Contents

1 Introduction 1

Part I

2 Thermodynamic conditions for the Mn–O system in sintering of manganese steels 5
 2.1. Manganese in steelmaking 5
 2.2. Basic thermodynamic characteristics of protective atmospheres for sintering steels alloyed with manganese and other elements 8
 2.3. Influence of protective atmospheres on proper sintering of carbon containing steels 19

3 Alloying and sintering of manganese steels in terms of high manganese vapour pressure 22
 3.1. Vapour pressure of elements 22
 3.1.1. Basic formulas characterising the sublimation of manganese from solid manganese 23
 3.1.2. Effect of manganese vapour in laboratory sintering of Fe–Mn–C samples 26
 3.1.3. Manganese sublimation and condensation in free space 31
 3.2. Reaction of manganese vapour with porcelain 36
 3.3. Summary 37

4 Alloying and sintering of manganese steels by manganese vapour 39
 4.1. Microstructure formation 39
 4.1.1. Conventional radiation sintering 39
 4.1.2. Induction sintering 49
 4.2. Nucleation of new grains in base iron powders in Fe–Mn materials 50
 4.3. Sintering and alloying of manganese steels analysed by the dilatometric tests 53
 4.3.1. Effect of base materials and processing variables 54
Contents

4.3.2. Effect of manganese on isothermal sintering and cooling process according to the dilatometric graphs

4.3.2.1. Enhancing effect of manganese in solid-state sintering

4.3.2.3. Effect of cooling rate on the transformation of austenite in sintered steels as indicated by dilatometric graphs

5 Effect of base materials and of various processing methods on mechanical and some special properties of manganese steels

5.1. Electrolytic manganese and ferromanganese grades - physical–metallurgical and technical characteristics

5.1.2. Ferromanganese grades

5.1.3. As milled characteristics of manganese carriers

5.2 Low-carbon low-alloy sintered steel

5.2.1. Mechanical properties

5.2.2. Microstructure and fracture

5.3. Properties of induction sintered and upset-forged manganese steels

5.3.1. Mechanical properties of induction sintered Fe–4.5Mn–0.33C steel

5.3.2. Microstructure

5.3.3. Mechanical properties of induction sintered and upset-forged Fe–4.5Mn–0.33C steel prepared on the basis of both iron powder grades

5.4. Effect of various material and processing conditions on mechanical and some specific properties of manganese steels

5.4.1. Effect of iron powder grades of markedly different structural activity and manganese addition on properties of sintered manganese steel

