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Chapter 2
General Relativity and Space Geodesy

Ludwig Combrinck

1 Background

Newton’s final version (published in 1726) of Philosophiae Naturalis Principia
Mathematica was a great scientific achievement of the time and contained suffi-
cient information to allow calculation of the dynamics of terrestrial and celestial
bodies; it also expounded on the absolute nature of time and space. As examples,
Newton’s statements (Newton 1726) that ‘‘Absolute, true, and mathematical time,
of itself, and from its own nature flows equably without regard to anything
external’’ and ‘‘Absolute space, in its own nature, without regard to anything
external, remains always similar and immovable’’ were fundamental to Newtonian
calculations. These Newtonian concepts of space and time were challenged and
proven to be only approximate by Einstein through his 1905 paper on special
relativity, as well as his discovery of general relativity in 1915.

According to Einstein (1920), the geometrical properties of space–time are
dependent on the distribution of matter in space–time, so that if the accuracy of our
calculations increases, small departures from the theory of Newton become
apparent, though they may escape the test of our observations as these deviations
are very small. In more modern terms, the geometrical properties of space–time
(in particular the space–time metric gÞ are dependent and determined to some
extent, through the field equation, by the distribution of mass-energy and
mass-energy currents in space. It is now also true to say that, in many astrophysical
systems, the departures from Newtonian predictions are not small, although these
effects resort under the strong-field regime of general relativity theory (GRT),
whereas space geodesy operates within the weak-field regime. The small
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deviations from Newtonian theory are also fundamental to experiments designed
to evaluate general relativity in this weak-field regime.

Currently, the four main space geodetic techniques, Very Long Baseline
Interferometry (VLBI), Global Navigation Satellite Systems (GNSS), Satellite or
Lunar Laser Ranging (SLR/LLR) and Doppler Orbitography and Radiopositioning
Integrated by Satellite (DORIS), have improved in accuracy to such an extent that
for their optimal use one cannot disregard the effects of GRT. Analyses of the
resulting data have to be done within the framework of a post-Newtonian
formalism (Klioner 2003). In order to analyse the data correctly, the complete
context within which the modelling is performed, i.e. reference and time frames,
solar body ephemerides, signal propagation and observables (such as laser pulse
travel time and satellite clock frequency) must consider GRT (Müller et al. 2008).
These corrections are routinely done in advanced geodetic analysis software.

1.1 Introduction

In this chapter there is no space to describe the various space geodetic techniques
in detail; however, the corrections and implications of GRT will be discussed in
enough detail so as to allow practical application in software development, with
adequate reference material for additional reading. Basically this chapter follows
the recommendations of the international earth rotation service (IERS); see IERS
Conventions (2003) (McCarthy and Petit 2003), IERS Conventions 2010 (Petit and
Luzum 2010).

Solutions of GRT pertaining to space geodesy are weak-field, slow motion
approximations. These approximations are valid as the gravitational field the
solutions refer to has a potential U of small magnitude and the velocities v involved
for any of the satellites are much less than the speed of light c: Therefore one has
U
�

c2 � 1 and v=c� 1 so that Einstein’s field equations may be linearised and
expressed in a form similar to Maxwellian equations of electromagnetism.

Space geodetic techniques depend to a large extent on the accuracy and stability
of clocks; without these clocks the high accuracy measurements obtained currently
would not be achieved. The timing aspect is therefore important and the high
(atomic) clock accuracies have allowed an increase in measurement accuracy to
such an extent that GRT must be applied to exploit the full potential of these
techniques. A hydrogen maser clock is a requirement for VLBI (Wei-qun et al.
2001) with typical clock frequency accuracy of ±5 9 10-13 and stability of
9.7 9 10-15 in a 24 h period (geodetic VLBI experiments are normally of 24 h
duration). Clock stability and accuracy are normally expressed in parts per so
many counts; therefore a stability of 9.7 9 10-15 indicates that there are 9.7
excess counts for every 1 9 1015 counts or pulses in a 24 h period.

Apart from certain limitations (set by the atmosphere, spectral purity and stability
of electronic equipment such as local oscillators and frequency multipliers),
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the coherence time of a VLBI system is determined by the frequency standard,
which normally acts as the fundamental frequency source for the other equipment.

The impact of clock phase stability can be seen in (2.1) which expresses VLBI
signal to noise ratio:

SNR ¼ SA
ffiffiffiffiffiffiffiffiffiffi
2Bsc
p

kTs
: ð2:1Þ

In (2.1) the source density flux is denoted by S; the geometric mean of the
telescope collecting areas is A; B is the bandwidth, sc is the coherent integration
time, k is Boltzmann’s constant and Ts is the geometric mean of the system
temperatures of the radio telescopes (Moran 1989).

The coherent integration time sc is approximately

x� sc � ryðTÞ ¼ 1: ð2:2Þ

In (2.2) x is the local oscillator frequency in radians per second and ryðTÞ is the
two-sample Allan variance. To provide an example, in order to achieve signal
coherence for an observation period of 1,000 s, where the local oscillator
frequency has been set to 8.0 GHz, the two frequency standards at each end of the
interferometer need to maintain relative stability of *2 9 10-14. As the
observables in the VLBI technique are in principle recorded signals measured in
the proper time of the station clocks, the influence of clock stability extends
throughout the VLBI hardware.

In the IERS GRT model for VLBI time delay as amended 1 June 2004,
(McCarthy and Petit 2003), the final result is kept accurate to picosecond level by
including all terms of order 10-13 s or larger. The component of error in the total
delay due to error in gravitational delay (*2 mm) is therefore a small fraction of
the total delay error budget, especially in comparison to the total delay model’s
errors ascribed to the troposphere (*20 mm), radio source structure and antenna
structure (*10 mm each) (Sovers et al. 1998). Therefore VLBI implementations
of GRT corrections are currently at an appropriate level and their contribution to
reduce the total modelling error is clear. The drive towards millimetre precision
within the framework of the global geodetic observing system (GGOS)
(see Beutler et al. 2005a in terms of historical motivation for GGOS) will require
GRT modelling at\1 mm accuracy if its error contribution to the total is to remain
proportionally small; GGOS aims for millimetre accuracy, so other error sources
will have to be reduced by a factor of at least ten.

A main objective of GGOS is to improve dramatically our understanding of the
implications of surface changes and mass transport and how these processes affect
the dynamics of our planet. One of the main challenges of GGOS (Drewes 2007) is
the combination of geometric and gravimetric methods in a common procedure,
which will have to include consistent approaches, constants, conventions, models
and parameters. Considering the complexity of the different techniques, processing
software and independent research strategies, such a combination will have to be
done without constraining independent and original model contributions, as this
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could lead to scientific stagnation. As time observations are the basic observable in
space geodesy, observations should be done using the same time system
[e.g. Geocentric Coordinate Time (TCG—temps-coordonnée géocentrique)], and
fundamental constants should be referred to the same time system. By implication
a consistent GRT approach needs to be implemented in all space geodetic tech-
niques to comply with and support the GGOS initiative.

1.2 Basic Implications of GRT for Space Geodesy Techniques

The basic effects of GRT on space geodetic measurements are related to how GRT
affects the different observables and the dynamics of satellite orbits. Table 2.1
contains the main techniques and relativistic implications on their observables.
Geometrically speaking, the Earth, Sun, Moon, planets and in fact all mass in the
universe cause a curvature of space–time at some level in the immediate vicinity of
the mass (in fact, in all the space–time). For instance, the curvature of space–time
increases the up and down leg travel time of a laser pulse emitted by an SLR
station to a satellite.

The effect on the main observable, time-of-flight (ToF), is an increase of several
millimetres in the measured range (derived from the ToF) in the case of a
LAGEOS satellite. In the case of near-Earth satellites, the effect of GRT can be
modelled in the barycentric celestial reference system (BCRS) or geocentric
celestial reference system (GCRS). Here we mainly consider the GCRS. The main
relativistic effect on satellites in near-Earth orbit is due to the Schwarzschild field.
Using LAGEOS as an example, the largest dynamical effect is the well known
perigee advance, which for LAGEOS is *9 mas/d (milli-arc-second per day).

Another smaller effect is the Lense–Thirring (frame dragging) effect (Lense and
Thirring 1918), which causes a precession in the longitude of the ascending node
(longitude of XÞ of *31 mas/year (equal to about 1.8 m/year along-track
displacement) and a change in the mean motion of a satellite. This precession is
always in the direction of the rotation of the Earth. Frame dragging also advances
the argument of perigee by *31.6 mas/year. De Sitter (or geodesic) precession (de
Sitter 1916) is due to the motion of the Earth through the gravitational field of the
Sun and leads to a precession of the orbital plane of the satellite.

2 Satellite Laser Ranging

Satellite laser ranging (SLR) is introduced in Sciences of Geodesy I (Chap. 9).
Considering SLR there are several GRT effects which need to be taken into
account; these will be described in detail and examples of how they influence
orbital determination will be given, using the LAGEOS satellites as ranging targets.
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2.1 Shapiro Delay

Data obtained by the SLR system are converted to a normal point (NP) and by
utilising the speed of light and incorporating some additional corrections; the
Normal Point Range (NPR) can be calculated from the following:

NPRi ¼
NPtof i
1�1012 � c

� �

2
� Dai þ DCoMi � DRbi � DGRi � Dei: ð2:3Þ

In (2.3) the main observable NPtofi is the normal point time-of-flight (in ps) at a
certain epoch and c is (Kaplan 2005) the speed of light (299,792,458.0 m/s). The
range given by the first term on the right-hand side of (2.3) needs to be corrected
by taking into account the effects of the atmosphere Dai; subsequent terms are a
satellite dependent centre-of-mass correction DCoMi; SLR station range-bias
DRbi ; a relativistic correction (Shapiro 1964) (referred to as the Shapiro delay)
DGRi and other ðDeiÞ errors. If one uses LAGEOS as an example, the Shapiro
delay correction is about 7 mm. According to McCarthy and Petit (2003),

t2 � t1 ¼
x!2 t2ð Þ � x!1 t1ð Þ

����

c
þ
X

J

ð1þ cÞGMJ

c3
ln

rJ1 þ rJ2 þ q
rJ1 þ rJ2 � q

� �
: ð2:4Þ

In (2.4), c is the parameterised post-newtonian (PPN) (Eddington 1923; Rob-
ertson 1962) parameter which should equal unity if GRT is valid, t2 � t1 denotes
the total time delay considering a laser pulse emitted from coordinate x1 (SLR
station) at time t1 and the return pulse is received at coordinate x2 (SLR station) at
time t2: The PPN formalism (Will and Nordtvedt 1972) is a framework designed to
classify various theories of gravity according to five attributes, which include
curvature of space–time and nonlinearity of gravity. This formalism is valuable in
tests and evaluations of GRT. In (2.4) the range defined by q ¼ x2

