

Contents

	Prefe	ace	page xiii
	Prefe	ace to first edition	xvii
1	— Intro	oduction	1
	1.1	Linear antennas	1
	1.2	Maxwell's equations and the potential functions	3
	1.3	Power and the Poynting vector	5
	1.4	The field of thin linear antennas: general equations	7
	1.5	The field of the electrically short antenna; directivity	11
	1.6	The field of antennas with sinusoidally distributed currents; radiation	
		resistance	13
	1.7	Impedance of antenna: EMF method	16
	1.8	Integral equations for the current distribution	20
	1.9	Direct numerical methods	23
2	— An a	pproximate analysis of the cylindrical antenna	31
	2.1	The sinusoidal current	31
	2.2	The equation for the current	32
	2.3	Properties of integrals	33
	2.4	Rearranged equation for the current	36
	2.5	Reduction of integral equation to algebraic equation	36
	2.6	Evaluation of coefficients	39
	2.7	The approximate current and admittance	40
	2.8	Numerical examples; comparison with experiment	41
	2.9	The radiation field	43
	2.10	An approximate two-term theory	48
	2.11	The receiving antenna	50

vii

3	 The	two-element array	54
	3.1	The method of symmetrical components	54
	3.2	Properties of integrals	57
	3.3	Reduction of integral equations for phase sequences to algebraic equations	59
	3.4	The phase-sequence currents and admittances	62
	3.5	Currents for arbitrarily driven antennas; self- and mutual admittances and	<i>c</i> 1
	2.6	impedances	64
	3.6	Currents for one driven, one parasitic antenna	66
	3.7	The couplet	67
	3.8	Field patterns	68
	3.9	The two-term approximation	70
4	 The	circular array	79
	4.1	Integral equations for the sequence currents	80
	4.2	Sequence functions and array properties	86
	4.3	Self- and mutual admittances	88
	4.4	Currents and fields; arrays with one driven element	95
	4.5	Matrix notation and the method of symmetrical components	103
	4.6	General formulation and solution	107
5	— The	circuit and radiating properties of curtain arrays	112
	5.1	Comparison of conventional and two-term theories	112
	5.2	Two-term theory of curtain arrays	114
	5.3	Example: the three-element array	124
	5.4	Electronically scanned arrays	128
	5.5	Examples of the general theory for large arrays	137
	5.6	The special case when $\beta_0 h = \pi/2$	148
	5.7	Summary	151
6	Arra	ays with unequal elements: parasitic and log-periodic antennas	153
	6.1	Application of the two-term theory to a simple parasitic array	153
	6.2	The problem of arrays with parasitic elements of unequal lengths	160
	6.3	Application to the Yagi–Uda array	162

ix	Conte	Contents			
	6.4	Evaluation of coefficients for the Yagi–Uda array	167		
	6.5	Arrays with half-wave elements	170		
	6.6	The far field of the Yagi–Uda array; gain	173		
	6.7	Simple applications of the modified theory; comparison with experiment	179		
	6.8	The three-element Yagi–Uda array	182		
	6.9	The four and eight director Yagi–Uda arrays	190		
	6.10	Receiving arrays	198		
	6.11	Driven arrays of elements that differ greatly in length	208		
	6.12	The log-periodic dipole array	215		
	6.13	Analysis of the log-periodic dipole array	216		
	6.14	Characteristics of a typical log-periodic dipole array	222		
	6.15	Frequency-independent properties of the log-periodic dipole array	228		
	6.16	Experimental verification of the theory for arrays of unequal dipoles	239		
	— Plar	nar and three-dimensional arrays	241		
			271		
	7.1	Vector potentials and integral equations for the currents	241		
	7.2	Vector potential differences and integral equations	245		
	7.3	Approximate distribution of current	247		
	7.4	Evaluation of coefficients	249		
	7.5	The field patterns	253		
	7.6	The general two-element array	256		
	7.7	A simple planar array	262		
	7.8	A three-dimensional array of twenty-seven elements	272		
	7.9	Electrical beam scanning	284		
	7.10	Problems with practical arrays	288		
8	 Vert	tical dipoles on and over the earth or sea	290		
	8.1	Introduction	290		
	8.2	The complete electromagnetic field of a vertical dipole over the			
		earth or sea with or without a coating	292		
	8.3	The field in the air in the intermediate range	296		
	8.4	The far field in the air	298		
	8.5	Base-driven and grounded monopoles	303		
	8.6	Vertical antennas on the earth for communicating with submarines in			
		the ocean	308		
	8.7	High-frequency dipoles over the earth; cellular telephone	314		
	8.8	Vertical dipoles over a two-layered region	321		

