Contents

	Preface List of Contributors X				
Pa	rt 1	Overview and Perspectives			
1		oduction e Pandu Rangaiah and Vinay Kariwala	3		
	1.3	Background Plantwide Control Scope and Organization of the Book Prences	3 4 6 9		
2		ustrial Perspective on Plantwide Control es J. Downs	11		
	2.3 2.4 2.5	Introduction Design Environment Disturbances and Measurement System Design Academic Contributions Conclusions erences	11 12 14 15 17		
Pa 3	Con	Tools and Heuristics trol Degrees of Freedom Analysis for Plantwide trol of Industrial Processes S.N. Murthy Konda and Gade Pandu Rangaiah	21		
	3.1 3.2 3.3	Introduction Control Degrees of Freedom (CDOF) Computation Methods for Control Degrees	21 23		
	3.4	of Freedom (CDOF): A Review Computation of CDOF Using Flowsheet-Oriented Method 3.4.1 Computation of Restraining Number for Unit Operations	24 28 29		
	3.5	Application of the Flowsheet-Oriented Method to Distillation Columns and the Concept of Redundant Process Variables	35		

JWST135-fm JWST135-Rangaiah December 27, 2011 12:39 Printer: Yet to come

vi Contents

		Application of the Flowsheet-Oriented Method to Compute CDOF for Complex Integrated Processes Conclusions erences	37 40 41
4	Con	ction of Controlled Variables using Self-optimizing trol Method Maisarah Umar, Wuhua Hu, Yi Cao and Vinay Kariwala	43
	4.1	Introduction	43
		General Principle	45
		Brute-Force Optimization Approach for CV Selection	48
		Local Methods	50
		4.4.1 Minimum Singular Value (MSV) Rule	50
		4.4.2 Exact Local Method	51
		4.4.3 Optimal Measurement Combination	53
	4.5	Branch and Bound Methods	56
	4.6	Constraint Handling	58
		4.6.1 Parametric Programming Approach	59
		4.6.2 Cascade Control Approach	59
		4.6.3 Explicit Constraint Handling Approach	60
	4.7	Case Study: Forced Circulation Evaporator	61
		4.7.1 Problem Description	61
		4.7.2 DOF Analysis	62
		4.7.3 Local Analysis	63
		4.7.4 Selection of Measurement Subset as CVs	63
		4.7.5 Selection of Measurement Combinations as CVs	64
		4.7.6 Comparison using Non-linear Analysis	66
		4.7.7 CV Selection with Explicit Constraint Handling	66
		Conclusions	68
		nowledgements	69
	Refe	erences	69
5		nt-Output Pairing Selection for Design of Decentralized Controller on Moaveni and Vinay Kariwala	73
	5.1	Introduction	73
		5.1.1 State of the Art	74
	5.2	Relative Gain Array and Variants	75
		5.2.1 Steady-state RGA	75
		5.2.2 Niederlinski Index	77
		5.2.3 The Dynamic RGA	78
		5.2.4 The Effective RGA	79
		5.2.5 The Block Relative Gain	80
		5.2.6 Relative Disturbance Gain Array	81
	5.3	μ-Interaction Measure	82

			Contents	vii
	5.4	Pairing Analysis Based on the Controllability and Observability		83
		5.4.1 The Participation Matrix		84
		5.4.2 The Hankel Interaction Index Array		85
	~ ~	5.4.3 The Dynamic Input-Output Pairing Matrix		85
	5.5	Input-Output Pairing for Uncertain Multivariable Plants		87
		5.5.1 RGA in the Presence of Statistical Uncertainty5.5.2 RGA in the Presence of Norm-Bounded Uncertainties		87 88
		5.5.3 DIOPM and the Effect of Uncertainty		90
	5.6	Input-Output Pairing for Non-linear Multivariable Plants		91
	5.0	5.6.1 Relative Order Matrix		91
		5.6.2 The Non-linear RGA		92
	5.7	Conclusions		93
		erences		94
6		ristics for Plantwide Control		97
	Will	iam L. Luyben		
	6.1	Introduction		97
	6.2	Basics of Heuristic Plantwide Control		98
		6.2.1 Plumbing		99
		6.2.2 Recycle		99
		6.2.3 Fresh Feed Introduction		102
		6.2.4 Energy Management and Integration		109
		6.2.5 Controller Tuning		111
		6.2.6 Throughput Handle		114
	6.3			114
		6.3.1 Process Description		115
	<i>c</i> 1	6.3.2 Application of Plantwide Control Heuristics		116
		Conclusions		118
	Refe	erences		119
7	Thr	oughput Manipulator Selection for Economic		
		ntwide Control		121
	Rah	ul Jagtap and Nitin Kaistha		
	7.1	Introduction		121
	7.2	Throughput Manipulation, Inventory Regulation and Plantwide		
		Variability Propagation		122
	7.3	Quantitative Case Studies		125
		7.3.1 Case Study I: Recycle Process		125
		7.3.2 Case Study II: Recycle Process with Side Reaction		131
	7.4	Discussion		142
	7.5	Conclusions		144
		nowledgements		144
	Sup	plementary Information		144
	Refe	erences		144