!� x1
!�� �� is the

uncorrected (for GRT) range; in addition rJ1 ¼ x1
!� xJ

!�� �� and rJ2 ¼ x2
!� xJ

!�� ��:
This formulation was first derived by Holdridge (1967), which was a more elegant
solution than previous solutions which involved angles. The last term in (2.4)
describes the (Shapiro) correction for space curvature. Similar to the calculation of
the numerator of the first term in (2.4), determination of the relativistically
uncorrected range q is not simply the subtraction of two vectors, but involves an
iterative solution of two light-time equations for the uplink and downlink path.
This procedure is described in Montenbruck and Gill (2001) and Combrinck
(2010). For the upleg (SLR station to satellite) a fixed-point iteration with

sðiþ1Þ
u ¼ 1=c � ~rðt � sdÞ �~R t � sd � sðiÞu

� ����
��� ð2:5Þ

is executed in a loop until su achieves an accuracy threshold that has been defined
in the software algorithm. Four to five iterations are normally adequate. All cal-
culations are done in an inertial (geocentric) reference frame (for example J2000).
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Considering the downleg, the initial condition is s0 ¼ 0; then consecutive solutions
are done using the fixed-point iteration

sðiþ1Þ
d ¼ 1=c�~r t � si

	 

�~RðtÞ

�� ��: ð2:6Þ

The average of upleg range qu and downleg range qd; can then be used to find the
range q ¼ x2

!� x1
!�� �� in (2.4) where

q ¼ 0:5ðqu þ qdÞ: ð2:7Þ

In the formulation given by (2.4), the sum is carried over all bodies J with mass
MJ centred at xJ (McCarthy and Petit 2003). In practice, only the Earth needs to be
considered as J for near-Earth satellites (including LAGEOS), as analysis is done
in the geocentric frame of reference (Ries et al. 1988; Huang et al. 1990).

2.2 GRT Accelerations

A satellite experiences a variety of accelerations when in orbit and accelerations
due to GRT can be separated from those that are purely Newtonian (at least in the
weak-field and slow motion regime). One can therefore write the perturbing
acceleration as

~€r ¼ �GM�
r3

~r þ~f ; ð2:8Þ

where (extending the notation of Tapley et al. 2004) the total perturbing force~f is
made up of a number of additional forces which perturb the orbit in addition to the
first term in (2.8), which can be written as

~f ¼~fNS þ~fTC þ~f3B þ~fg þ~fDrag þ~fSRP þ~fERP þ~fother þ~fEmp ð2:9Þ

In (2.9) ~fNS results from the uneven Earth mass-distribution, while the temporal

variations of the static gravity field are represented by~fTC: Perturbations caused by

the gravitational forces from the Sun, Moon and planets are denoted by~f3B; GRT is

described by~fg; atmospheric drag is~fDrag; ~fSRP is due to solar radiation,~fERP is the

Earth radiation pressure and~fOther contains other (very small) forces such as ther-
mal, satellite rotation dependent effects. Once per-cycle-per-revolution empirical
corrections, usually expressed in a local frame and divided into radial, tangential

and normal (RTN) components are given by ~fEmp: A brief discussion of these
perturbing forces is made in Book I (Chap. 9) of this series. Additional discussions
can be found in the literature (cf. Hoffman-Wellenhof and Moritz 2005).

The IERS 2003 (McCarthy and Petit 2003) recommendations discuss the
relativistic correction to the acceleration of a satellite in Earth orbit where
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D~€r ¼ GM�
c2r3

2 bþ cð ÞGM�
r
� c ~_r �~_r
� �� �

~r þ 2 1þ cð Þ ~r �~_r
� �

~_r

 �

þ 1þ cð ÞGM�
c2r3

3
r2

~r �~_r
� �

~r �~J
	 


þ ~_r �~J
� �� �

þ 1þ 2cð Þ ~_R� �GMs~R

c2R3

 !" #

�~_r
( )

ð2:10Þ

is the correction which includes as:

• First term, the nonlinear Schwarzschild field of the Earth ð� 10�9 m s�2Þ
• Second term, Lense–Thirring precession (frame dragging) ð� 10�11 m s�2Þ
• Third term, de Sitter (geodesic) precession ð� 10�11 m s�2Þ

Equation (2.10) is due to the formalism of Damour et al. (1994).
In (2.10), the speed of light is denoted by c; and PPN parameters b; c equal

unity if general relativity is valid. The parameter b (Eddington 1923; Robertson
1962) questions how much nonlinearity there is in the superposition law for
gravity (refer to Will and Nordtvedt 1972 for a modern description of PPN
parameters). The position of the satellite relative to the Earth is ~r and ~R is the
position of the Earth relative to the Sun. Earth’s angular momentum per unit mass
is described (Petit and Luzum 2010) by ~J

�� �� ffi 9:8� 108 m2s�1; GM� is the
gravitational coefficient of Earth (also l in this chapter or GM) and GMs the
gravitational coefficient of the Sun.

Although these accelerations are small, they must be included for precise orbit
determination (POD) purposes as there are some long term periodic and secular
effects (Huang and Liu 1992) of the orbit. Precession of perigee results from the
Schwarzschild effect, de Sitter precession can lead to long-period variations of
some orbital elements ðX; x; MÞ and Lense–Thirring precession leads to secular
rates (Ciufolini and Wheeler 1995) in the orbital elements X and x: Refer to
Table 2.1 for comparative rates between GNSS and LAGEOS.

Following Hugentobler (2008), it is quite informative to have a closer look
at the separate terms of (2.10) in more detail, which will be done in the
following sections for the three relativistic components. The Gaussian pertur-
bations of a satellite orbit (Beutler et al. 2005b; Xu 2007) is given by (cf.
Vallado 2001, for a discussion on limitations of the Gaussian form of the
variation of parameters)

_a ¼
ffiffiffiffiffiffiffiffi

p

GM

r
2a

1� e2
e sin m � Rþ p

r
� S

h i
; ð2:11Þ

_e ¼
ffiffiffiffiffiffiffiffi

p

GM

r
sin m � Rþ ðcos mþ cos EÞ � S½ 
; ð2:12Þ
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_i ¼ r cos u

na2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p �W ; ð2:13Þ

_X ¼ r sin u

na2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2
p

sin i
�W ; ð2:14Þ

_x ¼ 1
e

ffiffiffiffiffiffiffiffi
p

GM

r
� cos m � Rþ 1þ r

p

� �
sin m � S

� �
� _X cos i; ð2:15Þ

_M0 ¼
1� e2

nae
cos m� 2e

r

p

� �
� R� 1þ r

p

� �
sin m � S

� �
� 3n

2a
ðt � t0Þ _a: ð2:16Þ

Here a is the semi-major axis, m is the true anomaly, u is the argument of
latitude and the argument of perigee is denoted by x: The distance from the
primary focus to the orbit (semiparameter, also known as ‘‘semi-latus rectum’’) is
given by p ¼ að1� e2Þ and the average angular velocity is described by

n ¼ 2p
T
¼ a�3=2l1=2; ð2:17Þ

where l ¼ GM and the period of the satellite motion T can be written (Xu 2007)
as

T ¼ pab
1
2 h
¼ 2pab

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
la ð1� e2Þ

p ¼ 2pa0:7ex3=2l�0:7ex1=2: ð2:18Þ

Considering secular perturbations and circular orbits ðe ¼ 0Þ; the radial ðRÞ;
along-track ðSÞ and cross-track ðWÞ perturbing accelerations are directed parallel

to the vectors ~r;~_r and ~r �~_r respectively. For non-circular orbits the along-track
axis ðSÞ is not parallel (except at perigee and apogee) to the velocity vector.
During processing, the position and velocity vectors of a satellite (including
gravity gradients etc.) are normally transformed into an inertial reference frame
such as ICRF/EME2000. The position, velocity and angular momentum vectors
can then be written in a frame with the z axis orthogonal to the orbital plane as

~r ¼ aðcos m; sin m; 0Þ
~v ¼ anð� sin m; cos m; 0Þ

~r �~m ¼ a2nð0; 0; 1Þ:
ð2:19Þ

The unit vectors (direction vectors) of the perturbing accelerations can be
written as

êR ¼ ðcos m; sin m; 0Þ
êS ¼ ð� sin m; cos m; 0Þ
êW ¼ ð0; 0; 1Þ:

ð2:20Þ
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2.2.1 Nonlinear Schwarzschild Field Contribution to Acceleration

The first term of (2.10) is the contribution of the Schwarzschild metric (static part
of the field generated by the central mass) to the GRT acceleration. Schwarzschild
(1873–1916) was a German astrophysicist who found the first rigorous solution of
Einstein’s field equations. This solution is suitable (to a good approximation) for
application to satellites in orbit around Earth. His original paper (Schwarzschild
1916) utilises as a background theme the excess beyond pure Newtonian motion of
the perihelion of Mercury. While located at the Russian front, Karl Schwarzschild
solved this problem by taking into account Einstein’s requirements for a solution
to the motion of the perihelion of Mercury. Consequently he found the solution to
‘‘the line element that forms the exact solution of Einstein’s problem’’ and con-
tinued to derive the motion of a point in the gravitational field, i.e. the geodesic
line corresponding to the line element.

