative faults due to a malfunction or equipment aging.

For FDI, a distinction is usually made between additive and multiplicative
faults. However, in FTC, the objective is to compensate for the fault effect on
the system regardless of the nature of the fault.

The faults affecting a system are often represented by a variation of system
parameters. Thus, in the presence of a fault, the system model can be written
as {

xf (k + 1) = Afxf (k) + Bfuf (k)
yf (k) = Cfxf (k)

, (2.18)

where the new matrices of the faulty system are defined by

Af = A + δA; Bf = B + δB; Cf = C + δC. (2.19)
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δA, δB, and δC correspond to the deviation of the system parameters with
respect to the nominal values. However, when a fault occurs on the system,
it is very difficult to get these new matrices on-line.

Process monitoring is necessary to ensure effectiveness of process control
and consequently a safe and a profitable plant operation. As presented in the
next paragraph, the effect of actuator and sensor faults can also be represented
as an additional unknown input vector acting on the dynamics of the system
or on the measurements.

The effect of actuator and sensor faults can also be represented using an
unknown input vector fj ∈ �l, j = a (for actuators), s (for sensors) acting on
the dynamics of the system or on the measurements.

2.3.1 Actuator Faults

It is important to note that an actuator fault corresponds to the variation of
the global control input U applied to the system, and not only to u:

Uf = ΓU + Uf0, (2.20)

where

• U is the global control input applied to the system
• Uf is the global faulty control input
• u is the variation of the control input around the operating point U0,

(u = U − U0, uf = Uf − U0 )
• Uf0 corresponds to the effect of an additive actuator fault
• ΓU represents the effect of a multiplicative actuator fault

with Γ = diag(α), α =
[
α1 · · · αi · · · αm

]T and

Uf0 =
[
uf01 · · · uf0i · · · uf0m

]T . The ith actuator is faulty if αi �= 1 or
uf0i �= 0 as presented in Table 2.1 where different types of actuator faults are
described.

Table 2.1. Actuator fault

Constant offset uf0i = 0 Constant offset uf0i �= 0

αi = 1 Fault-free case Bias
αi ∈]0; 1[ Loss of effectiveness Loss of effectiveness
αi = 0 Out of order Actuator blocked

In the presence of an actuator fault, the linearized system (2.10) can be
given by {

x(k + 1) = Ax(k) + B(ΓU(k) + Uf0 − U0)
y(k) = Cx(k)

. (2.21)
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The previous equation can also be written as{
x(k + 1) = Ax(k) + Bu(k) + B[(Γ − I)U(k) + Uf0]

y(k) = Cx(k)
. (2.22)

By defining fa(k) as an unknown input vector corresponding to actuator
faults, (2.18) can be represented as follows:{

x(k + 1) = Ax(k) + Bu(k) + Fafa(k)
y(k) = Cx(k)

, (2.23)

where Fa = B and fa = (Γ − I)U + Uf0. If the ith actuator is declared to be
faulty, then Fa corresponds to the ith column of matrix B and fa corresponds
to the magnitude of the fault affecting this actuator.

In the nonlinear case and in the presence of actuator faults, (2.3) can be
described by the following continuous-time state-space representation:

⎧⎪⎪⎨
⎪⎪⎩

ẋ(t) = f(x(t)) +
m∑

j=1

(gj(x(t))uj(t)) +
m∑

j=1

(Fa,j(x(t))fa,j(t))

yi(t) = hi(x(t)) 1 ≤ i ≤ q

, (2.24)

where Fa,j(x(t)) corresponds to the jth column of matrix G(x(t)) in (2.3) and
fa,j(t) corresponds to the magnitude of the fault affecting the jth actuator.

2.3.2 Sensor Faults

In a similar way, considering fs as an unknown input illustrating the presence
of a sensor fault, the linear faulty system will be represented by{

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k) + Fsfs(k)

. (2.25)

The affine nonlinear systems can be defined in continuous-time through
an additive component such as{

ẋ(t) = f(x(t)) + G(x(t))u(t)
yi(t) = hi(x(t)) + Fs,ifs,i(t)

, 1 ≤ i ≤ q, (2.26)

where Fs,i is the ith row of matrix Fs and fs,i is the fault magnitude affecting
the ith sensor.

This description of actuator and sensor faults is a structured representation
of these faults. Matrices Fa and Fs are assumed to be known and fa and
fs correspond, respectively, to the magnitudes of the actuator fault and the
sensor fault.
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An FTC method is based on a nominal control law associated with a fault
detection and estimation, and a modification of this control law. This is used
in order to compensate for the fault effect on the system.

2.4 Nominal Tracking Control Law

The first step in designing an FTC method is the setup of a nominal control.
In the sequel, a multi-variable linear tracking control is first addressed, then
a case of nonlinear systems is presented.

2.4.1 Linear Case

The objective in this section is to describe a nominal tracking control law able
to make the system outputs follow pre-defined reference inputs.

Consider a MIMO system given by the following discrete-time state-space
representation: {

x(k + 1) = Ax(k) + Bu(k)
y(k) = Cx(k)

, (2.27)

where x ∈ �n is the state vector, u ∈ �m is the control input vector, and y ∈
�q is the output vector. A, B, and C are matrices of appropriate dimensions.

The tracking control law requires that the number of outputs to be con-
trolled must be less than or equal to the number of the control inputs available
on the system [29].

If the number of outputs is greater than the number of control inputs,
the designer of the control law selects the outputs that must be tracked and
breaks down the output vector y as follows:

y(k) = Cx(k) =
[

C1

C2

]
x(k) =

[
y1(k)
y2(k)

]
. (2.28)

The feedback controller is required to cause the output vector y1 ∈ �p (p ≤
m) to track the reference input vector yr such that in steady-state:

yr(k) − y1(k) = 0. (2.29)

To achieve this objective, a comparator and integrator vector z ∈ �p is
added to satisfy the following relation:{

z(k + 1) = z(k) + Ts(yr(k) − y1(k))
= z(k) + Ts(yr(k) − C1x(k))

, (2.30)

where Ts is the sample period to be chosen properly. Careful consideration
should be given to the choice of Ts. If Ts is too small, the processor will not
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have enough time to calculate the control law. The system may be unstable if
Ts is too high because the system is operating in open-loop during a sample
period.

The open-loop system is governed by the augmented state and output
equations, where Ip is an identity matrix of dimension p and 0n,p is a null
matrix of n rows and p columns:

⎧⎪⎪⎨
⎪⎪⎩

[
x(k + 1)
z(k + 1)

]
=
[

A 0n,p

−TsC1 Ip

] [
x(k)
z(k)

]
+
[

B
0p,m

]
u(k) +

[
0n,p

TsIp

]
yr(k)

y(k) =
[
C 0q,p

] [x(k)
z(k)

] .