viii Contents

8		nence of Process Variability Propagation in Plantwide Control es J. Downs and Michelle H. Caveness	147
	8.1	Introduction	147
		Theoretical Background	149
		Local Unit Operation Control	157
		8.3.1 Heat Exchanger	157
		8.3.2 Extraction Process	159
	8.4	Inventory Control	16.
		8.4.1 Pressure Control in Gas Headers	16
		8.4.2 Parallel Unit Operations	164
		8.4.3 Liquid Inventory Control	165
	8.5	Plantwide Control Examples	169
		8.5.1 Distillation Column Control	169
		8.5.2 Esterification Process	171
		Conclusions	175
	Refe	prences	176
Pa	rt 3	Methodologies	
9		eview of Plantwide Control Methodologies and Applications ij Vasudevan and Gade Pandu Rangaiah	181
	9.1	Introduction	18
	9.2	Review and Approach-based Classification of PWC Methodologies	182
		9.2.1 Heuristics-based PWC Methods	183
		9.2.2 Mathematical-based PWC Methods	184
		9.2.3 Optimization-based PWC Methods	185
		9.2.4 Mixed PWC Methods	185
	9.3	Structure-based Classification of PWC Methodologies	187
	9.4	Processes Studied in PWC Applications	189
	9.5	Comparative Studies on Different Methodologies	195
	9.6	Concluding Remarks	190
	Refe	erences	197
10	Inte	grated Framework of Simulation and Heuristics for Plantwide	
		trol System Design	203
	Sura	ij Vasudevan, N.V.S.N. Murthy Konda and Gade Pandu Rangaiah	
		Introduction	203
	10.2	HDA Process: Overview and Simulation	204
		10.2.1 Process Description	204
	10.0	10.2.2 Steady-state and Dynamic Simulation	200
	10.3	Integrated Framework Procedure and Application to HDA Plant	200
		10.3.1 Level 1.1: Define PWC Objectives	208
		10.3.2. Level 1.2. Determine CDOF	209

JWST135-fm JWST135-Rangaiah December 27, 2011 12:39 Printer: Yet to come

				Contents	ix
		10.3.3	Level 2.1: Identify and Analyze Plantwide Disturbances		209
		10.3.4	Level 2.2: Set Performance and Tuning Criteria		209
		10.3.5	Level 3.1: Production Rate Manipulator Selection		210
		10.3.6	Level 3.2: Product Quality Manipulator Selection		212
		10.3.7	Level 4.1: Selection of Manipulators for More Severe		
			Controlled Variables		212
		10.3.8	Level 4.2: Selection of Manipulators for Less Severe		
			Controlled Variables		213
		10.3.9	Level 5: Control of Unit Operations		214
		10.3.10	Level 6: Check Component Material Balances		215
		10.3.11	Level 7: Effects due to Integration		215
		10.3.12	Level 8: Enhance Control System Performance		
			(if Possible)		218
	10.4	Evaluation	on of the Control System		218
		Conclusi			223
		endix 10A	A.		226
	Refe	rences			226
11		romic Pla rd Skoges	antwide Control		229
		Introduct			229
			Layers and Timescale Separation		231
			e Control Procedure		233
			of Freedom for Operation		235
	11.5	•	tate DOFs		235
			Valve Counting		236
		11.5.2	Potential Steady-state DOFs		236
	11.6	_	ad's Plantwide Control Procedure: Top-down		238
		11.6.1	Step S1: Define Operational Objectives (Cost J and		220
		11.60	Constraints)		238
		11.6.2	Step S2: Determine the Steady-state Optimal Operation	CV	238
		11.6.3	Step S3: Select Economic (Primary) Controlled Variables	$, CV_1$	240
		11.6.4	(Decision 1)		240
	11.7	11.6.4	Step S4: Select the Location of TPM (Decision 3)		244
	11./	_	ad's Plantwide Control Procedure: Bottom-up		246
		11.7.1	Step S5: Select the Structure of Regulatory (Stabilizing)		246
		1170	Control Layer		246
		11.7.2	Step 6: Select Structure of Supervisory Control Layer		248
		11.7.3	Step 7: Structure of Optimization Layer (RTO) (Related t	U	240
	11 0	Discussion	Decision 1)		248249
		Conclusi			249
		rences	IOH5		249
	11010	LOTICOS			ムマノ