When a topological space is described locally by Euclidean geometry, it is a
manifold. In the immediate vicinity of a point in the manifold, there is a neigh-
bourhood of points which is nearly flat. This reminds one that all statements
regarding the principle of equivalence are local in nature. Einstein’s solution of the
Mercury perihelion problem was only to first order, whereas Schwarzschild’s
solution was exact. Mercury’s total observed perigee advance is 574 arcsec per
century, mostly due to planetary gravitational perturbations. The excess is about
43 arcsec, in agreement with GRT; this was one of the first ‘proofs’ of the validity
of GRT. In space geodesy, when considering satellite orbits in the immediate
vicinity of Earth (including high Earth orbiters such as GLONASS and GPS), it is
convenient to use the Schwarzschild geometry as Earth’s gravity field model even
though it excludes the rotational effect of Earth in the gravity field. The metric of a
space is basically its distance measure. Considering the metric of the Schwarzs-
child geometry (static spherically symmetric geometry), it has the form

ds2 ¼ � 1� 2GM

rc2

� �
c2dt2 þ 1� 2GM

rc2

� ��1

dr2 þ r2dh2 þ r2 sin2 hd/2: ð2:21Þ

This form (Schwarzschild coordinates) is only simple when unperturbed and
unmodified; furthermore it is not in isotropic coordinates (Misner et al. 1973). In
(2.21) the universal gravitational constant is denoted by G; and M is a parameter
with dimensions of mass, which for our purposes is the mass of Earth. The quantity
s is the proper time in seconds, r is the radial coordinate in metres, t is the time
coordinate in seconds, h is the colatitude and / is the longitude (both in radians). If
M was set to zero, the result would be equal to the Minkowskian (gravity-free
space–time) four-dimensional metric expressed in spherical polar spatial coordi-
nates. Minkowski space is recovered when M=r !1:

The Schwarzschild line element can be modified to isotropic coordinates so that
the relationship between r; h;/ and x; y; z can be described in the usual manner,
with r ¼ ðx2 þ y2 þ z2Þ becoming an isotropic coordinate [see (2.85) and (2.86)],

2 General Relativity and Space Geodesy 63



which should not be confused with r in the Schwarzschild coordinates (see Misner
et al. 1973).

Experimental confirmation during the last 3 centuries using optical instruments
and radar observations since 1966 has provided credibility for GRT theory. Some
polemic still surrounds the issue, as several other parameters could also affect the
exact value of the advance, e.g. the quadrupole, J2; which is not yet very accu-
rately determined, contribution of the Sun as well as the (small) gravitomagnetic
contribution resulting from the angular momentum of the Sun. A detailed account
of the drama surrounding the initial proof and resistance to acceptance of GRT can
be found in Crelinsten (2006) and more technical details can be obtained from
Ciufolini and Wheeler (1995).

Following Hugentobler (2008), if we set GM ¼ n2a3 the Schwarzschild
acceleration for a circular orbit can be written as

D~€rS ¼
GM

c2a3
4

GM

a
� v2

� �
~r

¼ GM

c2a3
4

GM

a
� GM

a

� �
~r

¼ 3
GMð Þ2

c2a4
�~r:

ð2:22Þ

The radial component of the Schwarzschild acceleration is then

R ¼~eR � D~€rS ¼ 3
ðGMÞ2

c2a3
; ð2:23Þ

whereas the alongtrack and crosstrack accelerations are both equal to zero:

S ¼~eS � D~€rS ¼ 0 and W ¼~eW � D~€rS ¼ 0: ð2:24Þ

Considering the sign convention of gravitational acceleration as per (2.8) it is
clear that the radial component of the Schwarzschild field imparts an outward
acceleration, which reduces the Newtonian component, effectively changing GM
so that

~eR �~€rtot ¼ �
GM

a2
þ R

¼ �GM

a2
1� Ra2

GM

� �

¼ �GM0

a2
: ð2:25Þ

Using Kepler’s third law written as (2.17) where l ¼ GM and keeping the period
T of the satellite motion (2.18) fixed and setting a0 ¼ aþ Da; then

a03n2 ¼ GM0 ð2:26Þ
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and to first order

Da ¼ � 1
3

Ra3

GM
: ð2:27Þ

Substituting R from (2.23) into (2.27) one can then write (Hugentobler 2008)

Da ¼ �GM

c2
¼ �4:43 mm: ð2:28Þ

The Schwarzschild acceleration on a satellite in orbit is thus a radial, in-plane
effect, with zero magnitude effects in the alongtrack and crosstrack directions.

2.2.2 Lense–Thirring Precession

The second term of (2.10) is due to Lense–Thirring precession; it is clear that the
Earth’s angular momentum J plays a major role in the generation of the Lense–
Thirring effect. In the case of LAGEOS, the effect is very small (*31 mas/year)
and is therefore extremely difficult to measure (Ciufolini 1986). The secular rates
of the ascending node and perigee of a body orbiting a central rotating mass is
given by (Lense and Thirring 1918)

_XLT ¼
2GJ

c2a3 1� e2ð Þ3=2
ð2:29Þ

and

_xLT ¼ �
6GJ cos i

c2a3 1� e2ð Þ3=2
; ð2:30Þ

where G is the gravitational constant, c denotes the speed of light, J is the proper
angular momentum of Earth, and a, e and i are the semi-major axis, eccentricity
and inclination of the orbit respectively. Following Hugentobler (2008) the angular
momentum vector can be written in the reference frame as defined by (2.19) as

~J ¼ Jð0; sin i; cos iÞ: ð2:31Þ

In the case of a circular orbit, therefore,

~r �~J ¼ aJ sin i sin m and~_r �~J ¼ anJ cos m cos i; sin m cos i;� sin m sin ið Þ: ð2:32Þ

The radial, alongtrack and crosstrack components are then

R ¼ D~€rLT �~eR ¼ 2
GM

c2a4
~r � ~_r �~J
� �

¼ 2
GM

c2a4
~J � ~r �~_r
� �

¼ 2
GM

c2a2
nJ cos i; ð2:33Þ

S ¼ D~€rLT �~eS ¼ 0; ð2:34Þ

2 General Relativity and Space Geodesy 65



W ¼ D~€rLT �~eW

¼ 2
GM

c2a3

3
a2

a2naJ sin i sin m� anJ sin i sin m

� �

¼ 4
GM

c2a2
nJ sin i sin m:

ð2:35Þ

The semi-major axis undergoes a reduction of

Da ¼ � 2
3

anJ

c2
cos i / a�1=2; ð2:36Þ

due to the constant radial acceleration. If the orbit is perpendicular to the equa-
torial plane there is no radial acceleration or change in semi-major axis due to the
cos i factor in (2.36). Changes in the semi-major axis are inversely proportional to
the square root of the semi-major axis, so that higher orbit satellites experience a
smaller effect.

Considering (2.14) and setting u ¼ m (true anomaly is undefined for circular
orbits as they have no periapsis) in the case of a circular orbit,

_XLT ¼
sin u

na sin i
�W

¼ 4
GM

c2a3J sin2 u

¼ 2
GM

c2a3J 1� cos 2uð Þ : ð2:37Þ

The precession of the node is not dependent on the inclination i of the orbit as it
is a frame precession effect; it is inversely related to a3 so that it decreases very
rapidly. Iorio (2007) provides an alternative discussion on the (RTN) radial ~rð Þ;
transverse ~tð Þ and out-of-plane ~nð Þ projections of the perturbing acceleration,
commencing with the Gaussian perturbation equations of a satellite orbit.

2.2.3 de Sitter (Geodesic) Precession

Geodesic precession is basically a result of the motion of Earth through the Sun’s
gravitational field. The consequences are that a satellite’s orbital pole precesses
about the normal to the ecliptic at a rate of 19.2 milliarcseconds (mas) per year and
the ascending node of the satellite’s orbit on the ecliptic increases in celestial
longitude by 19.2 mas per year (Moyer 2000). In addition, geodesic precession
decreases the general precession by 19.2 mas.

Both de Sitter precession and Lense–Thirring precession are manifestations of
frame-dragging as clearly shown by Ashby and Shahid-Saless (1990). Within an
appropriately chosen coordinate system and without incorporating spatial curva-
ture, geodetic precession of a gyroscope orbiting a spherically symmetric, spinning
mass can be remoulded as a Lense–Thirring frame-dragging effect. Geodesic
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precession and Lense–Thirring precession can therefore be described in terms of
two components of a single gravitomagnetic effect. As applied to SLR, the Lense–
Thirring component is due to the spin angular momentum of Earth whereas the
deSitter precession can be ascribed to the orbital angular momentum of Earth as it
revolves around the origin of the appropriately selected quasi-inertial coordinates.
This interpretation is still a matter of debate however, (cf. Ciufolini and Wheeler
1995; Ciufolini 2007) where some interpretations regard the de Sitter effect and the
Lense–Thirring drag as fundamentally different phenomena.

Following Hugentobler (2008), in curved space–time, a parallel transported
(local inertial) reference frame undergoes precession with respect to distant stars.
For a satellite the precession rate (19.2 mas/year in the vicinity of Earth) does not
depend on the distance from the Earth. The equation describing the resulting
acceleration [refer to (2.10)] is

D~€rdS ¼ �2 � 3
2

GMS

c2R3
~R�~_R

� �
�~r: ð2:38Þ

Equation (2.38) has the form of a Coriolis term. The Coriolis acceleration of a
satellite in orbit around the Earth due to geodesic precession is

~€r ¼ 2~X� _r; ð2:39Þ

where the angular velocity vector due to geodesic precession (Moyer 2000) is

~X ¼
GMS cþ 1

2

	 


c2R3
~R�~_R
� �

: ð2:40Þ

The formulations at (2.39) and (2.40) [instead of (2.38)] are useful if the PPN
parameter c needs to be included in an estimation process and is equivalent to the
third term of (2.10). In (2.38) MS is the mass of the Sun and R is the distance to it,
respectively. The precession vector ~xdS of the global frame (the term in brackets)
is relative to the precessing (local inertial) frame and it points to the southern
ecliptic pole. If the frame defined in (2.19) is redefined by keeping the z-axis the
same but rotating the x-axis towards the ascending node with respect to the ecliptic
plane (Hugentobler 2008), the precession vector of the global frame can be written
as

~xdS ¼ � 3
2

GMS

c2R3
~R�~_R

¼ � 3
2

GMS

c2R

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

S

q
nS 0; sin b; cos bð Þ:

ð2:41Þ

In (2.41) the mean motion of Earth around the Sun is denoted by nS and the
inclination of the orbital plane to the ecliptic is represented by b: The inclination is
in the range ði� e; iþ eÞ and can be calculated using

cos b ¼ cos e cos iþ sin e sin i cos X; ð2:42Þ
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with the obliquity of the ecliptic e ¼ 23�260: In the defined frame, for a circular
orbit the relation

~R�~_R
� �

�~_r ¼ R2nS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

S

q
an � cos b cos m;� cos b sin m; sin b sin mð Þ ;

ð2:43Þ

can be written and consequently (Hugentobler 2008) the perturbing accelerations
are

R ¼ D~€rdS �~eR ¼ �3
GMS

c2R
nS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

S

q
an cos b; ð2:44Þ

S ¼ D~€rdS �~eS ¼ 0; ð2:45Þ

W ¼ D~€rdS �~eW ¼ 3
GMS

c2R
nS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

S

q
an sin b sin m: ð2:46Þ

Considering the cos b factor in the radial component, orbits which are per-
pendicular to the ecliptic plane experience no change in semi-major axis and no
radial acceleration as the Coriolis acceleration is perpendicular to the orbital plane.