(2.31)
This state-space representation can also be written in the following form:{

X(k + 1) = ĀX(k) + B̄uu(k) + B̄ryr(k)
y(k) = C̄X(k)

. (2.32)

The nominal feedback control law of this system can be computed by

u(k) = −KX(k) = − [K1 K2

] [x(k)
z(k)

]
. (2.33)

K =
[
K1 K2

]
is the feedback gain matrix obtained, for instance, using a

pole placement technique, linear-quadratic (LQ) optimization, and so on [6,78,
119,125,130,133]. To achieve this control law, the state variables are assumed
to be available for measurement. Moreover, the state-space considered here is
that where the outputs are the state variables (C is the identity matrix In).
Otherwise, the control law is computed using the estimated state variables
obtained, for instance, by an observer or a Kalman filter.

Figure 2.7 summarizes the design of the nominal tracking control taking
into account the operating point with x = y1.
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Fig. 2.7. Nominal tracking control taking into account the operating point
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2.4.2 Nonlinear Case

The need for nonlinear control theory arises from the fact that systems are
nonlinear in practice. Although linear models are simple and easy to ana-
lyze, they are not valid except around a certain operating region. Outside
this region, the linear model is not valid and the linear representation of
the process is insufficient. Control of nonlinear systems has been extensively
considered in the literature where plenty of approaches have been proposed
for deterministic, stochastic, and uncertain nonlinear systems (see for in-
stance [46,52,58,116]). In this book, two control methods are used: the exact
input-output linearization and the sliding mode controller (SMC).

Exact Linearization and Decoupling Input-Output Controller

According to the special class of input-linear systems given by (2.3), a nonlin-
ear control law is commonly established to operate in closed-loop. To perform
this task, an exact linearization and decoupling input-output law via a static
state-feedback u(t) = α(x(t)) + β(x(t)) v(t) is designed. It is assumed here
that the system has as many outputs as inputs (i.e., q = m). For the general
case where q �= m, the reader can refer to [41, 73, 98].

The aim of this control law is to transform (2.3) into a linear and control-
lable system based on the following definitions

Definition 2.1. Let (r1, r2, . . . , rm) be the set of the relative degree per row
of (2.3) such as

ri = {min l ∈ ℵ/∃j ∈ [1, . . . , m], Lgj L
l−1
f hi(x(t)) �= 0}, (2.34)

where L is the Lie derivative operator.

The Lie derivative of hi in the direction of f , denoted Lfhi(x), is the
derivative of hi in t = 0 along the integral curve of f , such that

Lfhi(x) =
n∑

j=1

fj(x)
∂hi

∂xj
(x). (2.35)

The operation Lf , Lie derivative in the direction of f , can be iterated. Lk
fh

is defined for any k ≥ 0 by

L0
fh(x) = h(x) and Lk

fh(x) = Lf (Lk−1
f h(x)) ∀k ≥ 1 . (2.36)

Definition 2.2. If all ri exist (i = 1, . . . , m), the following matrix Δ is called
“decoupling matrix” of (2.3):
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Δ(x) =

⎡
⎢⎣

Lg1L
r1−1
f h1(x) · · · LgmLr1−1

f h1(x)
...

. . .
...

Lg1L
rm−1
f hm(x) · · · LgmLrm−1

f hm(x)

⎤
⎥⎦ . (2.37)

A vector Δ0 is also defined such as

Δ0(x) =

⎡
⎢⎣

Lr1
f h1(x)

...
Lrm

f hm(x)

⎤
⎥⎦ . (2.38)

According to the previous definition, the nonlinear control is designed as
follows.

Theorem:
a) The system defined by (2.3) is statically decouplable on a subset M0 of �n

if and only if
rank Δ(x) = m, ∀x ∈ M0. (2.39)

b) The control law computed using the state-feedback is defined by

u(t) = α(x(t)) + β(x(t))v(t), (2.40)

where {
α(x) = −Δ−1(x)Δ0(x)

β(x) = Δ−1(x)
. (2.41)

This control law is able to decouple (2.3) on M0.
c) This closed-loop system has a linear input-output behavior described by

y
(ri)
i (t) = vi(t), ∀i ∈ [1, . . . , m], (2.42)

where y
(ri)
i (t) is the rth

i derivative of yi.

Two cases may be observed:

• ∑m
i=1 ri = n: the closed-loop system characterized by the m decoupled

linear subsystems is linear, controllable and observable.
• ∑m

i=1 ri < n: a subspace made unobservable by the nonlinear feedback
(2.40). The stability of the unobservable subspace must be studied. This
subspace must have all modes stable. More details about this case can be
found in [41, 73, 98].

Since each SISO linear subsystem is equivalent to a cascade of integrators,
a second feedback control law should be considered in order to stabilize and to
set the performance of the controlled nonlinear system. This second feedback
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is built using linear control theory [29]. The simplest feedback consists of using
a pole placement associated with τi such as

yi(s)
yref,i(s)

=
1

(1 + τis)ri
(2.43)

where yref,i is the reference input associated with output yi.
The advantage of this approach is that the feedback controllers are de-

signed independently of each other. Indeed, nonlinear feedback (2.40) is built
from model (2.3) according to the theorem stated previously. The stabilized
feedback giving a closed-loop behavior described by (2.43) is designed from
the m decoupled linear equivalent subsystems (2.42) written in the Brunovsky
canonical form [65] such as

{
żi(t) = Aizi(t) + Bivi(t)
yi(t) = Cizi(t)

, ∀i ∈ [1, . . . , m], (2.44)

with

Ai =

⎡
⎢⎢⎢⎣

0
... Iri−1

0
0 0 · · · 0

⎤
⎥⎥⎥⎦ , Bi =

⎡
⎢⎢⎢⎣

0
...
0
1

⎤
⎥⎥⎥⎦ , Ci =

[
1 0 · · · 0

]
. (2.45)

The link between both state-feedbacks is defined by a diffeomorphism
z(t) = Φ(x(t)) where z(t) is the state vector of the decoupled linear system
written in the controllability canonical form.

When there is no unobservable state subspace, the diffeomorphism is de-
fined by

z(t) = Φ(x(t)) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Φ1(x(t))
...
...
...

Φm(x(t))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎣

h1(x(t))
...

Lr1−1
f h1(x(t))

⎤
⎥⎦

...⎡
⎢⎣

hm(x(t))
...