x Contents

12			e Assessment of Plantwide Control Systems evan and Gade Pandu Rangaiah	253
	12.1	Introdu	ction	253
	12.2	Desirab	le Qualities of a Good Performance Measure	254
	12.3	Perform	nance Measure Based on Steady State: Steady-state Operating	
		Cost/Pr	ofit	255
	12.4	Perform	nance Measures Based on Dynamics	256
		12.4.1	Process Settling Time Based on Overall Absolute Component Accumulation	256
		12.4.2	Process Settling Time Based on Plant Production	257
			Dynamic Disturbance Sensitivity (DDS)	257
			Deviation from the Production Target (DPT)	257
			Total Variation (TV) in Manipulated Variables	258
	12.5		ation of the Performance Measures to the HDA	
			ontrol Structure	259
		12.5.1	Steady-state Operating Cost	259
		12.5.2		261
		12 5 3	Process Settling Time Based on Plant Production	262
			Dynamic Disturbance Sensitivity (DDS)	263
			Deviation from the Production Target (DPT)	265
			Total Variation (TV) in Manipulated Variables	265
	12.6		ation of the Performance Measures for Comparing	200
	12.0	PWC S		266
	12.7		sion and Recommendations	268
			Disturbances and Setpoint Changes	268
			Performance Measures	269
	12.8	Conclus		271
		rences		272
Pa	rt 4	Applio	cation Studies	
13		gn and (Control of a Cooled Ammonia Reactor uyben	275
	13.1	Introdu	ction	275
			not Process	277
		13.2.1	Process Flowsheet	277
		13.2.2	Equipment Sizes, Capital and Energy Costs	278
	13.3		-reactor Process	279
		13.3.1	Process Flowsheet	279
		13.3.2	Reaction Kinetics	280
		13.3.3	Optimum Economic Design of the Cooled-reactor Process	282
		13.3.4	Comparison of Cold-shot and Cooled-reactor Processes	286
	13.4	Control	•	288
		Conclus		291

				Contents	xi
	A ola	noveledge	amento		292
		nowledge rences	ements		292
	11010	1011000			
14	Desi	gn and I	Plantwide Control of a Biodiesel Plant		293
			Gade Pandu Rangaiah and Vinay Kariwala		
	14 1	Introduc	etion		293
			state Plant Design and Simulation		295
			Process Design		295
			Process Flowsheet and HYSYS Simulation		298
	14.3		zation of Plant Operation		300
			tion of IFSH to Biodiesel Plant		301
			Level 1.1: Define PWC Objectives		301
		14.4.2	Level 1.2: Determine CDOF		304
		14.4.3	Level 2.1: Identify and Analyze Plantwide Disturbances		304
		14.4.4	Level 2.2: Set Performance and Tuning Criteria		305
			Level 3.1: Production Rate Manipulator Selection		305
			Level 3.2: Product Quality Manipulator Selection		306
		14.4.7	Level 4.1: Selection of Manipulators for More Severe		
			Controlled Variables		306
		14.4.8	Level 4.2: Selection of Manipulators for Less Severe Control	olled	
			Variables		307
			Level 5: Control of Unit Operations		307
			Level 6: Check Material Component Balances		307
			Level 7: Investigate the Effects due to Integration		307
		14.4.12	Level 8: Enhance Control System Performance with the		200
	145	37.11.1	Remaining CDOF		308
			on of the Plantwide Control Structure		311
		Conclus	sions		315
	Keie	rences			316
15	Plan	twide C	ontrol of a Reactive Distillation Process		319
15			Huang, I-Lung Chien and Hao-Yeh Lee		
		Introduc			319
			of Ethyl Acetate RD Process		321
	13.2		Kinetic and Thermodynamic Models		321
		15.2.1	The Process Flowsheet		321
		15.2.3	Comparison of the Process Using either Homogeneous or		321
		13.2.3	Heterogeneous Catalyst		325
	15.3	Control	Structure Development of the Two Catalyst Systems		326
	10.0	15.3.1	Inventory Control Loops		326
		15.3.2	Product Quality Control Loops		328
		15.3.3	Tuning of the Two Temperature Control Loops		332
		15.3.4	Closed-loop Simulation Results		333
		15.3.5	Summary of PWC Aspects		336