The negative radial acceleration increases the semi-major axis by

Da ¼ þGMS

c2

a

R

nS

n

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

S

q
cos b / a5=2: ð2:47Þ

Using (2.14) and setting u ¼ m for a circular orbit the precession of the
ascending node with respect to the ecliptic plane can be calculated as

_XdS ¼
sin u

na sin b
�W

¼ 3
GMS

c2R
nS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

S

q
sin2 u

¼ 3
GMS

c2R
nS

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� e2

S

q
s 1� cos 2uð Þ:

ð2:48Þ

Figure 2.1 illustrates the acceleration values of the radial components of the
three terms of (2.10), as described by (2.23, 2.33) and (2.44). Considering LAG-
EOS, the acceleration due to the radial component of the de Sitter effect is slightly
larger than the component due to the frame-dragging effect. The Lense–Thirring
effect dominates the de Sitter effect for semi-major axes that are less than
11,000 km. Table 2.1 summarizes some of the relativistic accelerations and
advances of perigee and the node due to the three terms of (2.10).

According to the IERS Conventions 2010 (Petit and Luzum 2010), the mag-
nitude and observable effects of these relativistic components depend to some
extent on the satellite orbital characteristics and the analysis setup strategy. For
instance, the satellite height changes during its orbital path so that a ’ r for near
circular orbits, so the slightly simplified examples here for circular orbits will
provide slightly different answers compared to a rigorous implementation of (2.10),
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even though LAGEOS and GPS satellites have very nearly circular orbits. If
(as suggested by Petit and Luzum 2010) orbital parameters are adjusted and the
Schwarzschild term is not taken into account, there would be an apparent 4.4 mm
decrease in orbital radius as described using the formulations of Hugentobler
(2008). This stresses the necessity for consistent application of the formulation at
(2.10), as different strategies (and different values of, for instance, the Earth’s
angular momentum per unit mass) will lead to different results.

2.3 SLR Tests of General Relativity Theory

In the immediate environment of our solar system, the linearised weak-field and
slow-motion approximation is adequate and is the regime where space geodesy can
be utilised to test GRT. As mentioned by Einstein (1920), these deviations beyond
pure Newtonian dynamics may escape the test of our observations as these
deviations are very small. This certainly is still the case to some extent, as
experiments designed to test GRT are often very difficult and expensive. For
example, the next higher accuracy tests are likely to come from GAIA (a space-
based astrometric mission). The GAIA mission (Turon et al. 2005) has as its
objective the creation of a three-dimensional map of our galaxy, which will
improve our knowledge of its composition, formation and evolution. In addition,
new tests of general relativity are included in its projected five-year mission, with a

Fig. 2.1 Radial acceleration as a function of satellite height for circular orbits (Hugentobler
2008)
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launch date currently estimated for 2013. Estimated accuracy for the evaluation of
PPN parameter c with GAIA is *2 9 10-7 (Vecchiato et al. 2003). Estimated
angular accuracy [this is a best scenario case as this accuracy is a function of
magnitude and ecliptic latitude of the object (Lindegren 2009)] is � 10 las
(Perryman et al. 2001), which is a factor of ten or more better than what is
(currently) routinely achieved with VLBI. Included in its mission objectives are
tests for light deflection, time delay, and Doppler frequency shift as well as
perihelion precession. Even though missions such as these will constantly be added
to the list of attempts to improve the accuracy of GRT tests (Turyshev 2009), space
geodesy has its own role to play; for instance, SLR can be used to measure frame
dragging, gravitational delay, and can also be used to estimate PPN parameters c
and b:

2.3.1 Tests of Frame Dragging (Lense–Thirring Effect)

SLR has been used in attempts to detect frame dragging. Using SLR and the
LAGEOS satellite to detect frame dragging was initially proposed by Cugusi and
Proverbio (1977), see also Cugusi and Proverbio (1978). The first reported results
were by Ciufolini et al. (1996) who analysed the SLR range observations of
satellites LAGEOS and LAGEOS II utilising the software package GEODYN II
(Pavlis et al. 2007). They obtained the first direct measurement of the Lense–
Thirring effect, or dragging of inertial frames, and the first direct experimental
evidence for the gravitomagnetic field. The stated accuracy of their measurement
was *30%. This work was very valuable in that it created opportunity for more
investigation using improved gravity models and higher accuracy perturbation
models; it also started a competitive and critically evaluated research avenue.

This first report was followed by Ciufolini et al. (1998), claiming an improved
result of 20%; the parameter l is introduced, which measures the strength of the
Lense–Thirring effect (in GRT, l  1). Initially both nodes of LAGEOS I and II
were used as well as the argument of perigee of LAGEOS II. Satellite LAGEOS I
has a smaller eccentricity (*0.004) than LAGEOS II (*0.14), which makes
detection of the advance in the argument of perigee of LAGEOS I more difficult,
and in addition the frame dragging effect is nearly twice the value for LAGEOS II
than for LAGEOS I.

Subsequent estimates used only the nodes (Ciufolini and Pavlis 2004, Ciufolini
et al. 2006) in a ‘butterfly’ configuration of the retrograde LAGEOS I (i = 109.8�)
and the prograde LAGEOS II (i = 52.6�) orbits. A very dedicated effort to create a
realistic error budget is contained within the Ciufolini et al. (2006) paper, where
several gravity models are used. Best estimates were obtained by using the
EIGEN-GRACE02S model, where l = 0.99, with a total error between 5 and 10%
of the GRT predicted value of the Lense–Thirring effect. The improved results are
directly related to the improved gravity models, as the frame dragging tests can be
strongly affected by mismodelling of the even zonal harmonic coefficients. Other
sources of error which have a smaller impact result from model imperfections of
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any factor which causes orbit perturbations including the solid Earth and pole tides
as they modulate the static gravity field.

The results of the most recent SLR-based tests in determining frame dragging
using the LAGEOS satellites have been questioned by Iorio (2010b). The con-
tributions by Iorio are important in that a careful scrutiny of the techniques
employed, evaluation of error sources, and independent tests are necessary to
ensure that results are scientifically valid. These tests are not trivial as the small
effects which are being investigated are easily obscured by classical phenomena
which are explained in Newtonian terms. According to Iorio (2010b), the sys-
tematic error dl in the Lense–Thirring measurements published to date should be
increased by a factor of 3–4 times. Following the literature, a healthy debate has
developed and continues regarding these tests and there are numerous publications
concerning the validity of these tests (Iorio 2006). The effect of Iorio’s work has
been that much more attention has been given to evaluation of the magnitude and
influence of errors on estimates of frame dragging.

2.3.2 Estimation of Perigee Shift in the Schwarzschild
Gravitoelectric Field

In the previous section we had a glimpse of the activities of researchers deter-
mining the effects of gravitomagnetism. The general relativity shift of the perigee
of LAGEOS II resulting from the Schwarzschild gravitoelectric field has been
estimated by Lucchesi (2003) during a simulation of a measurement and error
budget. Using the gravity model EGM96, Lucchesi demonstrated the potential to
estimate LAGEOS II’s general relativistic shift with 2% accuracy. Error budget
estimation covered an observational period of approximately 7 years. Similar to
the determination of frame dragging due to gravitomagnetism, the largest errors
are due to the uncertainties in the even zonal harmonics of the Earth’s gravity field
and to a lesser extent the mismodelling of non-gravitational perturbations. The
result obtained may be viewed as a 2% accuracy derivation of the PPN parameters
c and b: Details of error sources and their possible influence are given.

2.3.3 Estimation of Perigee Shift in the Schwarzschild Gravitoelectric
and Gravitomagnetic Field

A very interesting approach was taken recently by Lucchesi and Peron (2010),
placing moreover new constraints on non-Newtonian gravity. They analysed
13 years of SLR data of the LAGEOS satellites with the GEODYN II (Pavlis et al.
2007) software; the models for general relativity were not included in the orbit
determination, thereby obtaining the relativistic signal in the residuals. Utilising
LAGEOS II pericentre residuals they were able to obtain a 99.8% agreement with
the predictions of Einstein’s theory. Basically this approach is a measurement in the
field of the Earth of the combination of the c and b PPN parameters of general
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relativity. This work is different from other approaches as it measures all the rela-
tivistic secular effects simultaneously. It is unfortunately not able to separate the
PPN parameters c and b; as this result, essentially from the ‘‘Schwarzschild’’ signal,
places a constraint only on the combination of c and b: Other, separate constraints
would be required to disentangle them. The signals from the Lense–Thirring and de
Sitter components could provide information on c; but their signal-to-noise ratios in
the case of LAGEOS I are too small to be really useful in this respect (Peron, 3 Mar
2011, ‘‘personal communication’’). This unique approach in the PPN framework can
be considered as a 0.03% measurement of the combination of c and b PPN
parameters. The results of Lucchesi and Peron (2010) also constrain possible
deviations from the gravitational inverse-square law in favour of new weak inter-
actions parameterised by a Yukawa-like potential with strength a and range k:

2.3.4 Direct Estimates of PPN Parameters

The estimation of PPN parameters c and b can be done directly within the least-
squares solution of precise orbital determination. A first attempt was undertaken
by Combrinck (Combrinck 2008), providing an error of *5 9 10-4 on c: In these
tentative initial results, the PPN parameter was evaluated as a solve-for parameter
in an analysis of five months of LAGEOS II SLR data. A rejection filter was used
to constrain the orbital integration and parameter estimation. However, it was
noted that careful analyses of the effects of alternative strategies such as different
gravity models and a priori constraints on other solve-for or consider parameters
need to be done to evaluate this technique. The consider parameters are parameters
which could be estimated, but by setting their a priori constraints very high (i.e.
very low error values), they essentially obtain fixed values but are affected by their
uncertainties. This evaluation includes the Schwarzschild terms and the effects of
rotational frame-dragging (Lense–Thirring precession), de Sitter (geodesic) pre-
cession and Shapiro delay. The solved for PPN parameters are fed back into the
least-squares process during the analysis.