Lrm−1
f hm(x(t))

⎤
⎥⎦

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (2.46)

The exact linearization and decoupling input-output controller with both
state-feedback control laws may be illustrated in Fig. 2.8.
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Fig. 2.8. Nonlinear control scheme

Sliding Mode Controller

The main advantage of the SMC over the other nonlinear control laws is its
robustness to external disturbances, model uncertainties, and variations in
system parameters [135, 136]. In order to explain the SMC concept, consider
a SISO second order input affine nonlinear system:

ẍ = f(x, ẋ) + g(x, ẋ)u + df , (2.47)

where u is the control input and df represents the uncertainties and external
disturbances which are assumed to be upper bounded with |df | < D. Note that
this section considers continuous-time systems but the time index is omitted
for simplicity. Defining the state variables as x1 = x and x2 = ẋ, (2.47) leads
to {

ẋ1 = x2

ẋ2 = f(x, ẋ) + g(x, ẋ)u + df

. (2.48)

If the desired trajectory is given as xd
1, then the error between the actual

x1 and the desired trajectory xd
1 can be written as

e = x1 − xd
1. (2.49)

The time derivative of e is given by

ė = ẋ1 − ẋd
1 = x2 − xd

2 . (2.50)

The switching surface s is conventionally defined for second order systems
as a combination of the error variables e and ė:

s = ė + λe, (2.51)

where λ sets the dynamics in the sliding phase (s = 0).
The control input u should be chosen so that trajectories approach the

switching surface and then stay on it for all future time instants. Thus, the
time derivative of s is given by
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ṡ = f(x, ẋ) + g(x, ẋ)u + df − ẍ d
1 + λė. (2.52)

The control input is expressed as the sum of two terms [114]. The first one,
called the equivalent control, is chosen using the nominal plant parameters
(df = 0), so as to make ṡ = 0 when s = 0. It is given by [114]

ueq = g(x, ẋ)−1(ẍ d
1 − f(x, ẋ) − λė). (2.53)

The second term is chosen to tackle the uncertainties in the system and
to introduce a reaching law; the constant (Msign(s)) plus proportional (ks)
rate reaching law is imposed by selecting the second term as [114]

u∗ = g(x, ẋ)−1[−ks− Msign(s)], (2.54)

where k and M are positive numbers to be selected and sign(.) is the signum
function. The function g(x, ẋ) must be invertible for (2.53) and (2.54) to hold.

Then, the control input u = ueq + u∗ becomes

u = g(x, ẋ)−1[ẍ d
1 − f(x, ẋ) − λė − ks − Msign(s)]. (2.55)

Substituting input u of (2.55) in (2.52) gives the derivative ṡ of the sliding
surface

ṡ = −ks − Msign(s) + df . (2.56)

The necessary condition for the existence of conventional sliding mode for
(2.47) is given by

1
2

d

dt
s2 < 0, or sṡ < 0. (2.57)

This condition states that the squared distance to the switching surface,
as measured by s2, decreases along all system trajectories. However, this con-
dition is not feasible in practice because the switching of real components is
not instantaneous and this leads to an undesired phenomenon known as chat-
tering in the direction of the switching surface. Thus (2.57) is expanded by a
boundary layer in which the controller switching is not required:

sṡ < −η |s| . (2.58)

Multiplying (2.56) by s yields

sṡ = −ks2 − Msign(s)s + dfs = −ks2 − M |s| + dfs. (2.59)

With a proper choice of k and M , (2.58) will be satisfied.
The elimination of the chattering effect produced by the discontinuous

function sign is ensured by a saturation function sat. This saturation function
is defined as follows:

sat(s) =
{

sign(s) if |s| > φs

s/φs if |s| < φs
, (2.60)

where φs is a boundary layer around the sliding surface s.
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2.5 Model-based Fault Diagnosis

After designing the nominal control law, it is important to monitor the be-
havior of the system in order to detect and isolate any malfunction as soon as
possible. The FDI allows us to avoid critical consequences and helps in taking
appropriate decisions either on shutting down the system safely or continuing
the operation in degraded mode in spite of the presence of the fault.

The fault diagnostic problem from raw data trends is often difficult. How-
ever, model-based FDI techniques are considered and combined to supervise
the process and to ensure appropriate reliability and safety in industry. The
aim of a diagnostic procedure is to perform two main tasks: fault detection,
which consists of deciding whether a fault has occurred or not, and fault iso-
lation, which consists of deciding which element(s) of the system has (have)
indeed failed. The general procedure comprises the following three steps:

• Residual generation: the process of associating, with the measured and
estimated output pair (y, ŷ), features that allow the evaluation of the dif-
ference, denoted r (r = y− ŷ), with respect to normal operating conditions

• Residual evaluation: the process of comparing residuals r to some prede-
fined thresholds according to a test and at a stage where symptoms S(r)
are produced

• Decision making: the process of deciding through an indicator, denoted I
based on the symptoms S(r), which elements are faulty (i.e., isolation)

This implies the design of residuals r that are close to zero in the fault-free
situations (f = 0), while they will clearly deviate from zero in the presence
of faults (f �= 0). They will possess the ability to discriminate between all
possible modes of faults, which explains the use of the term isolation. A short
historical review of FDI can also be found in [71] and current developments
are reviewed in [44].

While a single residual may be enough to detect a fault, a set of structured
residuals is required for fault isolation . In order to isolate a fault, some resid-
uals with particular sensitivity properties are established. This means that
r = 0 if f∗ = 0 and r �= 0 if f∗ �= 0 regardless of the other faults defined
through fd = 0. In this context, in order to isolate and to estimate both actu-
ator and sensor faults, a bank of structured residuals is considered where each
residual vector r may be used to detect a fault according to a statistical test.
Consequently, it involves the use of statistical tests such as the Page-Hinkley
test, limit checking test, generalized likelihood ratio test, and trend analysis
test [8].

An output vector of the statistical test, called coherence vector Sr, can
then be built from the bank of ν residual generators:

Sr = [S(||r1||) · · ·S(||rν ||)]T , (2.61)
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where S(||rj ||) represents a symptom associated with the norm of the residual
vector rj . It is equal to 0 in the fault-free case and set to 1 when a fault is
detected.

The coherence vector is then compared to the fault signature vector Sref,fj

associated with the jth fault according to the residual generators built to
produce a signal sensitive to all faults except one as represented in Table 2.2.

Table 2.2. Fault signature table

Sr No faults Sref,f1 Sref,f2 · · · Sref,fν Other faults

S(‖r1‖) 0 0 1 · · · 1 1
S(‖r2‖) 0 1 0 · · · 1 1

...
...

...
...

. . .
...