X	Contents		
	8.9 Propagation over the s8.10 Conclusion	pherical earth	327 341
9	Dipoles parallel to the plane boundaries of layered regions; horizontal dipole over, on, and in the earth or sea		343
	9.1 Introduction		343
	9.2 Horizontal traveling-v	vave antennas over earth or sea; Beverage	
	antenna $(l=0, \epsilon=k)$	•	349
		ted antenna in earth or sea	357
		nd vertical antennas over the earth	359
		ver the spherical earth	365
	9.6 Horizontal electric dip sea, or Arctic ice	poles for remote sensing on and in the earth,	369
		poles and patch antennas on microstrip	372
10	Application of the two-term theory to general arrays of parallel non-staggered elements		
	—— 10.1 Brief derivation of the	formulas	379
	10.2 The complete two-term	n theory formulas	384
	10.3 Remarks and program	ming considerations	385
	10.4 Alternative form for the	ne solution and the case $kh = \pi/2$	390
11		cular arrays of perfectly conducting dipoles	392
	—— 11.1 Introduction		392
	11.2 The two-term theory a	and the modified kernel	396
	11.3 Phase-sequence reson	ances	399
	11.4 Behavior near a phase	-sequence resonance	403
	11.5 Radiation field at or n	ear a phase-sequence resonance	405
	11.6 Refinements for nume	rical calculations	408
	11.7 Resonant array with t	wo driven elements	409
	11.8 Appendix: the various	kernels for the circular array	420
12	— Resonances in large cir	cular arrays of highly conducting dipoles	425
	12.1 Introduction		425

хi	Contents	
	12.2 Integral equations	427
	12.3 Two-term theory	429
	12.4 Qualitative behavior	430
	12.5 Numerical results	433
	12.6 Field pattern	435
	12.7 The effect of a highly conducting ground plane	436
	12.8 Appendix: formulas for the large circular array of highly conducting	
	dipoles	446
13	Direct numerical methods: a detailed discussion	452
	13.1 Introduction	452
	13.2 Properties of the integral equations	453
	13.3 On the application of numerical methods	455
	13.4 Additional remarks	460
	13.5 Notes on arrays of cylindrical dipoles	463
	13.6 Appendix: the infinite antenna	465
14	Techniques and theory of measurements	
	14.1 Transmission lines with coupled loads	476
	14.2 Equivalent lumped elements for terminal-zone networks	481
	14.3 Voltages, currents, and impedances of uniform sections of lines	487
	14.4 Theoretical basis of impedance measurements	492
	14.5 The measurement of self- and mutual impedance or admittance	502
	14.6 Theory and properties of probes	508
	14.7 Construction and use of field probes	520
	14.8 The measurement of sharp resonances in circular arrays	534
	Appendix I: Tables of Ψ_{dR} , $T^{(m)}$ or $T'^{(m)}$ and self- and mutual admittances for	520
	single elements and circular arrays	539
	Appendix II: Tables of matrix elements Φ_u and Φ_v for curtain arrays	553
	Appendix III: Tables of admittance and impedance for curtain arrays	579
	References	595
	List of symbols	607
	Index	619