Contents

Foreword X	I
$ {\bf Preface} XV$	
Color Plates	XVII

Introduction 1

1	Are species Constructs of the Human Mind?	
2	Why is there a Species Problem? 9	
2.1	Objective of the Book 9	
2.2	Can Species be Defined and Delimited from one Another? 10	
2.3	What Makes Biological Species so Special? 12	
2.4	Species: To Exist, or not to Exist, that is the Question 15	
2.5	The Reality of Species: Ernst Mayr vs. Charles Darwin 19	
2.6	The Constant Change in Evolution and the Quest of Taxonomy	
	for Fixed Classes: can these be Compatible? 20	
2.7	Can a Scientist Work with a Species Without Knowing what a	
	Species is? 23	
2.8	The Species as an Intuitive Concept and a Cognitive Preset	
	in the Human Mind 24	
2.9	Taxonomy's Status as a "Soft" or "Hard Science" 27	
2.10	The Impact of the Species Concept on Nature Conservation	
	and the Allocation of Tax Money 30	
2.11	Sociological Consequences of a Misunderstood Concept	
	of Race 31	
2.12	Species Pluralism: How Many Species Concepts Exist? 33	
2.13	It is One Thing to Identify a Species, but Another to Define	
	what a Species is 39	
2.14	The Dualism of the Species Concept: the Epistemic	
	vs. the Operative Goal 41	

Contents	
3	Is the Biological Species a Class or is it an Individual? 45
3.1	Preliminary Note: Can a Species have Essential Traits? 45
3.2	Class Formation and Relational Group Formation 47
3.3	Is the Biological Species a Universal/Class or an Individual? 49
3.4	The Difference Between a Group of Objects as a Class and a Group
	of Objects as an Individual is a Fundamental One 51
3.5	Artificial Classes and Natural Kinds 54
3.6	The Biological Species Cannot be a Natural Kind 56
3.7	The Biological Species as a Homeostatic Property Cluster 58
3.8	Polythetic Class Formation or Grouping According to Family
	Resemblance 60
3.9	The Linnaean System is Based on Fundamental Assumptions that
	are Irreconcilable with a Contemporary Worldview of Science 61
3.10	Comparison of the System of Organisms with the Periodic
	Table of Chemical Elements 63
3.11	The Relational Properties of the Members of a Species are the Essence
	of the Species 64
4	What are Traits in Taxonomy? 67
4.1	Preliminary Note 67
4.2	What Basic Rule Defines Traits as Being Taxonomically
7.2	Relevant? 68
4.3	What is the Relevance of Differences in Genes Between Two
	Species? 71
4.4	In Sticklebacks (Gasterosteus aculeatus), a Single Gene Controls
	Many Phenotypes 73
4.5	What is the Relevance of Differences in Traits between Two
	Species? 74
4.6	Traits that are Used by the Species to Distinguish Themselves 76
4.7	A Species cannot be Defined by Traits 80
4.8	What are Homologous Traits? 82
4.9	The Vertebrate Eye and the Squid Eye: They Cannot be Homologous
4.10	Nor can they be Non-Homologous 84
4.10	The DNA Barcoding Approach – is Taxonomy Nothing more than
	Phylogenetic Distance? 86
5	Diversity within the Species: Polymorphisms and the Polytypic
	Species 93
5.1	Preliminary Note 93
5.2	Differences in Traits do not Necessarily Mean Species
	Differences 94
5.3	Superfluous Taxonomic Terms: Variation, Aberration,
	Form, Phase, Phenon 96
5.4	What are Races or Subspecies? 97