JWST135-fm JWST135-Rangaiah December 27, 2011 12:39 Printer: Yet to come

xii Contents	
15.4 Conclusions	337
References	337
16 Control System Design of a Crystallizer Train for Para-Xylene Recovery Hiroya Seki, Souichi Amano and Genichi Emoto	339
16.1 Introduction	339
16.2 Process Description	340
16.2.1 Para-Xylene Production Process	340
16.2.2 Para-Xylene Recovery Based on Crystallization	
Technology	341
16.3 Process Model	343
16.3.1 Crystallizer (Units 1–5)	343
16.3.2 Cyclone Separator (Units 9, 11)	344
16.3.3 Centrifugal Separator (Units 8, 10)	345
16.3.4 Overall Process Model	345
16.4 Control System Design	346 346
16.4.1 Basic Regulatory Control16.4.2 Steady-state Optimal Operation Policy	347
16.4.2 Steady-state Optimal Operation Policy16.4.3 Design of Optimizing Controllers	349
16.4.4 Incorporation of Steady-state Optimizer	352
16.4.5 Justification of MPC Application	357
16.5 Conclusions	357
Appendix 16A: Linear Steady-state Model and Constraints	358
References	359
17 Modeling and Control of Industrial Off-gas Systems	361
Helen Shang, John A. Scott and Antonio Carlos Brandao de Araujo	
17.1 Introduction	361
17.2 Process Description	362
17.3 Off-gas System Model Development	364
17.3.1 Roaster Off-gas Train	364
17.3.2 Furnace Off-gas Train	368
17.4 Control of Smelter Off-gas Systems	370
17.4.1 Roaster Off-gas System	370
17.4.2 Furnace Off-gas System	377
17.5 Conclusions	383
References	383
Part 5 Emerging Topics	
18 Plantwide Control via a Network of Autonomous Controllers Jie Bao and Shichao Xu	387
18.1 Introduction	387

390

18.2 Process and Controller Networks

		Contents	xiii
	18.2.1 Representation of Process Network		390
	18.2.2 Representation of Control Network		392
	18.3 Plantwide Stability Analysis Based on Dissipativity		395
	18.4 Controller Network Design		397
	18.4.1 Transformation of the Network Topology		397 402
	18.4.2 Plantwide Connective Stability18.4.3 Performance Design		402
	18.5 Case Study		405
	18.5.1 Process Model		406
	18.5.2 Distributed Control System Design		408
	18.6 Discussion and Conclusions		409
	References		413
19	Coordinated, Distributed Plantwide Control Babacar Seck and J. Fraser Forbes		417
	19.1 Introduction		417
	19.2 Coordination-based Plantwide Control		421
	19.2.1 Price-driven Coordination		423
	19.2.2 Augmented Price-driven Method		425
	19.2.3 Resource Allocation Coordination		426
	19.2.4 Prediction-driven Coordination		428
	19.2.5 Economic Interpretation		429
	19.3 Case Studies		430
	19.3.1 A Pulp Mill Process		430
	19.3.2 A Forced-circulation Evaporator System 19.4 The Future		433 437
	References		437
20	Determination of Plantwide Control Loop Configuration		
	and Eco-efficiency		441
	Tajammal Munir, Wei Yu and Brent R. Young		
	20.1 Introduction		441
	20.2 RGA and REA		443
	20.2.1 RGA		443
	20.2.2 REA		444
	20.3 Exergy Calculation Procedure		447
	20.4 Case Studies		450
	20.4.1 Case Study 1: Distillation Column 20.4.2 Case Study 2: Ethylene Glycol Production Plant		450 453
	20.4.2 Case Study 2: Ethylene Grycol Production Plant 20.5 Conclusions		456
	References		457

xiv Contents

Poss	ible Sol	Potential Problems with Rigorous Simulators and utions evan, N.V.S.N. Murthy Konda and Chi Zhang	459
A.1	Introdu	action	459
A.2	Problei	ns Encountered with Aspen HYSYS Simulation	
		dy-state Mode	460
	A.2.1	Steady-state Simulation for Estimating Gain Matrix	
		(All Versions)	460
	A.2.2	Transition from Steady-state to Dynamic Mode (All Versions)	461
A.3		ns Encountered with Aspen HYSYS Simulation	
	•	amic Mode	461
	A.3.1	Dynamic Simulation with Recycle Closed (HYSYS v2004.2)	461
	A.3.2	Dynamic Simulation in a Newer Version (HYSYS v7.1)	466
	A.3.3	Dynamic Simulation in a Newer Version in the Presence of	
		Disturbances (HYSYS v7.1)	467
	A.3.4	Dynamic Simulation in a Newer Version in the Presence of	
		Disturbances (HYSYS v7.2)	467
	A.3.5	Dynamic Initialization of Vessels with Multiple Phases (HYSYS	
		v7.1)	468
	A.3.6	Numerical Errors in Dynamic Simulation	
		(HYSYS v2004.2, v7.1 and v7.2)	469
	A.3.7	Pressure-flow Solver in HYSYS Dynamic Mode	
		(HYSYS v2004.2, v7.1 and v7.2)	469
	A.3.8	Spikes in Process Variables in Dynamic Simulation	
		(HYSYS v2004.2, v7.1 and v7.2)	469
Refe	rences		471
ilogu lex	e		473 475