Contents

Preface

1. Introduction
 1.1 The Spectrum of Applications 1
 1.2 Brief Historical Perspective 4
 1.3 Local Averages and Their Extremes 9

2. Fundamentals of Analysis of Random Fields 13
 2.1 Types of Random Fields 13
 2.2 Basic Probabilistic Description 18
 2.3 Expectation and Conditional Expectation 31
 2.4 Characteristic Functions 39
 2.5 Gaussian and Related Probability Distributions 42
 2.6 Optimal Linear Prediction and Updating 53
 2.7 Purely Random Fields and Markov Processes 59
 2.8 New Quantum-Physics-Based Probability Distributions 74

 3.1 Preview, Definitions, and Notation 85
 3.2 Correlation Function of a Homogeneous Random Field 87
 3.3 Spectral Representation of Random Processes
 on the Line ... 92
 3.4 Spectral Analysis of Homogeneous Random Fields 101
 3.5 Input-Output Relations for Invariant Linear Systems 114
 3.6 Derivatives and Local Integrals of Random Fields 119
 3.7 Moving Average and Autoregressive Models 129
3.8 Space-Time Correlation Structure: Basic Relations

4. Spectral Parameters, Level Crossings, and Extremes
 4.1 Spectral Moments and Related Parameters
 4.2 Statistics of Partial Derivatives
 4.3 Basic Envelope Statistics
 4.4 Threshold-Crossing Statistics and Extremes
 4.5 Expected Size of Regions of Excursion
 4.6 Statistics of Level Excursions and Extremes
 4.7 Spectral Parameters of Common Correlation Models
 4.8 Some Extensions to Nonhomogeneous Random Fields

5. Local Average Processes on the Line
 5.1 Variance Function and Scale of Fluctuation
 5.2 Scale of Fluctuation: Frequency-Domain Interpretation
 5.3 Covariance of Local Integrals or Local Averages
 5.4 Mean Square Derivative and Spectral Moments
 5.5 Level-Crossing and Extreme-Value Statistics
 5.6 Invariant and Regenerative Properties
 5.7 Parallel Results for Random Series and Point Processes
 5.8 Role of the Scale of Fluctuation in Optimal Sampling
 5.9 Composite Random Processes and the Scale Spectrum

6. Two-Dimensional Local Average Processes
 6.1 Variance Function and Measure of Correlation
 6.2 Important Special Cases
 6.3 Conditional Variance Functions and Scales of Fluctuation
 6.4 Covariance of Local Averages
 6.5 Statistics of Level Excursions and Extremes
 6.6 Invariants for 2-D Homogeneous Random Fields
 6.7 Space-Time Processes: Frequency-Dependent Scale of Fluctuation
 6.8 Space-Time Processes: Frequency-Dependent Variance Function

7. Multi-Dimensional Local Average Processes
 7.1 Variance Function and Correlation Measures
 7.2 Conditional Variance Functions and Correlation Measures
Contents

7.3 Frequency-Dependent Spatial Random Variation 298
7.4 Some Tractable Space-Time Correlation Models 305
7.5 Covariance of Local Averages 309
7.6 Stochastic Finite Element Analysis 311
7.7 Partial Derivatives of Local-Average Fields 315
7.8 Statistics of High-Level Excursions and Extremes 318

8. Overview of Findings 323

Bibliography 337

Index 347