...
S(‖rν‖) 0 1 1 · · · 0 1

The decision is then made according to an elementary logic test [86] that
can be described as follows: an indicator I(fj) is equal to 1 if Sr is equal to
the jth column of the incidence matrix (Sref,fj ) and otherwise it is equal to
0. The element associated with the indicator equals to 1 is then declared to
be faulty.

Moreover, the FDI module can also be exploited in order to estimate the
fault magnitude.

Based on a large diversity of advanced model-based methods for automated
FDI [22,31,53,69], the problem of actuator and/or sensor fault detection and
magnitude estimation for both linear time-invariant (LTI) and nonlinear sys-
tems has been considered in the last few decades. Indeed, due to difficulties
inherent in the on-line identification of closed-loop systems, parameter esti-
mation techniques are not considered in this book. The parity space technique
is suitable to distinguish between different faults in the presence of uncertain
parameters, but is not useful for fault magnitude estimation.

In this section, the FDI problem is first considered, then in Sect. 2.6 the
fault estimation is treated before investigating the FTC problem in Sect. 2.7.

2.5.1 Actuator/Sensor Fault Representation

Let us recall the state-space representation of a system that may be affected
by actuator and/or sensor fault:{

x(k + 1) = Ax(k) + Bu(k) + Fafa(k)
y(k) = Cx(k) + Fsfs(k)

, (2.62)

where matrices Fa and Fs are assumed to be known and fa and fs correspond
to the magnitude of the actuator and the sensor faults, respectively. The
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magnitude and time occurrence of the faults are assumed to be completely
unknown.

In the presence of sensor and actuator faults, (2.62) can also be represented
by the unified general formulation{

x(k + 1) = Ax(k) + Bu(k) + Fxf(k)
y(k) = Cx(k) + Fyf(k)

, (2.63)

where f = [fT
a fT

s ]T ∈ �ν (ν = m + q) is a common representation of sensor
and actuator faults. Fx ∈ �n×ν and Fy ∈ �q×ν are respectively the actuator
and sensor faults matrices with Fx = [B 0n×q] and Fy = [0q×m Iq ].

The objective is to isolate faults. This is achieved by generating residuals
sensitive to certain faults and insensitive to others, commonly called struc-
tured residuals . The fault vector f in (2.63) can be split into two parts. The
first part contains the “d” faults to be isolated f0 ∈ �d. In the second part,
the other “ν−d” faults are gathered in a vector f∗ ∈ �ν−d. Then, the system
can be written by the following equations:{

x(k + 1) = Ax(k) + Bu(k) + F 0
xf0(k) + F ∗

x f∗(k)

y(k) = Cx(k) + F 0
y f0(k) + F ∗

y f∗(k)
. (2.64)

Matrices F 0
x , F ∗

x , F 0
y , and F ∗

y , assumed to be known, characterize the
distribution matrices of f∗ and f0 acting directly on the system dynamics
and on the measurements, respectively.

As indicated previously, an FDI procedure is developed to enable the de-
tection and the isolation of a particular fault f0 among several others. In order
to build a set of residuals required for fault isolation, a residual generation
using an unknown input decoupled scheme is considered such that the resid-
uals are sensitive to fault vector f∗ and insensitive to f0. Only a single fault
(actuator or sensor fault) is assumed to occur at a given time, because simul-
taneous faults can hardly be isolated. Hence, vector f0 is a scalar (d = 1) and
it is considered as an unknown input. It should be noted that the necessary
condition of the existence of decoupled residual generator is fulfilled according
to Hou and Muller [66]: the number of unknown inputs must be less than the
number of measurements (d ≤ q).

In case of an ith actuator fault, the system can be represented according
to (2.64) by{

x(k + 1) = Ax(k) + Bu(k) + Bif
0(k) + [Bi 0n×q]f∗(k)

y(k) = Cx(k) + [0q×(p−1) Iq]f∗(k)
, (2.65)

where Bi is the ith column of matrix B and Bi is matrix B without the ith

column.
In order to generate a unique representation, (2.65) can be described as:
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x(k + 1) = Ax(k) + Bu(k) + Fdfd(k) + F ∗

x f∗(k)
y(k) = Cx(k) + F ∗

y f∗(k)
, (2.66)

where f0 is denoted as fd.
Similarly, for a jth sensor fault, the system is described as follows:{

x(k + 1) = Ax(k) + Bu(k) + [B 0n×(q−1)]f∗(k)

y(k) = Cx(k) + Ejf
0(k) + [0q×p Ej ]f∗(k)

, (2.67)

where Ej = [0 · · · 1 · · · 0]T represents the jth sensor fault effect on the output
vector and Ej is the identity matrix without the jth column.

According to Park et al. [100], a system affected by a sensor fault can be
written as a system represented by an actuator fault. Assume the dynamic of
a sensor fault is described as

f0(k + 1) = f0(k) + Tsξ(k), (2.68)

where ξ defines the sensor error input and Ts is the sampling period.
From (2.67) and (2.68), a new system representation including the auxil-

iary state can be introduced:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

[
x(k + 1)
f0(k + 1)

]
=
[

A 0n×1

01×n 1

] [
x(k)
f0(k)

]
+
[

B
01×m

]
u(k) +

[
0n×1

Ts

]
ξ(k)

+
[

B 0n×(q−1)

01×m 01×(q−1)

]
f∗(k)

y(k) =
[
C Ej

] [ x(k)
f0(k)

]
+
[
0q×m Ej

]
f∗(k)

.

(2.69)
Consequently, for actuator or sensor faults representation ((2.65) and

(2.69)), a unique state-space representation can be established to describe
the faulty system as follows:{

x(k + 1) = Ax(k) + Bu(k) + Fdfd(k) + F ∗
x f∗(k)

y(k) = Cx(k) + F ∗
y f∗(k)

, (2.70)

where fd is the unknown input vector. For simplicity, the same notation for
vectors and matrices has been used in (2.66) and (2.70).

Under the FTC framework, once the FDI module indicates which sensor or
actuator is faulty, the fault magnitude should be estimated and a new control
law will be set up in order to compensate for the fault effect on the system.