In this approach, the radial component of the SLR measurements is the strength
of the technique; the relativistic acceleration on LAGEOS is mainly a radial
component. This preliminary study solved for c in the least-squares sense utilising
SLR data in a strategy where the O–C residuals indicate better observation/
modelling fits, through different levels of O–C residual rejection levels. This
strategy assigns greater weight to SLR measurement accuracy than to the mod-
elling parameters. Basically the filter consists of low-pass and high-pass criteria set
to an O–C standard deviation based on a selected number of iterations during the
least-squares fitting process. This effectively creates a bandpass filter, which
rejects observations which fall outside the rejection criteria level.

Additional work done since included estimates of both c and b using a longer
time series of *4 years (Combrinck 2011). In this work, the suggestion by Iorio
(2010a) that possible imprinting of GRT in the gravity field models could
adversely affect tests of GRT is taken into account. Therefore certain gravity field
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spherical harmonic coefficients, J2 � J5; C21 and S21; are estimated. This requires a
step by step approach where currently 20 iterations in the least-squares solution are
required, with certain parameters being estimated at certain iterations. Coefficients
C21 and S21 together with J2 are estimated to determine pole tide. In comparison to
c the estimate for b is weaker using this technique, as b is only evaluated in the
Schwarzschild term of the GRT acceleration, whereas c is present in all the terms
of (2.10) and in the second term of (2.4). The values obtained in (Combrinck 2011)
are somewhat inferior but more rigorous with respect to the initial (Combrinck
2008) tentative results. New results obtained were: values of c� 1 are 6:5�
10�4 � 7:4� 10�4 and 9:0� 10�4 � 9:6� 10�4 for LAGEOS 1 and 2 respec-
tively, and values of b� 1 are 1:2� 10�3 � 1:4� 10�3 and 1:4� 10�3 � 1:5�
10�3 for LAGEOS 1 and 2 respectively. New work is underway, which includes
improvement in modelling of the range delay due to the atmosphere, by including
an azimuth dependent range delay correction in the SLR analysis software as the
atmosphere exhibits nonlinear behaviour (Botai et al. 2010).

2.3.5 Lunar Laser Ranging

Lunar laser ranging (LLR) entails laser ranging to arrays of corner cube reflectors
placed on the Moon (see Merkowitz 2010 and references therein for an overview).
This high accuracy laser ranging (using equipment similar to SLR, with some
system modifications, e.g. using an event timer instead of an interval counter to
measure the ToF of the laser pulse) translates to a very accurate orbit determi-
nation. The highly accurate orbit can be used for (amongst others) fundamental
physics. Placement of the reflectors was done by the Apollo 11, 14 and 15
astronauts, while two French-built reflector arrays were added by the Soviet Luna
17 (the lander carrying robotic rover Lunakhod 1) and Luna 21 missions. Rover
Lunakhod 1 was lost in 1971 but relocated using images obtained by the lunar
reconnaissance orbiter (LRO). It was consequently ranged to with LLR by Tom
Murphy and his team [Apache Point Observatory Lunar Laser-Ranging Operation
(APOLLO)], see (Murphy et al. 2007), using the 3.5 m telescope at the Apache
Point Observatory in New Mexico. LLR is a sensitive technique to test the
equivalence principle (EP).

The EP is the backbone of GRT and involves the equality of gravitational and
inertial mass (Newtonian EP). In essence, Einstein’s EP (EEP) requires that in local
freely falling frames, all physical laws must be independent of the velocity of the
frame (i.e. local Lorentz invariance). Furthermore, that two different bodies (such as
Earth and the Moon) in a gravitational field (such as that of the Sun) the bodies will
experience the same acceleration [weak equivalence principle (WEP)], i.e. EEP
requires that the WEP be valid. The strong equivalence principle (SEP) includes the
gravitational self-energy of a body in the counting of its total energy content. LLR
can also be used to evaluate b; the geodetic precession and _G

�
G; c is conveniently

used from other high level estimates [such as using the result (Bertotti et al. 2003) of

2 General Relativity and Space Geodesy 73



the radiometric tracking data of the Cassini spacecraft on its approach to Saturn,
which gave the best results to date of c� 1 ð2:1� 2:3� 10�5Þ].

Similar to SLR, LLR has seen a constant improvement in results due to model
and technology improvements. The Earth-Moon-Sun system provides the best
laboratory for testing the SEP, with LLR being the only available solar system
technique at this time, which may be augmented with interplanetary laser ranging
(ILR) in the future. The SEP parameter g is related to the PPN parameters:

g ¼ 4b� c� 3; ð2:49Þ

where in GRT g ¼ 0:
Variation of G in time will be reflected in anomalous evolution of the orbital

period of the Moon. If G changes, it will affect the monthly lunar orbit as well as
the annual Earth-Moon orbit around the Sun. This is quite evident (Merkowitz
2010) considering Kepler’s third law

P2 ¼ 4p2r3

Gm
; ð2:50Þ

and by taking the time derivative and re-arranging:

_G

G
¼ 3

_r

r
� 2

_P

P
� _m

m
: ð2:51Þ

After considering factors which make up the non-anomalous orbital evolution
(solar perturbation, tidal friction, etc.) (see Williams et al. 1996 for more details)
and utilising raging data to the Moon, the anomalous orbital evolution can be
estimated and an estimate for _G derived. In the case of a violation of the EP, a
displacement of the lunar orbit along the Earth-Sun line will occur, which will be
evidenced in a range signature having a 29.53 day synodic period (not the same as
the lunar orbit period of 27 days) (Williams et al. 2009). Some of the LLR tests
relating to the fundamental nature of gravity are summarized in Murphy (2009),
with short descriptions of the phenomenologies related to SEP, time-rate-of-
change of the gravitational constant, gravitomagnetism, inverse square law, and
preferred frame effects.

Recent results (Williams et al. 2004) for PPN parameter b are based on
g ¼ 4b� c� 3; and are very sensitive to b: Utilising the result of the Cassini
spacecraft determination (Bertotti et al. 2003) of c� 1 2:1� 2:3� 10�5

	 

; in combi-

nation with g ¼ 4b� c� 3 ¼ ð4:4� 4:5Þ � 10�4; results in b� 1 ¼ ð1:2� 1:1Þ�
10�4:Their test of temporal variation of the gravitational constant delivered the value

_G

G
¼ 4� 9ð Þ � 10�13yr�1:

The LLR network is currently limited to three operational LLR stations, all in
the Northern hemisphere. Two stations are located in the USA, the McDonald laser
ranging station (MLRS) near Ft. Davis (0.75 m telescope) and the Texas APOLLO
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at the Apache Point Observatory in New Mexico (3.5 m telescope). One station
(Centre d’Etudes et de Recherche en Géodynamique et Astronomie, CERGA) in
France, located at the Observatoire de la Côte d’Azur (OCA) on the Plateau de
Calern near Grasse (France), is equipped with a 1.54 m Cassegrain telescope. Even
though the LLR network has received a boost through the addition of APOLLO,
biases could exist in the ranging solutions as all ranging data are obtained from the
Northern hemisphere. In collaboration with OCA and NASA, the Hartebeesthoek
Radio Astronomy Observatory (HartRAO) has commenced with a project to
develop an LLR system based on an ex-OCA 1 m aperture telescope. This LLR
should be operational by 2015 and as it would be dedicated to LLR, should add
significantly to the database and strengthen the geometry of the network.

2.3.6 Interplanetary Laser Ranging

Interplanetary laser ranging (ILR) will be able to make a contribution to the dynamics
of the solar system and to evaluations of general relativity or alternative theories of
gravity by, for instance, ranging to laser transponders placed on suitable planets such
as Mars, or ranging to interplanetary probes equipped with laser transponders. In
May 2005, timed observations of laser pulses between the Mercury Laser Altimeter
(MLA) instrument, which is located onboard the MESSENGER spacecraft, and the
Goddard Geophysical Astronomical Observatory (GGAO) (using a 1.2 m telescope)
measured the two-way ToF (range) with sub-nanosecond precision (Smith et al.
2006). In addition, a one-way only optical experiment was executed a few months
later between GGAO and the Mars Orbiter Laser Altimeter (MOLA) aboard the Mars
Global Surveyor (MGS) spacecraft. The distance involved was 81 Gm (0.54 AU).
These successful tests demonstrate the possibility of interplanetary communication
and precise ranging using modest power (Neumann et al. 2006).

Several possible scenarios utilising ILR have been proposed, including placing
an active laser transponder on the Martian moon Phobos with the possibility of
millimetre-level ranging resolution (Turyshev et al. 2010). The primary objective
of this proposed mission is to measure PPN parameter c to a level of 2� 10�7

which would improve today’s best result (as determined by radiometric tracking
data from the Cassini mission; see Bertotti et al. 2003) by two orders of magnitude.
Included in the objectives is a measurement of _G; the time-rate-of-change of the
gravitational constant.

It is expected that ILR will make a huge impact on GRT tests, although there
will be technical challenges due to the large distances involved. With regard to
these future ILR missions, Iorio (2011) has numerically investigated how the
ranges between the Earth, the inner planets, as well as Jupiter and Saturn, could be
influenced by specified Newtonian and non-Newtonian dynamical effects. This
was done by the simultaneous integration of the equations of motion of all the
major bodies of the solar system, including Ceres, Pallas, Vesta, Pluto and Eris in
the Solar System Barycentric reference frame over a 2 year period, except Mars,
Jupiter and Saturn for which a period of 5 years was used.
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3 Global Positioning System

The GPS satellites orbit at a height of *20,200 km. They have an orbital period of
about 718 min and a velocity of about 3,874 m/s. This velocity, relative to the
geocentre, Earth’s rotation and the difference in gravitational potential between
observer and the GPS satellite, make it absolutely essential that GRT needs to be
considered in timing (frequency) and orbital parameters. The basic theoretical
timescale for geodesy and geophysics is Geocentric Coordinate Time, TCG; which
is the coordinate time of the GCRS, which has coordinates ðT ;~XÞ (Müller et al.
2008; Petit and Luzum 2010).

There are two relativistic effects which affect the clocks of GPS satellites: time
dilation and gravitational redshift. The relative motion between the observer (GPS
receiver) and the GPS satellite results in special relativistic time dilation, whereas
differences in the gravitational potential as experienced by the observer and satellite
result in gravitational redshift. As a consequence of these two relativistic effects, so
as to align approximately the GPS clocks with terrestrial time (TT), the onboard
oscillators require a small frequency (i.e. frequency but not phase aligned, which
means a phase delay or advance exists) offset adjustment. Second-order effects
resulting from the non-circular orbits have to be corrected in the GPS receiver
during processing of observational data by applying a correction of the order of

2ð~r �~_rÞ=c2; where~r is the position vector of the satellite (Senior et al. 2008).