5.5	Are Carrion Crow and Hooded Crow (Corvus corone and C. cornix) in Eurasia and the Guppy Populations on Trinidad			
	Species or Races? 99			
5.6	What are Morphs? 100			
5.7	What are Mutants (in a Taxonomic Sense)? 103			
5.8	Allelic Diversity 104			
5.9	How Long is the Lifetime of Allelic Polymorphisms? 105			
5.10	Stable Polymorphisms – The Selective Advantage is Diversity 106			
5.11	Are Differences between Species Due only to Differences in			
J.11	Allelic Frequency Distribution, Such that there are no Truly			
	Species-Specific Traits? 108			
5.12	Partially Migratory Birds – an Example of Genetic			
3112	Polymorphisms 110			
5.13	Intraspecies Morphs in the Burnet Moth Zygaena ephialtes 114			
5.14	The Color Pattern Polymorphism of the Shells of the			
	Brown-Lipped Snail Cepaea nemoralis 116			
5.15	The Beak Polymorphism in the Black-Bellied Seedcracker			
	Finch Pyrenestes ostrinus 118			
5.16	The Beak Polymorphism in the Darwin Finch Geospiza fortis 119			
5.17	Intraspecies Morphs in the Garter Snake <i>Thamnophis ordinoides</i> 121			
5.18	Urbanization in Certain Bird Species is based on Genetic			
	Polymorphism 121			
5.19	The Mimicry Morphs of the Female Swallowtails			
	of the Genus <i>Papilio</i> 123			
5.20	The Morphs of the Brood-Parasitic Cuckoo Female			
	Cuculus canorus 125			
6	Biological Species as a Gene-Flow Community 127			
6.1	The Definition of the Gene-Flow Community 127			
6.2	The Connection of Organisms in a Gene-Flow Community			
	Includes the Genealogical Connection 130			
6.3	The Species is a Gene-Flow Community, Not a Reproductive			
	Community 131			
6.4	A Species Concept Requires Both Connection and Delimitation 133			
6.5	The Concept of the Gene-Flow Community in Eukaryotes and in Bacteria 134			
6.6	Uniparental Propagation in Eukaryotes 135			
6.7	Why do the Individuals of a Species Resemble Each Other? 138			
6.8	Isolation by Distance 140			
6.9	A Decrease in Lateral Sexual Gene Flow, together with Local			
	Adaptation, Creates Races 141			
6.10	The Adaptation of Breeding Times in Birds to the Annual			
	Maximum Food Supply 143			
6.11	Are Migratory and Sedentary Birds Able to Crossbreed? 144			

VIII	Contents					
	6.12	Are Geographically Distant Populations of Stonechats (Saxicola torquata) or Blackcaps (Sylvia atricapilla) Genetically Compatible? 146				
	6.13	Are Univoltine and Bivoltine Butterflies Able to Crossbreed? 148				
	6.14	Speciation Genes, Pre- and Postzygotic Barriers 149				
	6.15	Hybrid Incompatibility 151				
	6.16	Haldane's Rule and the Genes for Postzygotic Incompatibility 153				
	6.17	Sympatric and Allopatric Speciation 155				
	6.18	Sympatric Speciation in the Fruit fly <i>Rhagoletis</i> , in Cichlids and in the Fire Salamander 159				
	6.19	Reproductive Incompatibility is Different than Phylogenetic Distance 161				
	6.20	Phylogenetic Distance and Reproductive Incompatibility in Two Species Pairs, Polar Bear (<i>Ursus maritimus</i>) and Brown Bear (<i>U. arctos</i>), in Comparison to Grey Wolf (<i>Canis lupus</i>) and Coyote (<i>C. latrans</i>) 162				
	6.21	The Herring Gull (<i>Larus argentatus</i>) and the Greenish Warbler (<i>Phylloscopus trochiloides</i>), a False and a True Model for the Ring Species 163				
	6.22	Allopatrically Separated Populations are Always Different Species 165				
	6.23	Species Hybrids as Exceptions without Evolutionary Consequences 167				
	6.24	The Example of Some Duck Species: Extinction through Hybridization 169				
	6.25	The Origin of Reproductive Isolation Through Reinforcement 171				
	6.26	Hybridogenic Speciation 173				
	6.27	Is the Italian Sparrow (Passer italiae) a Hybrid Species? 176				
	6.28	"Gene theft" between two Species of Galapagos Ground Finches 178				
	6.29	"Gene theft" between two Species of Green Frogs (<i>Pelophylax ridibunda</i> and <i>P. lessonae</i>) 180				
	6.30	How many Genes Must Mutate for the Origin of New Species? 181				
	6.31	The Problem of Smooth Boundaries between two Gene-Flow Communities 183				
	7	The Cohesion of Organisms Through Genealogical Lineage (Cladistics) 187				
	7.1	Preliminary Remarks on Descent Connection 187				
	7.2	The Problem of Displaying the Phylogenetic Tree in the Case of Biparental Reproduction 189				
	7.3	What are Species Boundaries in Cladistics? 191				
	7.4	How is a Cladistic Bifurcation Defined? Apomorphies and Autapomorphies 194				
	7.5	Descent is not the Same Thing as Kinship: The Concepts of Monophyly and Paraphyly 196				
	7.6	Why are Paraphyla used Despite their Inconsistency? 199				
	7.7	Monophyly and Paraphyly on Different Hierarchical Levels 202				

7.8	Gene Trees are not Species Trees 204			
7.9	The Concepts of Monophyly and Paraphyly cannot be Applied to			
	Species 206			
7.10	Paraphyly and Anagenesis are Mixed Classifications 208			
7.11	The Cladistic Bifurcation of a Stem Species Always Means the			
	End of the Stem Species 210			
7.12	The "Phylocode" 212			

Outlook 217 8

References 219

Scientific Terms 229

Index 239