5.4.2. Effect of various hot forming processes on mechanical properties of manganese steels

5.4.4. Effect of manganese addition and of iron powder grade on friction properties

5.4.4.1 Friction and mechanical properties of sintered steels of various composition

5.4.5. Industrially sintered prototype structural parts prepared from manganese steel

6 Effect of additional elements on the properties of manganese steels

6.1. Effect of molybdenum

6.1.1. Properties of Fe–Mn–C steels with molybdenum addition
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1.2. Manganizing of powder steels combined with sintering</td>
<td>135</td>
</tr>
<tr>
<td>6.1.3. Sintering of Fe–Mn–C and Fe–Mn–Mo–C steels in α-region and at 1120°C</td>
<td>136</td>
</tr>
<tr>
<td>6.1.4. Effect of sintering temperature on properties of Fe–Mn–C, Fe–Cr–C and Fe–Mo–C steels</td>
<td>140</td>
</tr>
<tr>
<td>6.2. Effect of liquid phase forming elements on properties of Fe–Mn–C steels</td>
<td>141</td>
</tr>
<tr>
<td>6.2.1. Effect of copper</td>
<td>141</td>
</tr>
<tr>
<td>6.2.2. Effect of tin</td>
<td>145</td>
</tr>
<tr>
<td>6.2.3. Effect of phosphorus</td>
<td>146</td>
</tr>
<tr>
<td>6.3. Effect of boron</td>
<td>150</td>
</tr>
<tr>
<td>6.3.1. Effect of boron addition on properties of Fe–Mn–C steel</td>
<td>151</td>
</tr>
<tr>
<td>6.3.2. Effect of boron addition on tribological properties of Fe–Mn–C steels</td>
<td>154</td>
</tr>
<tr>
<td>6.3.3. Effect of boron addition on mixed low-alloyed Fe–Mn–Cr–Mo–C steels</td>
<td>158</td>
</tr>
<tr>
<td>6.3.4. Effect of boron addition on properties of Fe–Cr–Mo–V–(Mn) sintered steels</td>
<td>160</td>
</tr>
<tr>
<td>6.3.5. Manganese-assisted pack boriding of sintered steels</td>
<td>163</td>
</tr>
<tr>
<td>6.3.6. Sintering and pack boriding – two-stage process</td>
<td>163</td>
</tr>
<tr>
<td>7 Properties of sintered and powder forged steels based on prealloyed powders</td>
<td>176</td>
</tr>
<tr>
<td>7.1. Properties of sintered and powder forged steels based on prealloyed Fe–Cr–Mn–Mo–(V) powders with high oxygen content</td>
<td>176</td>
</tr>
<tr>
<td>7.1.1. Mechanical properties</td>
<td>178</td>
</tr>
<tr>
<td>7.1.2. Properties of powder forged steels based on industrially produced chromium- and manganese-prealloyed powders of high oxygen content</td>
<td>180</td>
</tr>
<tr>
<td>7.2. Properties of powder forged steels based on commercial prealloyed Fe–Cr–Mn–Mo–V powders</td>
<td>182</td>
</tr>
<tr>
<td>7.2.1. Density and mechanical properties</td>
<td>182</td>
</tr>
<tr>
<td>7.2.1.1. Density</td>
<td>182</td>
</tr>
<tr>
<td>7.3. Development and manufacturing of rolling bearing rings by powder forging of steels based on prealloyed Fe–Ni–Mo and Fe–Cr–Mn–Mo powders</td>
<td>185</td>
</tr>
<tr>
<td>7.3.1. Mechanical properties of powder forged steels based on prealloyed powders</td>
<td>187</td>
</tr>
<tr>
<td>7.3.1.1. Mechanical properties of PF steel based on Astaloy A powder</td>
<td>187</td>
</tr>
<tr>
<td>7.3.2. Contact fatigue endurance of powder forged steels based on prealloyed powders</td>
<td>195</td>
</tr>
<tr>
<td>7.3.3. Processing conditions and base characteristics of powder</td>
<td></td>
</tr>
</tbody>
</table>
7.3.4. Examination of powder forged bearing rings properties
7.3.5. Experimental equipment for atomisation of prealloyed Fe–Cr–Mn–Mo powders with low oxygen content

8 Processing and properties of hybrid Fe–(Cr)–xMn–(Mo)–(V) steels
8.1. Properties of hybrid steels based on prealloyed Fe–Cr–Mo–V powders
8.1.1. Mechanical and toughness properties and microstructure
8.1.2. Fractures of Fe–Cr–Mo–V–Mn–V steels
8.2. Processing and properties of hybrid Fe–Cr–Mo–xMn–C steels
8.2.1. Properties of Fe–3Cr–0.5Mo steel with manganese addition
8.3. Effect of manganese carrier on properties of hybrid Fe–Cr–Mo–xMn steels
8.3.1. Mechanical properties
8.3.2. Sintering at 1180°C
8.4. Sintered and sinter hardened hybrid steels
8.4.1. As sintered properties
8.4.2. As sinter hardened properties
8.5. Properties of hybrid Fe–Cr–0.5Mo–xMn–C steels sintered under industrial conditions
8.5.1. Basic characteristics
8.5.2. Mechanical properties
8.5.3. Microstructure and fracture
8.5.4. Effect of industrial sintering conditions on properties and microstructures of hybrid Fe–3Cr–0.5Mo–Mn–C steels
8.6. Properties of hybrid Fe–(0.85, 1.5)Mo–Mn–C steels
8.6.1. Properties of Fe–0.85Mo–xMn–0.3C steels
8.6.2. Properties of Fe–0.85Mo–Mn–0.5C steel
8.6.2.2. Mechanical properties after sintering at 1150°C
8.6.3. Properties of Fe–0.85Mo–xMn–0.6C steel
8.6.4. Properties of industrially sintered mixed and hybrid Fe–0.85Mo–xMn–C steels
8.6.5. Properties of sintered hybrid Fe–(1.5, 0.85)Mo–Mn–0.5C steels

Part II
9 Basic characteristics of manganese steels from the year 1948
9.1. Thermodynamic and physical characteristics of chromium
Contents

and manganese as alloying elements in powder metallurgy 264

9.2. Properties of sintered manganese steels studied in the initial stage 267
9.2.1. Starting knowledge about sintered manganese steels with high manganese and carbon contents 267

9.3. Processing conditions and properties of sintered austenitic manganese steels 270
9.3.1. High-alloyed sintered manganese steels 274