As sensor and actuator faults have different effects on the system, the
control law should be modified according to the nature of the fault. In this
book, only one fault is assumed to occur at a given time. The presence of
simultaneous multiple faults is still rare, and the FDI problem in this case
is considered as a specific topic and is dealt with in the literature. Here, the
objective is to deal with a complete FTC problem for a single fault.
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2.5.2 Residual Generation

Unknown Input Observer – Linear Case

Based on the previous representation, several approaches have been suggested
by [43, 53] to generate a set of residuals called structural residuals, in order
to detect and isolate the faulty components. The theory and the design of
unknown input observers developed in [22] is considered in this book due to
the fact that a fault magnitude estimation can be generated but also that the
unknown observers concept can be extended to nonlinear systems. A full-order
observer is built as follows:{

w(k + 1) = Ew(k) + TBu(k) + Ky(k)
x̂(k) = w(k) + Hy(k)

, (2.71)

where x̂ is the estimated state vector and w is the state of this full-order
observer. E, T , K, and H are matrices to be designed for achieving unknown
input decoupling requirements. The state estimation error vector (e = x̂− x)
of the observer goes to zero asymptotically, regardless of the presence of the
unknown input in the system. The design of the unknown input observer is
achieved by solving the following equations:

(HC − I)Fd = 0, (2.72)

T = I − HC, (2.73)

E = A − HCA − K1C, (2.74)

K2 = EH, (2.75)

and
K = K1 + K2. (2.76)

E must be a stable matrix in order to guarantee a state error estimation
equal to zero.

The system defined by (2.71) is an unknown input observer for the system
given by (2.70) if the necessary and sufficient conditions are fulfilled:

• Rank(CFd) = rank(Fd)
• (C, A1) is a detectable pair, where A1 = E + K1C

If these conditions are fulfilled, an unknown input observer provides an
estimation of the state vector, used to generate a residual vector r(k) = y(k)−
Cx̂(k) independent of fd(k). This means that r(k) = 0 if f∗(k) = 0 and
r(k) �= 0 if f∗(k) �= 0 for all u(k) and fd(k).
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Unknown Input Observer – Affine Case

Among all algebraic methods, several methods consist of the generation of
fault decoupling residual for special class of nonlinear systems such as bilinear
systems [80]. Other methods focus more on general nonlinear systems where an
unknown input decoupling input-output model is obtained [138]. Exact fault
decoupling for nonlinear systems is also synthesized with geometric approach
by [60, 101]. A literature review is detailed in [81].

Consider the state-space representation of the affine system affected by an
actuator fault:

⎧⎪⎪⎨
⎪⎪⎩

ẋ(t) = f(x(t)) +
m∑

j=1

gj(x(t))uj(t) +
m∑

j=1

Fj(x(t))fj(t)

yi(t) = hi(x(t)), 1 ≤ i ≤ q

. (2.77)

The approach presented in this section is an extension of the synthesis of
unknown input linear observers to affine nonlinear systems. The initial work
on this problem can be found in [49, 50].

The original system described by (2.77) should be broken down into two
subsystems where one subsystem depends on the fault vector f and the second
is independent of f by means of a diffeomorphism Φf such as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

˙̃x1(t) = f̃1(x̃1(t), x̃2(t)) +
m∑

j=1

g̃1j(x̃1(t), x̃2(t))uj(t)

+
m∑

j=1

F̃j(x̃1(t), x̃2(t))fj(t)

˙̃x2(t) = f̃2(x̃1(t), x̃2(t)) +
m∑

j=1

g̃2j(x̃1(t), x̃2(t))uj(t)

, (2.78)

where x̃(t) =
[

x̃1(t)
x̃2(t)

]
= Φf (x(t), u(t)).

The diffeomorphism Φf is defined by

m∑
j=1

∂

∂xj(t)
Φf (x(t), u(t)) × Fj(x(t))fj(t) = 0 . (2.79)

This transformation is solved using the Frobenius theorem [73]. Equation
(2.79) is not always satisfied. In order to simplify the way to solve this trans-
formation, only one component fj(t) of the fault vector f is considered with
the objective of building a bank of observers. Each observer is dedicated to
one single fault fj as proposed in the generalized observer scheme.
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A subsystem insensitive to a component fj of the fault vector f(t) is
extracted for each observer by deriving the output vector y(t). A characteristic
index is associated with each fault fj . This index corresponds to the necessary
derivative number so that the fault fj appears in yi. This index is also called
the detectability index and is defined by

ρi = min{ζ ∈ N|LF Lζ−1
g hi(x(t)) �= 0}. (2.80)

If ρi exists, only component output yi is affected by fj . It is then possible
to define a new state-space representation where a subsystem is insensitive to
fault fj , such as

x̃(t) = Φfj (x(t), u(t)) =
[

x̃1(t)
x̃2(t)

]
=

⎡
⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

yi(t)
ẏi(t)

...
yρi−1

i (t)

⎤
⎥⎥⎥⎦

φi(x(t), u(t))

⎤
⎥⎥⎥⎥⎥⎦. (2.81)

It is always possible to find φi(x(t), u(t)) satisfying the following conditions
[41]:

rank

⎛
⎜⎜⎜⎜⎜⎝

∂

∂x

⎡
⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎢⎣

yi(t)
ẏi(t)

...
yρi−1

i (t)

⎤
⎥⎥⎥⎦

φi(x(t), u(t))

⎤
⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎠ = dim(x(t)), (2.82)

where
d

dt
(φi(x(t), u(t))) is independent of fj(t).

System (2.77) can now be written by means of the new coordinates system
defined in (2.81) and a subsystem insensitive to fj can be represented as{ ˙̃x1(t) = φi(x̃1(t), x̃2(t), u(t))

ỹi(t) = h̃i(x̃1(t), x̃2(t))
, (2.83)

where ỹi(t) is the output vector y(t) without the ith component yi(t). x̃2(t) is
considered as an input vector for (2.83).

Considering all the components of the fault vector f(t), a bank of observers
is built where each observer is insensitive to a unique fault fj. Nonlinear
subsystem (2.83), which is insensitive to fj , is used in order to synthesize a
nonlinear observer as an extended Luenberger observer [97].

Based on [100], the proposed decoupled observer method applied to an
affine system also provides an efficient FDI technique for sensor faults as
developed in the linear case. In the presence of a sensor fault, the observer
insensitive to the fault estimates state vector x̃1(t) and consequently estimates
the output corrupted by the fault. On the other hand, no estimation of an
actuator fault can be computed from (2.83).
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Fault Diagnosis Filter Design

Some control methods such as observers have been considered or modified to
solve FDI problems. Among various FDI methods, filters have been success-
fully considered to provide new tools to detect and isolate faults.

To detect and estimate the fault magnitude, a fault detection filter is de-
signed such that it does not decouple the residuals from the fault but rather
assigns the residuals vector in particular directions to guarantee the identifi-
cation of the fault [28, 79, 122].