3.1 Reference Frame Issues

In the earth-centred inertial (ECI) frame, the special relativistic theory is valid to a high
level. The ECI frame is basically a freely falling, local, non-rotating inertial frame with
its origin at the centre of the Earth. Although the Earth is accelerating towards the Sun,
in this frame, the speed of light can be assumed to be constant. For the purposes of GPS
and in general of satellites with clocks on board, it is most convenient (Ashby 2003) to
describe their motions in the ECI frame. This approach makes the Sagnac effect
irrelevant although the Sagnac effect on Earth-based (moving) receivers must still be
taken into account (see Sect. 3.2.3). In the Earth Centred Earth Fixed Frame (ECEF),
which is a rotating frame, clock synchronisation is difficult as light travels in a spiral
path due to the Sagnac effect. Practically, the ECI is used for the establishment of
positions by the GPS; afterwards a rotation to the ECEF is performed.

3.2 Clock and Frequency Effects

Similar to the other space geodetic techniques, the technological basis for GPS is
founded on the very stable and accurate atomic clocks used to generate frequencies
utilised in the satellite systems, and in the stable quartz oscillators used in GPS
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receivers. Higher quality receivers are equipped with better (more stable) oscillators,
and for certain demanding applications, for instance the international GNSS service
(IGS) receiver (HRAO) at HartRAO, the 5 MHz signal of an external Hydrogen
MASER is used as clock reference. A comparison of the modified Allan deviation
(MDEV) as calculated from IGS (final product) 30 s satellite clocks active over the
period 15 June–5 July 2007 was made by Senior et al. (2008). The MDEV is more
suitable when estimating short-term stability and allows distinguishing between
white and flicker phase noise (see Riley 2007 for definition and formulation). The
comparison includes a listing of the atomic frequency standard (AFS) (caesium or
rubidium) and PRN numbers (pseudo-random noise) which is very useful. Included
in the comparison were five ground clocks, which were among the highest weighted
clocks realizing the IGST (IGS Final) timescale for that period. The HartRAO IGS
station (HRAO) using an Oscilloquartz EFOS C passive H-maser as external
frequency standard was included, as well as BRUS (Quartzlock CH1-75 active
H-maser), BREW (Sigma Tau passive H-maser), STJO (passive H-maser) and NRC1
(Kvarz CH-175 active H-maser).

It is clear from the comparison by Senior et al. (2008) that the GPS satellites
have instabilities that are five times greater than the ground clocks. In addition,
satellite clock behaviour is dependent on AFS type and constellation block. Block
IIA (older block) satellites exhibit 12 h variations (there are also shorter period
variations but of lower amplitude, of which the 6 h variation is also significant) up
to 8 ns, Block IIR 0.1–0.3 ns and Block IIR-M 0.12 ns. For very accurate appli-
cations these variations need to be included in modelling. These clock variations
are much smaller than the relativistic effects. The stability of the GPS caesium
clocks is such that, after initialisation and an interval of 1 day, the clock would still
be correct to *5 parts in 1014, which is about 4 ns (4 9 10-9s), which is small
compared to relativistic effects (Ashby 2003).

3.2.1 Gravitational Redshift

A clock in orbit experiences relativistic shifts which have both constant and time
varying components. The constant component can be compensated for by incor-
porating a fixed offset, which lowers the frequency of the on-board oscillator.

Orbital eccentricity and the quadrupole (including higher order terms) of the
Earth’s gravity field are primarily responsible for the time varying components
(Larson et al. 2007). An arbitrary atomic clock’s time s is associated with TCG in
non-rotating GCRS coordinates by (Müller et al. 2008) so that

ds
dTCG

¼ 1� 1
c2

U þ 1
2
~v2

� �
þO c�4

	 

; ð2:52Þ

where the speed of light in vacuum is denoted by c; ~v is the GCRS speed of the
satellite and the GCRS gravitational potential at the clock is U: Several gravita-
tional components are contained within U: Earth’s tidal potential UE is the main
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constituent, although also included are the tidal potentials of the Sun, Moon and
planets Utidal and Uiner; an inertial component. A more detailed description of these
components can be found in Müller et al. (2008).

As an example (Müller et al. 2008), if two clocks are located on an equipo-
tential surface, the rates of the clocks will be the same. If however, one clock is
moved to a height of 1 km, their rates would differ by about 10-13. The gravi-
tational redshift can then be written (Larson et al. 2007) in terms of the Newtonian
gravitational potential Uð~rÞ at the point~r of the GPS satellite in orbit as

Df

f
¼ Uð~rÞ � U0

c2
: ð2:53Þ

In (2.53) U0 is the gravity potential (including the centrifugal potential resulting
from the rotation of Earth) at the reference clock located on Earth’s geoid. The
International Astronomical Union (IAU) has defined (IAU Resolutions 2000,
Resolution B1.9) the relation U0

�
c2 by setting the relation between TCG and TT

to have a rate of �6:969 290 134� 10�10 (Kaplan 2005; Burša et al. 2007).
Considering the reference clock located on the geoid, the potential at U0 is
approximately (cf. Cazenave 1995; Kouba 2004; Ashby and Nelson 2009)

U0 ¼ �
GM

rh
1�

J2 � r2
eq

r2
h

� 1
2

3 sin2 h� 1
	 


 !

� 1
2
ðxrh cos hÞ2; ð2:54Þ

where the first term makes up the static component and the second is the centrifugal
component. In (2.54), h is measured north or south from the equator, rh is the radius
of Earth at the specified latitude and req ¼ 6:378 137� 106 m is the equatorial radius
of Earth. The angular velocity of Earth’s rotation is x ¼ 7:291 151 467� 10�5 rad/s.
Earth’s quadrupole moment (coefficient) J2 ¼ 1:08268� 10�3 accounts for the
oblateness of the Earth. Considering a reference clock on the equator (clocks on the
equator essentially run at the same rate as clocks that are not on the equator due to
higher gravitational redshift at higher latitudes, more time dilation on the equator and
a correction due to the quadrupole; these effects compensate to a high level; see
Ashby 2006), one can rewrite (2.54) where h ¼ 0; as

U0 ¼ �
GM

req
1þ J2

2

� �
� 1

2
xreq

	 
2
: ð2:55Þ

Earth’s quadrupole’s effect on the potential at the GPS satellite is approxi-
mately one part in 1014 (Ashby 2005), so in the case of the potential at the satellite,
the contribution of the quadrupole can be ignored in most cases (GPS orbits are
high enough to be nearly Keplerian); there is also no centrifugal component so that
the gravitational potential at the GPS satellite is to a good approximation

UGPS ¼
�GM

~rj j : ð2:56Þ
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The total gravitational frequency shift of the clock onboard the GPS satellite
can then be calculated using (2.53) as (Ashby 2003, 2006; Larson et al. 2007)

Df

f
¼ UGPS � U0

c2

¼ � GM

c2~rj j � �GM

rec2
1þ J2

2

� �� �

� 5:288� 10�10 � 45:688 ls:d�1:

ð2:57Þ

Ignoring this increase of the satellite clock frequency will lead to a timing error
and consequent navigational (one way range q) error (per day) of

qerror ¼ c� Df

f

¼ 299792458:0� 4:5688� 10�5

� 13:697 km: ð2:58Þ

3.2.2 Special Relativity: Second Order Doppler Effect

As a consequence of the high speed (*3874 m/s) of GPS satellites, the special
relativity theory of Einstein needs to be applied. The time dilation effect causes the
GPS satellite to appear to run slow by about 7 ls: d�1: Using the mathematical
formalism of general relativity, a specified reference system is fixed by the specific
form of the metric tensor gabðt; xiÞ: The metric tensor allows (Soffel et al. 2003)
calculation of the 4-distance ds between any two events xa and xa þ dxa following
the rule

ds2 ¼ gab t; xið Þdxadxb

 g00c2dt2 þ 2g0icdtdxi þ gijdxidx j:
ð2:59Þ

In (2.59) Einstein’s summation convention is implied. Four coordinates
xa ¼ x0; xið Þ ¼ x0; x1; x2; x3ð Þ describe the four-dimensional space–time reference
system. Greek indices adopt the values 0, 1, 2 and 3; Latin indices adopt the values
1, 2 and 3. Indices 1, 2 and 3 refer to the three spatial coordinates and index
0 refers to the time variable. For dimensional reasons, x0 ¼ ct is normally used.
Here the speed of light is denoted by c and t is a time variable. Translational and
rotational equations of motion of bodies can be derived using the metric, allowing
one to describe the propagation of light and to model the process of observation.
For instance, one can model the relationship between the observed (proper) time s
of an observer and the coordinate time t: Proper time is the time actually read at
the clock. Coordinate time is the time specified by the time coordinate x0. In terms
of a specific model, these components can be combined into a relativistic model.
Refer to Soffel et al. (2003) for more details.
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Following Nelson and Ely (2006), we derive the relativistic effect (one of the
many formulations of it, cf. Larson et al. 2007) on a GPS satellite’s clock time in
general, including the relativistic time dilation, and conclude with approximate
formulations (typically used) of the corrections to be applied to the satellite clocks.

In an ECI frame the components of the metric tensor can be written as
(cf. Soffel et al. 2003, discussion of the metric tensor for space–time coordinate
systems t;~xð Þ; which are centred at the barycentre of an ensemble of masses)

�g00 � 1� 2U
�

c2

g0j ¼ 0
gij � dij;

ð2:60Þ

as an approximation in the analysis of clock transport. In (2.60) the Newtonian
gravitational potential is denoted by U and dij is the Kronecker delta. For a clock
on board the GPS satellite, the elapsed coordinate time can be expressed in terms
of the proper time by the integral

Dt ¼
Zs

s0

1þ 1
c2

U þ 1
2

1
c2

v2

� �
ds: ð2:61Þ

In (2.61) under the integral, proper time, gravitational redshift and time dilation
are the first, second and third term respectively. The magnitude of the time dilation
can be expressed as (Zhang et al. 2006)

Dfr  fs 1�
~_rT

c

 !
v2

2c2

� �
¼ fsv2

2c2
� fs~_rT v2

2c3
� fs

2
v2

c2
: ð2:62Þ

In (2.62)~_rT is the GPS satellite transversal velocity, v is its tangential velocity,
fr is the frequency received at the receiver and fs is the original frequency of the
transmitter. The GPS L1 and L2 frequencies are in the Gigahertz range, so the
frequencies are high enough (for L1 k = 1.57542 GHz, for L2 k = 1.22760 GHz)
to make the Doppler effect considerable, as

D  fr � fs ¼
~_rT

c
fs ¼

1
k
~_rT ð2:63Þ

Considering that fr [ 0:1 Hz, which translates to more than 2 cm/s error in the
range rate, the second-order Doppler effect cannot be neglected for geodetic
applications. The order of magnitude of the time dilation effect is (Ashby 2006)

� 1
2

v2

c2
� �8:35� 10�11: ð2:64Þ

As the reference clock (in the receiver) is also moving, although at a lower
speed (*465 m/s) relative to the GPS satellite, the fractional frequency difference
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due to time dilation between a GPS satellite clock and a reference clock on the
equator can be obtained by calculating the difference,

Df

f
¼ � 1

2
v2

c2
� � 1

2
xreð Þ2

c2

 !