9.4. Alloynng of manganese steels with master alloys 276
9.4.1. Alloynng of manganese steels by master alloys in carbide form composed from elements with high oxygen affinity 276
9.4.2. Alloynng of manganese steels by Fe–Mn–Si–C master alloy 281
9.4.3. Alloynng of manganese steels by master alloys containing Cr and Mn 283

9.5. Liquid phase sintering of Fe–Mn steels 294
9.5.1. Liquid phase sintering of Fe–Mn steels through low-melting alloys 294
9.5.2. Alloynng of manganese steels with atomised Mn–Cu and Mn–Ni master alloys 296

10 Effect of variable processing conditions and materials on properties of sintered Mn–C steels 297
10.1. Alloynng with low-melting elements and sintering in high-purity atmospheres 297
10.1.1. Alloynng with low-melting elements 297
10.2. Sintering of Fe–Mn–C steels in high-purity atmospheres 303
10.3. Effect of processing conditions on properties of manganese steels 305
10.3.1. Effect of iron powder and ferromanganese grades 305
10.3.2. Effect of sintering conditions 309
10.3.3. Effect of base powder grades 310
10.3.4. Effect of some processing conditions and of different materials 314
10.3.5. Effect of cooling rate 320
10.3.6. Effect of sintering conditions 323
10.4. Hardenability study 326
10.4.1. Effect of manganese on hardenability of prealloyed powders 326
10.4.2. Effect of tempering temperature 330
10.5. Sintering in semi-closed containers 332
10.5.1. Effect of manganese on microstructure formation 336
10.5.2. Dimensional changes of Fe–Mn–C steels 339
10.6. Effect of different processing variables on properties of Fe–Mn–C steels 340
10.7. Processing conditions and properties of sintered manganese steel for structural parts
10.7.1. Preparation of gear steel
10.7.2. Innovative processing of manganese steel gears
10.7.3. Mechanical properties of sintered manganese steel gears
10.8. Effect of Mn addition on strain micromechanism in as sintered 316L steel

11.1. Effect of Mn addition on strain micromechanism in as sintered Fe, Cr, Mo, C steels

11.1.1. Effect of different addition mode of molybdenum on properties of manganese steel
11.1.2. Effect of cooling rates on properties of Fe–Mn–Mo–C steels
11.1.3. Dimensional changes of the compacts based on plain iron powders with addition of prealloyed molybdenum powders and of manganese tested by dilatometry
11.1.4. Properties of diffusion-alloyed steels affected by manganese
11.1.5. Properties of industrially sintered Fe–Mn–Mo–C steels
11.2. Processing and properties of sintered Mn–Cr–Mo–C steels
11.2.1. Sinterability and hardenability of Mn–Cr–Mo steels
11.3. Processing and properties of hybrid sintered Mn–Cr–Mo–C steels
11.3.1. Properties of sintered 3Cr–0.5Mo steel promoted by manganese in form of liquid phase
11.4.2. Properties of hybrid Mn–Cr–Mo steels coated with hydrocarbons
11.5. Properties of sintered steels based on prealloyed Cr–Mo–Mn powders
11.5.1. Properties of high temperature sintered steels based on prealloyed Cr–Mo–Mn powders
11.5.2. Influence of sintering temperature on the properties of prealloyed PM steel containing Cr, Mo and Mn
11.5.3. Properties of manganese steels based on CrL and CrM prealloyed powders
11.5.4. Properties of sintered steels based on Cr and Cr–Mn prealloyed powders with various Cr and Mn content

Part III
12. Sintering of manganese steels in low- and high-purity atmospheres: Results and evaluation
12.1. Basic thermodynamic and physical characteristics of
manganese in term of its use for alloying of sintered steels 426

12.2. Chemistry and mechanical properties of manganese containing steels sintered in H/N atmospheres with different dew points 432

12.2.3. Sintering of manganese steels in atmospheres with different ratios of H and N with dew points up to –60°C 437

12.2.2. Industrially sintered prototype structural parts prepared from manganese steel 441

12.3. Explanation of the sintering processes of manganese steels occurring in atmospheres with different partial pressure of oxygen 445

12.4. Crucial results 451

12.5. Overview of materials and processes for preparation of manganese-alloyed steels with the highest strength properties 452

12.5.1. Materials and processing conditions 452

12.5.2. Highest tensile (UTS) and transverse rupture strength (TRS) values of manganese-containing steels attained under corresponding conditions 453

References 458

Index 475