Under the condition that (A, C) is observable from (2.66) or (2.70), the
projectors are designed such that the residual vector is sensitive only to a
particular fault direction. In order to determine the fault magnitude and the
state vector estimations, a gain is synthesized such that the residual vector
r(k) = y(k)−Cx̂(k) is insensitive to specific faults according to some projec-
tors P . These projectors are designed such that the projected residual vector
p(k) = Pr(k) is sensitive only to a particular fault direction. Hence, the spe-
cific fault filter is defined as follows:

{
x̂(k + 1) = Ax̂(k) + Bu(k) + (KA + KC) (y(k) − Cx̂(k))

ŷ(k) = Cx̂(k)
, (2.84)

where

• KA should be defined in order to obtain AFd − KACFd = 0, so KA is
equivalent to

KA = ωΞ, (2.85)

ω = AFd, Ξ = (CFd)
+ and + defines the pseudo-inverse

• KC should be defined in order to obtain KCCFd = 0 which is solved as
follows:

KC = KΨ, (2.86)

where Ψ = β
[
I − (CFd) (CFd)+

]
and K is a constant gain

It must be noted that β is chosen as a matrix with appropriate dimensions
whose elements are equal to 1. The reduced gain K defines the unique free
parameter in this specific filter.

Based on (2.85) and (2.86), (2.84) becomes equivalent to the following:{
x̂(k + 1) = (A− KC) x̂(k) + Bu(k) + KAyk + KΨyk

ŷ(k) = Cx̂(k)
, (2.87)

where A = A [I − FdΞC] and C = ΨC.
The gain K is calculated using the eigenstructure assignment method such

that (A− KC) is stable.
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The gain breakdown KA + KC and associated definitions involve the fol-
lowing matrices properties:

ΞCFd = 0, and ΨCFd = I, (2.88)

and enable the generation of projected residual vector as follows:

p(k) = Pr(k) =
[

Ψ
Ξ

]
r(k) =

[
Σr(k)

Ξr(k) + fd(k − 1)

]
=
[

γ(k)
η(k)

]
. (2.89)

It is worth noting that γ is a residual insensitive to faults and η is calculated
in order to be sensitive to fd.

As sensor and actuator faults do not affect the system similarly, the control
law should be modified according to the nature of the fault. In the sequel,
different methods for estimating the actuator and sensor faults are presented.

2.6 Actuator and Sensor Faults Estimation

2.6.1 Fault Estimation Based on Unknown Input Observer

According to the fault isolation, the fault magnitude estimation of the cor-
rupted element is extracted directly from the jth unknown input observer
which is built to be insensitive to the jth fault (f∗(k) = 0). Based on the
unknown input observer, the substitution of the state estimation in the faulty
description (2.70) leads to

Fdfd(k) = x̂(k + 1) − Ax̂(k) − Bu(k). (2.90)

In the presence of an actuator fault, Fd is a matrix of full column rank.
Thus, the estimation of the fault magnitude f̂0(k) = f̂d(k) makes use of the
singular-value decomposition (SVD) [54].

Let Fd = U

[
R
0

]
V T be the SVD of Fd. Thus, R is a diagonal and non-

singular matrix and U and V are orthonormal matrices.
Using the SVD and substituting it in (2.90) results in

x̂(k + 1) = Ax̂(k) + Bû(k) +
[

R
0

]
V T fd(k), (2.91)

where

x̂(k) = Ux̂(k) = U

[
x̂1(k)
x̂2(k)

]
, (2.92)

A = U−1AU =
[

A11(k) A12(k)
A21(k) A22(k)

]
, (2.93)
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and

B = U−1B =
[

B1(k)
B2(k)

]
. (2.94)

Based on (2.91), the estimation of the actuator fault magnitude is defined
as

f̂0(k) = f̂d(k) = V R−1(x̂1(k + 1) − A11x̂1(k) − A12x̂2(k) − B1u(k)). (2.95)

For a sensor fault, the fault estimation f̂0(k) is the last component of the
estimated augmented state vector x̂(k) as defined in (2.69).

2.6.2 Fault Estimation Based on Decoupled Filter

Based on the projected residual p(k), an estimation of input vector η(k) (which
corresponds to the fault magnitude with a delay of one sample) should be di-
rectly exploited for fault detection. Indeed, a residual evaluation algorithm
can be performed by the direct fault magnitude evaluation through a statisti-
cal test in order to monitor the process. It should be highlighted that the first
component of projector vector (2.89), denoted γ(k), can be considered as a
quality indicator of the FDI module. If a fault is not equal to fd then the mean
of the indicator will not equal zero. As previously, sensor fault estimation can
be also provided by the last component of the augmented state-space .

2.6.3 Fault Estimation Using Singular Value Decomposition

Another method to estimate the actuator and sensor faults is based on SVD
which will be described in this section.

Estimation of Actuator Faults

In the presence of an actuator fault and according to (2.23) and (2.31), the
augmented state-space representation of the system is written as⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

[
x(k + 1)
z(k + 1)

]
=
[

A 0n,p

−TsC1 Ip

] [
x(k)
z(k)

]
+
[

B
0p,m

]
u(k)

+
[

0n,p

TsIp

]
yr(k) +

[
Fa

0

]
fa(k)

y(k) =
[
C 0q,p

] [x(k)
z(k)

] , (2.96)

where Fa corresponds to the ith column of matrix B in case the ith actuator
is faulty.
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The magnitude of the fault fa can be estimated if it is defined as a com-
ponent of an augmented state vector Xa(k). In this case, the system (2.96)
can be re-written under the following form:

EaXa(k + 1) = AaXa(k) + BaU(k) + Gayr(k), (2.97)

where

Ea =

⎡
⎣ In 0 −Fa

0 Ip 0
C 0 0

⎤
⎦ ; Aa =

⎡
⎣ A 0 0
−TsC1 Ip 0

0 0 0

⎤
⎦ ; Ba =

⎡
⎣B 0

0 0
0 Iq

⎤
⎦ ;

Ga =

⎡
⎣ 0

TsIp

0

⎤
⎦ ; Xa(k) =

⎡
⎣ x(k)

z(k)
fa(k − 1)

⎤
⎦ ; U(k) =

[
u(k)

y(k + 1)

]
.

The estimation of the fault magnitude fa can then be obtained using the
SVD of matrix Ea if it is of full column rank [9].

Consider the SVD of matrix Ea:

Ea = T

[
S
0

]
MT , with T =

[
T1 T2

]
.

T and M are orthonormal matrices such that: TT T = I , MMT = I, and
S is a diagonal nonsingular matrix.