¼ �8:228� 10�11: ð2:65Þ

In (2.65) x is the angular velocity of Earth and re is Earth’s equatorial radius.
This fractional frequency shift, if not considered, would lead to a navigational
error of 2.13 km/day (Ashby 2006). The negative value indicates that the satellite
clock runs slow relative to the reference clock on the equator.

Continuing with the reasoning of Nelson and Ely (2006), a new coordinate time
can be defined (in the ECEF frame) by applying a change of scale:

Dt0 ¼ 1� 1
c2

W0

� �
Dt ¼

Zs

s0

1þ 1
c2

U �W0ð Þ þ 1
2

1
c2

v2

 �
ds: ð2:66Þ

In (2.66) W0 equals U0 as defined in (2.54) and (2.55) and U equals U ~rð Þ as
defined in (2.53) and (2.56) where for our purposes U ~rð Þ ¼ UGPS: Coordinate time
Dt0 represents proper time of the reference clock at rest on the geoid and is
therefore the coordinate clock. The elapsed coordinate time for the GPS satellite
clock after integration is (Nelson and Ely 2006)

Dt0 ¼ 1þ 3
2

1
c2

GM

a
� 1

c2
W0

� �
Dsþ 2

c2

ffiffiffiffiffiffiffiffiffiffi
GMa
p

e sin E: ð2:67Þ

In (2.67) a; e and E are the semi-major axis, eccentricity and eccentric anomaly
of the GPS satellite orbit respectively. A constant rate offset is contained within the
first term; this offset is between the satellite clock and a reference clock on the
geoid whereas the second term results from orbital eccentricity and leads to a small
relativistic periodic correction (amplitude of *30 ns), which has to be corrected
by the GPS receiver software. According to Ashby (2003) the clocks in the
GLONASS satellite are adjusted before broadcast. It would seem that the GPS
system carries some historical baggage, as the decision to have the user make the
orbital eccentricity correction was due to the weak computing power available in
the early GPS satellite vehicles.

In (2.67) there are two constant rate corrections in the first term. Extending
(Ashby 2003) and adding the time dilation contribution as described by (2.65) so
that the formulation equals that of Ashby (2006) one has three constant rate terms

3
2

1
c2

GM

a
� U0

c2
� 1

2
xreð Þ2

c2
¼ �4:4647� 10�10: ð2:68Þ

This constant rate in (2.68) can be explained (Ashby 2006) by reviewing the total
contribution of the fractional frequency shift, which is obtained by addition. If one
combines (2.57) with (2.65),
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 ! !

; ð2:69Þ

considering that the total energy per unit mass of the satellite is

1
2

v2 � GM

r
¼ �GM

2a
ð2:70Þ

In (2.70) a ¼ 26:562� 103 km is the semi-major axis of a GPS satellite orbit. The
velocity term in (2.69) can be removed by keeping r and a; which (Ashby 2006)
leads to the equation

Df

f
¼ � 2GM

c2

1
r
� 1

a

� �
� 3GM

2c2a
þ GM

c2re
1þ J2

2

� �
þ 1

2
xreð Þ2

c2
: ð2:71Þ

In (2.71) the first term will disappear when the orbit has zero eccentricity. This
leaves us with the constant part as described by (2.68).

The GPS satellite clocks are adjusted for the three constant rate corrections
before launching them into orbit, the negative sign of (2.68) implying that the
satellite clock has a higher frequency in orbit than on the ground (read geoid,
where the clock frequency should be 10.23 MHz) and its proper frequency should
therefore be reduced to

1� 4:4647� 10�10
	 


� 10:23 MHz ¼ 10:229 999 995 43 MHz: ð2:72Þ

The second term in (2.67) (to be corrected by the user’s software) may be
written as

Dtrel ¼
2
c2

ffiffiffiffiffiffiffiffiffiffi
GMa
p

e sin E ð2:73Þ

and (2.73) can be written as

Dtrel ¼
2~r �~_r

c2
ð2:74Þ

The dot product of the position vector~r and velocity vector~_r in (2.74) is a scalar;
one can therefore use it in the ECI or in the ECEF coordinate system. Equations
(2.73) and (2.74) are formulations (which include only the main monopole con-
tribution of Earth’s gravity field) often used in precise geodetic applications and
are accurate to a sufficient level for most GPS applications, but are inadequate
when evaluating lower orbits such as GRACE (Larson et al. 2007). More exact
formulations of (2.73) and (2.74) can be found in Kouba (2004) and Larson et al.
(2007).
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3.2.3 Sagnac Effect

In addition to the gravitational red (blue)-shift and time-dilation effects, a further
effect involves the second postulate of special relativity (the constancy of the
speed of light), the fundamental principle on which the Global Positioning System
is based. As already mentioned, it is convenient to synchronise clocks in an ECI
frame as light does not travel in a straight line in a rotating frame. This excludes an
ECEF frame from being used to synchronise clocks, due to the Sagnac effect. A
stationary GPS receiver located on the equator will have a velocity of *465 m/s
through the ECI frame as the Earth rotates. The corresponding Sagnac correction
can be as large as 133 ns (equal to 86 ms signal propagation). This correction is
also applied in the receiver. Allowing for the Sagnac effect in the ECEF is
equivalent to correcting for the receiver’s motion in the ECI frame (Ashby 2002).

Following Ashby (2006), to determine position using the GPS, three satellites
are required for position and four are required to determine position and time.
Clocks onboard the satellites are synchronised in the ECI frame. A user GPSuser

will receive time signals at a specific time and position, whereas the GPS satellites
will transmit signal messages containing the time and position of the transmission
events, so that

GPSuser ¼ tu;~ruf g
GPSsat ¼ tj;~rj

� �
j ¼ 1. . .n;

ð2:75Þ

where j is the number of the GPS satellite from which data are being received and
n is the total number in view. The constancy of the speed of light is then repre-
sented by

c t � tj

	 

¼ ~r �~rj

�� ��; j ¼ 1. . .n: ð2:76Þ

The nonlinear system (2.76) needs to be solved to provide the user’s position; this
can be done by linearising the equations and initialising an iterative algorithm with
an a priori position. Due to the motion of the GPS receiver, the navigation
equations in (2.76) are not valid in the ECEF frame. Most of the time, of course,
users would want their positions in the ECEF, not in an ECI frame. In the ECEF,
the rotation of Earth will move the GPS receiver while the GPS signal is propa-
gating to Earth, so (2.76) needs to be altered to account for this as

t ¼ tj þ
~r tð Þ �~rj

�� ��

c
¼
~r tj
	 

þ~v� t � tj

	 

�~rj

�� ��

c
: ð2:77Þ

In (2.77) the receiver position at time t is denoted by~r tð Þ and~v is the velocity of
the receiver at the time of the GPS satellite transmission. The velocity of the
receiver is far less than that of c; and therefore the equations can be solved through
an iteration algorithm. An iteration algorithm was also required to find the two-
range as determined through SLR as discussed in Sect. 2.2.1. The range from GPS
satellite to receiver can be defined as
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~R ¼~r tj

	 

�~rj ð2:78Þ

and excluding the velocity term we get the time of arrival of the signal if it were in
the ECI frame:

t ¼ tj þ
~r tj
	 

�~rj

�� ��

c
¼ tj þ

R

c
: ð2:79Þ

If t is substituted back into (2.77) then one can find (Ashby 2006)

t ¼ tj þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 þ 2~R �~v t � tj

	 
q

c
� R

c
þ
~R �~v

c2
: ð2:80Þ

In the case where the receiver’s velocity is only a result of the rotation of Earth,
then

~v ¼ ~x�~r tj

	 

ð2:81Þ

and one can rewrite the Sagnac correction term as

DtSagnac ¼
~R �~v

c2
¼ 2~x �~A

c2
ð2:82Þ

with the vector area ~A being given by

~A ¼ 1
2
~r tj
	 

�~R: ð2:83Þ

In (2.81) and (2.82) ~x ¼ 0; 0;xð Þ: The dot product in (2.82) projects area ~A
(the Sagnac correction is proportional to this area) onto a plane that is parallel to

the equatorial plane. Area ~A is created by the sweeping vector from the rotation
axis to tip of the signal pulse as it propagates from transmitter to receiver (Ashby

2004). Area ~A is therefore swept out by the electromagnetic pulse as it propagates
from the GPS satellite transmitter to the receiver.

3.3 General Relativistic Accelerations

The relativistic accelerations in the weak-field and slow motion approximation as
described by the standard IERS formulation (2.10) for the Schwarzschild field,
frame dragging and de Sitter precession are additional relativistic effects, which
should be taken into account during POD. Table 2.1 lists the magnitude of these
effects when considering GPS satellites.
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3.4 Spatial Curvature Effect on Geodetic Distance

The proper distance between a receiver on the surface of the Earth at radius r1 and
a GPS satellite at radius r2 is approximately (Ashby 2003)

Zr2

r1

1þ GM

c2r

� �
dr ¼ r2 � r1 þ

GM

c2
ln

r2

r1

� �
: ð2:84Þ

Using (2.84) and, in addition, calculating the coordinate distance, the difference
between proper and coordinate distance is about 6.3 mm ((2.4) as applied to SLR).