Substituting the SVD of Ea in (2.97) leads to{
Xa(k + 1) = ÃaXa(k) + B̃aU(k) + G̃ayr(k)

0 = Ã0Xa(k) + B̃0U(k) + G̃0yr(k)
, (2.98)

where

Ãa = MS−1T T
1 Aa = E

+

a Aa; Ã0 = T T
2 Aa;

B̃a = MS−1T T
1 Ba = E

+

a Ba; B̃0 = T T
2 Ba;

G̃a = MS−1T T
1 Ga = E

+

a Ga; G̃0 = T T
2 Ga;

(2.99)

and where E
+

a is the pseudo-inverse of matrix Ea.
Therefore, the estimation f̂a of the fault magnitude fa is the last com-

ponent of the state vector Xa, which is the solution of the first equation in
(2.98). This solution Xa must satisfy the second equation of (2.98). It can be
noted from (2.97) that the estimation of the fault magnitude fa at time instant
(k) depends on the system outputs y at time instant (k + 1). To avoid this
problem, the computation of the fault estimation is delayed by one sample.
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Estimation of Sensor Faults

When a sensor fault affects the closed-loop system, the tracking error between
the reference input and the measurement will no longer be equal to zero. In
this case, the nominal control law tries to bring the steady-state error back
to zero. Hence, in the presence of a sensor fault, the control law must be
prevented from reacting, unlike the case of an actuator fault. This can be
achieved by cancelling the fault effect on the control input.

For sensor faults, the output equation given in (2.25) is broken down ac-
cording to (2.28), and can be written as

y(k) = Cx(k) + Fsfs(k) =
[

y1(k)
y2(k)

]
=
[

C1

C2

]
x(k) +

[
Fs1

Fs2

]
fs(k). (2.100)

In this case, attention should be paid to the integral error vector z which
will be affected by the fault as well. The integral error vector can then be
described as follows:{

z(k + 1) = z(k) + Ts(yr(k) − y1(k))
= z(k) + Ts(yr(k) − C1x(k) − Fs1fs(k))

. (2.101)

The sensor fault magnitude can be estimated in a similar way to that of
the actuator fault estimation by describing the augmented system as follows:

EsXs(k + 1) = AsXs(k) + BsU(k) + Gsyr(k), (2.102)

where

Es =

⎡
⎣ In 0 0

0 Ip 0
C 0 Fs

⎤
⎦ ; As =

⎡
⎣ A 0 0
−TsC1 Ip −TsFs1

0 0 0

⎤
⎦ ; Bs =

⎡
⎣B 0

0 0
0 Iq

⎤
⎦ ;

Gs =

⎡
⎣ 0

TsIp

0

⎤
⎦ ; Xs(k) =

⎡
⎣ x(k)

z(k)
fs(k)

⎤
⎦ ; U(k) =

[
u(k)

y(k + 1)

]
.

The sensor fault magnitude f̂s can then be estimated using the SVD of
matrix Es if this matrix is of full column rank.

2.7 Actuator and Sensor Fault-tolerance Principles

2.7.1 Compensation for Actuator Faults

The effect of the actuator fault on the closed-loop system is illustrated by
substituting the feedback control law (2.33) in (2.23):
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x(k + 1) = (A − BK1)x(k) − BK2z(k) + Fafa(k)

y(k) = Cx(k)
. (2.103)

A new control law uadd should be calculated and added to the nominal
one in order to compensate for the fault effect on the system. Therefore, the
total control law applied to the system is given by

u(k) = −K1x(k) − K2z(k) + uadd(k). (2.104)

Considering this new control law given by (2.104), the closed-loop state
equation becomes

x(k + 1) = (A − BK1)x(k) − BK2z(k) + Fafa(k) + Buadd(k). (2.105)

From this last equation, the additive control law uadd must be computed
such that the faulty system is as close as possible to the nominal one. In other
words, uadd must satisfy

Buadd(k) + Fafa(k) = 0. (2.106)

Using the estimation of the fault magnitude described in the previous
section, the solution of (2.106) can be obtained by the following relation if
matrix B is of full row rank:

uadd(k) = −B−1Faf̂a(k). (2.107)

The fault compensation principle presented under linear assumption can
be directly extended to nonlinear affine systems but not to general ones. In-
deed, according to (2.42) an additional control law can be applied to the
decoupled linear subsystems. The three-tank system considered in Chap. 4
will provide an excellent example to illustrate this FTC design.

Remark 2.1. Matrix B is of full row rank if the number of control inputs is
equal to the number of state variables. In this case, B is invertible.

Case of Non Full Row Rank Matrix B

In the case when matrix B is not of full row rank (i.e., the number of sys-
tem inputs is less than the number of system states), the designer chooses to
maintain as many priority outputs as available control inputs to the detriment
of other secondary outputs. To be as close as possible to the original system,
these priority outputs are composed of the tracked outputs and of other re-
maining outputs. This is achieved at the control law design stage using, if
necessary, a transformation matrix P such that
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⎪⎪⎩

[
xp(k + 1)
xs(k + 1)

]
=
[

App Aps

Asp Ass

] [
xp(k)
xs(k)

]
+
[

Bp

Bs

]
u(k) +

[
Fap

Fas

]
fa(k)

y(k) =
[

yp(k)
ys(k)

]
= CT

[
xp(k)
xs(k)

] ,

(2.108)
where index p represents the priority variables and s corresponds to the sec-
ondary variables. In this way, Bp is a nonsingular square matrix. If the state-
feedback gain matrix K1 is broken down into K1 =

[
Kp Ks

]
, the control law

is then given by

u(k) = − [Kp Ks K2

]⎡⎣xp(k)
xs(k)
z(k)

⎤
⎦+ uadd(k). (2.109)

Substituting (2.109) in (2.108) leads to

{
xp(k + 1) = (App − BpKp)xp(k) − BpK2z(k)

+ (Aps − BpKs)xs(k) + Fapfa(k) + Bpuadd(k)
(2.110)

and {
xs(k + 1) = (Ass − BsKs)xs(k) − BsK2z(k)

+ (Asp − BsKp)xp(k) + Fasfa(k) + Bsuadd(k)
. (2.111)

Here, the fault effect must be eliminated in the priority state variables xp.
Thus, from (2.110), this can be achieved by calculating the additive control
law uadd satisfying

(Aps − BpKs)xs(k) + Fapfa(k) + Bpuadd(k) = 0. (2.112)

In this breakdown, if xs is not available for measurement, it can be com-
puted from the output equation in (2.108), as CT is a full column rank matrix.
Then, the solution uadd of (2.112) is obtained using the fault estimation f̂a:

uadd(k) = −B−1
p [(Aps − BpKs)xs(k) + Fapf̂a(k)]. (2.113)

The main goal is to eliminate the effect of the fault on the priority outputs.
This is realized by choosing the transformation matrix P such that

CT =
[

CT11 0
CT21 CT22

]
.

Although that the secondary outputs are not compensated for, they must
remain stable in the faulty case. Let us examine these secondary variables.
Replacing (2.113) in (2.111) yields
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xs(k + 1) = (Ass − BsB
−1
p Aps)xs(k) − BsK2z(k)

+ (Asp − BsKp)xp(k) + (Fas − BsB
−1
p Fap)f̂a(k). (2.114)

It is easy to see that the secondary variables are stable if and only if the
eigenvalues of matrix (Ass − BsB

−1
p Aps) belong to the unit circle.

2.7.2 Sensor Fault-tolerant Control Design

As for actuator faults, two main approaches have been proposed to eliminate
the sensor fault effect which may occur on the system. One is based on the
design of a software sensor where an estimated variable is used rather than
the faulty measurement of this variable. The other method is based on adding
a new control law to the nominal one.

Sensor Fault Masking

In the presence of sensor faults, the faulty measurements influence the closed-
loop behavior and corrupt the state estimation. Sensor FTC can be obtained
by computing a new control law using a fault-free estimation of the faulty
element to prevent faults from developing into failures and to minimize the
effects on the system performance and safety. From the control point of view,
sensor FTC does not require any modification of the control law and is also
called “sensor masking” as suggested in [131]. The only requirement is that
the “estimator” provides an accurate estimation of the system output after a
sensor fault occurs.

Compensation for Sensor Faults

The compensation for a sensor fault effect on the closed-loop system can be
achieved by adding a new control law to the nominal one:

u(k) = −K1x(k) − K2z(k) + uadd(k). (2.115)

It should be emphasized here that, in the presence of a sensor fault, both
the output y and the integral error z are affected such that⎧⎪⎨

⎪⎩
y(k) = Cx(k) = Cx0(k) + Fsfs(k)

z(k) = z0(k) + f̃(k)

f̃(k) = f̃(k − 1) − TeFs1fs(k − 1)

, (2.116)

where x0 and z0 are the fault-free values of x and z and f̃ is the integral of
−Fs1fs. Assuming that matrix C = I, these equations lead the control law to
be written as follows:

u(k) = −K1x0(k) − K1Fsfs(k) − K2z0(k) − K2f̃(k) + uadd(k). (2.117)
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The sensor fault effect on the control law and on the system can be can-
celled by computing the additive control law uadd such that

uadd(k) = K1Fsf̂s(k) + K2f̃(k). (2.118)

Remark 2.2. In the case when matrix C �= In, the control law can be calculated
using the estimated state vector which is affected by the fault as well. The
fault compensation will be achieved in a similar way to that given by (2.117)
and (2.118).

It has been shown that the new control law added to the nominal one is
not the same in the case of an actuator or sensor fault. Thus, the abilities of
this FTC method to compensate for faults depend on the results given by the
FDI module concerning the decision as to whether a sensor or an actuator
fault has occurred.

2.7.3 Fault-tolerant Control Architecture

After having presented the different modules composing a general FTC ar-
chitecture, the general concept of this approach is summarized in Fig. 2.9
in the linear framework, which is easily extended to the nonlinear case. The
FDI module consists of residual generation, residual evaluation, and finally
the decision as to which sensor or actuator is faulty. The fault estimation and
compensation module starts the computation of the additive control law and
is only able to reduce the fault effect on the system once the fault is detected
and isolated. Obviously, the fault detection and isolation must be achieved as
soon as possible to avoid huge losses in system performance or catastrophic
consequences.

Fig. 2.9. FTC scheme
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2.8 General Fault-tolerant Control Scheme

The general FTC method described here addresses actuator and sensor faults,
which often affect highly automated systems. These faults correspond to a loss
of actuator effectiveness or inaccurate sensor measurements.

The complete loss of a sensor can be overcome by using the compensa-
tion method presented previously, provided that the system is still observ-
able. Actually, after the loss of a sensor, the observability property allows the
estimation of the lost measurement using the other available measurements.
However, the limits of this method are reached when there is a complete loss of
an actuator; in this case, the controllability of the system should be checked.
Very often, only a hardware duplication is effective to ensure performance
reliability.

The possibility and the necessity of designing an FTC system in the pres-
ence of a major actuator failure such as a complete loss or a blocking of an
actuator should be studied in a different way. For these kinds of failures, the
use of multiple-model techniques is appropriate, since the number of failures
is not too large. Some recent studies have used these techniques [104,137,139].

It is important to note that the strategy to implement and the level of
achieved performance in the event of failures differ according to the type of
process, the allocated degrees of freedom, and the severity of the failures . In
this case, it is necessary to restructure the control objectives with a degraded
performance. A complete active FTC scheme can be designed according to
the previous classification illustrated in Fig. 1.1. This scheme is composed
of the nominal control associated with the FDI module which aims to give
information about the nature of the fault and its severity. According to this
information, a reconfiguration or a restructuring strategy is activated. It is
obvious that the success of the FTC system is strongly related to the relia-
bility of the information issued from the FDI module. In the reconfiguration
step, the fault magnitude is estimated. This estimation could be used as re-
dundant information to that issued from the FDI module. The objective of
this redundancy is to enhance the reliability of the diagnosis information. The
complete FTC scheme discussed here is summarized in Fig. 2.10.

2.9 Conclusion

The FDI and the FTC problems are addressed in this chapter. The complete
strategy to design an FTC system is presented. For this purpose, since many
real systems are nonlinear, both nonlinear and linear techniques are shown.
The linear techniques are used in case the system is linearized around an
operating point.

The study presented here is based on the fault detection, the fault isolation,
the fault estimation, and the compensation for the fault effect on the system.
All these steps are taken into consideration. If this fault allows us to keep
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Fig. 2.10. General FTC scheme

using all the sensors and actuators, a method based on adding a new control
law to the nominal one is described in order to compensate for the fault
effect. For actuator faults, the objective of this new control law is to boost the
control inputs in order to keep the performance of the faulty system close to
the nominal system performance. Regarding sensor faults, the additive control
law aims at preventing the total control inputs from reacting when these faults
occur.

In case a major fault occurs on the system, such as the loss of an actuator,
the consequences are more critical. This case is analyzed and the system should
be restructured in order to use the healthy actuators and to redefine the
objectives to reach. Therefore, the system will perform in degraded mode.

The following chapters are dedicated to the application of the linear and
nonlinear methods described above to a laboratory-scale winding machine, a
three-tank system, and finally in simulation of a full car active suspension sys-
tem which is considered as a complex system. tured in order to use the healthy
actuators and to redefine the objectives to reach. Therefore, the system will
perform in degraded mode.

The following chapters are dedicated to the application of the linear and
nonlinear methods described above to a laboratory-scale winding machine, a
three-tank system, and finally in simulation to a full car active suspension
system which is considered as a complex system.
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