4 Very Long Baseline Interferometry

Observations of compact extragalactic radio sources using the technique of VLBI
are very well suited to the study of Earth orientation in space, as these sources
serve as an excellent approximation to an inertial frame. The VLBI technique is
unique in that it provides Earth orientation measurements of high accuracy in an
inertial frame of reference (Sovers et al. 1998). Similar to the other space geodetic
techniques, the reduction of VLBI data requires consideration of a large range of
effects, which include the effects of the Earth’s internal structure on its dynamics,
the VLBI site velocity as caused by tectonic plate motion, terrestrial tidal effects,
and quantification of tropospheric and ionospheric parameters. In addition, con-
sideration must be given to special relativity in the interpretation of the radio
signals travelling from the distant sources, as well as to general relativistic
retardation. For a thorough introduction to VLBI the reader should refer to the
chapter by Harald Schuh and Johannes Böhm in this volume, in which is included
a discussion of the VLBI GRT model for propagation. I will attempt to provide
additional information which could be read in the context of and as ancillary
material to the Schuh and Böhm chapter without unnecessary repetition.

4.1 Gravitational Delay

According to GRT, an electromagnetic signal will experience retardation in terms
of its travel time when propagating in a gravitational potential relative to its
propagation in gravity field-free space. This has implications for VLBI, as the
value determined for the difference in arrival time at the VLBI stations in question
must be corrected for gravitational effects. Furthermore, considering the impli-
cations of GRT, one must take into account both a time delay (Shapiro 1964) and a
bending delay (deviation from a straight-line path) (Shapiro 1967). The current
general relativistic VLBI model for propagation used by international VLBI
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service (IVS) analysis centres is the IERS (Petit and Luzum 2010) recommended
‘‘consensus model’’ (Eubanks 1991) which provides an accuracy below 1 ps as
described inChap.11of the IERS Conventions. According to Petit (2009) there are
no changes expected in the short term, although a review is possible in the light of
future VLBI accuracy improvements. This is true specifically with regard to
VLBI2010, which will require that the consensus model be re-evaluated to ensure
that it includes all terms down to the order of 0.3 ps (Heinkelmann and Schuh
2009). Objectives of VLBI2010 include 1 mm position accuracy over a 24 h
observing session (on global baselines), 0.1 mm/year station velocity accuracy,
continuous observations, and delivery of initial results within 24 h after taking
data (MacMillan et al. 2011)

4.2 General Relativistic Tests Using VLBI

VLBI currently achieves very high accuracies, better than 0.1 mas. These high
accuracies make VLBI an excellent tool for GRT tests and evaluation and there-
fore the geodetic VLBI technique has often been used to evaluate the space cur-
vature parameter c introduced in (2.4). Tests of special and general relativity were
quickly launched after Einstein’s publications. Acceptance of relativity was not
instantaneous and general acceptance was fraught with misunderstanding, political
viewpoints, self-serving attitudes and the typical slow acceptance of a new sci-
entific doctrine. A very good review of the early tests and human drama involving
astronomers of the early twentieth century is given in Crelinsten (2006). These
tests involved gravitational redshift and light bending (primarily light deflection at
the Sun’s limb during eclipses). Currently one of the most accurate methods to
evaluate c is by utilising VLBI.

The space–time geometry around the Sun can be described by a static and
spherically symmetric metric (Schwarzschild 1916). However, Eddington (1923)
provided an isotropic formulation of Schwarzschild’s original anisotropic version
of the metric (2.21) (where, as noted by Eddington, in the original coordinates, the
speed of light is not the same for transverse and radial directions), which can be
written as

ds2 ¼ � 1� 2
GM

c2r
þ 2

GM

c2r

� �2
 !

cdtð Þ2þ 1þ 2
GM

c2r

� �
dx2 þ dy2 þ dz2
� �

:

ð2:85Þ

Here the gravitational constant is G; the speed of light is given by c and M is the
mass of the star (Sun). The PPN parameters c and b are the most physically
significant of the ten parameters in the PPN formalism and this is demonstrated by
their placement (Margot and Giorgini 2009) in (2.85):
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ds2 ¼ � 1� 2
GM

c2r
þ 2b

GM

c2r

� �2
 !

cdtð Þ2þ 1þ 2c
GM

c2r

� �
dx2 þ dy2 þ dz2
� �

:

ð2:86Þ

In the first term on the right-hand side of (2.86) b describes the degree of
nonlinearity in the superposition law for gravity, while the second term (spatial
part) contains PPN c; which describes how much curvature is produced by unit rest
mass, and can be tested by deflection of light, bending of radio waves and Shapiro
delay experiments. In GRT both parameters c and b are equal to unity, whereas the
other eight PPN parameters are zero (Will and Nordtvedt 1972).

4.2.1 Evaluation of PPN Parameter c

The classical test by Eddington on the deflection of light by the Sun (Dyson et al.
1920) and the delay of an electromagnetic signal as it propagates near the Sun
(Shapiro et al. 1968) essentially measure the propagation of photons in curved space
near the Sun; these measurements depend on the PPN parameter c: The amount of
space curvature per unit mass is related to c through the proportional relationship

dh / 1=2ð1þ cÞ: ð2:87Þ

Following Will (2006), an electromagnetic signal (ray of light or radio signal from
VLBI source) passing close to the Sun at distance d will be deflected by an angle,

dh ¼ 1
2

1þ cð Þ 4m�=dð Þ 1þ cos Uð Þ=2½ 
; ð2:88Þ

where the mass of the Sun is denoted by m� and U is the angle formed between the
direction of the incoming electromagnetic signal and the line between Earth and
the Sun. The relative angular separation may be changed when the line-of-sight of
one of the sources moves close to the Sun. This angular separation is given by

dh ¼ 1
2

1þ cð Þ � 4m�
d

cos vþ 4m�
dr

1þ cos Ur

2

� �� �
:

ð2:89Þ

In (2.89) the points of closest approach to the Sun in terms of distance are given by
d and dr for the source and reference rays, respectively. The angle created by the
Sun-source and Sun-reference directions, projected against the plane of the sky, is
given by v and Ur denotes the angle between the reference source and the Sun. More
details can be obtained from Will (2006). This short introduction describes the basics
for the determination of the varying relative angular separation as would be deter-
mined using VLBI, when the line-of-sight of a radio source is close to the Sun,
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d�R�; dr � d

and v is varying with time. Of course the Sun could be replaced by a large planet such
as Jupiter (see for instance Schuh et al. 1988; Fomalont and Kopeikin 2003) and the
radio source could be a transmitter on board an interplanetary probe. The literature
abounds with comparisons between the results of different (e.g. radar determined)
techniques but here we focus on VLBI (cf. Pitjeva 2005; Turyshev 2009).

Constant instrumental and data analysis upgrades throughout the development
of the VLBI technique have delivered a continuous increase in the accuracy of the
evaluations of PPN parameter c: This continuous improvement is illustrated in
Fig. 2.2, which is based on the table of c estimates spanning the period 1972–2009
as provided by Heinkelmann and Schuh (2009). Figure 2.2 contains the standard
error of the various c estimates, reflecting the accuracy of the parameter evaluation.
An exponential fit constrained to the first and last estimate provides a value of
± 2.5 9 10-5, when using the fitted function to predict towards 2020. If this
predicted accuracy level is achieved by VLBI, perhaps supported by the devel-
opments around VLBI2010 in the GGOS framework, it would be comparable to the
accuracy (currently the best) of the estimate of c (±2.3 9 10-5) achieved during
the microwave tracking of the Cassini spacecraft on its approach to Saturn (Bertotti
et al. 2003). Evaluations represented in Fig. 2.2 are contained in Table 2.2.

The gravitational signal retardation (Shapiro effect) is described by

sgrav ¼ 1þ cð Þ � GM

c3
� ln

~X1

�� ��þ~X1 �~k
~X2

�� ��þ~X2 �~k

" #

; ð2:90Þ

where ~Xi is the position vector of the individual VLBI antennas relative to the
centre of the gravitating body and the unit vector towards the radio source as

viewed from the Earth-bound baseline is denoted by ~k: Following Heinkelmann
and Schuh (2009), the partial derivative of the delay relative to c can be written as

os
oc
¼ GM

c3
� ln

~X1

�� ��þ~X1 �~k
~X2

�� ��þ~X2 �~k

" #

; ð2:91Þ

which will be required for the estimation of c utilising the Shapiro delay in a least-
squares process. A typical value for the Shapiro delay due to the gravitational field
of the Earth (see Table 2.1) for a baseline of 6000 km, is about 21 ps (Klioner
1991). The Shapiro time delay that results from the Sun for the same baseline
length can vary from 17 9 104 ps for an electromagnetic ray grazing the Sun’s
limb to about 17 ps when the rays are incident at about 90� from the Sun. Models
for the gravitational delay are continuously improved (cf. Klioner and Kopeikin
1992; Kopeikin and Schäfer 1999). An additional delay, which is caused by the
effect due to the finite speed of the propagation of gravity, may have to be included
(Kopeikin 2001). This delay could be at the level of several ps; however, recent
refinements and the formulation of higher level models (utilising these refine-
ments) have not completely been incorporated into the standard IERS formulation.

88 L. Combrinck



5 Concluding Remarks

It is very rewarding to see, throughout the development of the Space Geodetic
techniques, how theory, experiment, human innovation and the constant drive
towards better science and higher accuracies have meshed to form global networks
of instruments and people. Applications of space geodesy extend from outer space
to the core of the Earth; they utilise and are capable of testing and evaluating GRT.

Future improvements, within the framework of GGOS, will provide improved
accuracies and a better understanding of the space and world in which we live.
General relativity will continue to be tested by scientific experiments in which
space geodesy has its own specific role to play, providing certainty on the levels to
which GRT can reliably be used; eventually, however, experiments will lead to a
post-GRT theory. Exciting scientific projects based on space geodesy are on the
horizon which will play a role in the evaluation of GRT. These include
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Fig. 2.2 Standard errors associated with geodetic VLBI evaluations of PPN parameter c:
Continuous improvement is due to instrumentation, software and model development as well as
longer time series of data

Table 2.2 Standard errors associated with geodetic VLBI evaluations of PPN parameter c

Authors Standard error

Counselman et al. (1974) ±0.06
Fomalont and Sramek (1975) ±0.022
Fomalont and Sramek (1976) ±0.018
Robertson and Carter (1984) ±0.005
Carter et al. (1985 ±0.003
Robertson et al. (1991) ±0.002
Lebach et al. (1995) ±0.0017
Eubanks et al. (1997) ±0.00031
Shapiro et al. (2004) ±0.00021
Lambert and Le Poncin-Lafitte (2009) ±0.000152
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densification and upgrade of the existing International Laser Ranging Service
Network (ILRS) SLR network, the development of VLBI2010, ILR and expansion
of the LLR network to the southern hemisphere with the development of an LLR
system at HartRAO, South Africa.
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