The Phonological Mind

Humans instinctively form words by weaving patterns of meaningless speech elements. Moreover, we do so in specific, regular ways. We contrast *dogs* and *gods*, favor *blogs* over *lbogs*. We begin forming sound-patterns at birth and, like songbirds, we do so spontaneously, even in the absence of an adult model. We even impose these phonological patterns on invented cultural technologies such as reading and writing. But why are humans compelled to generate phonological patterns? And why do different phonological systems – signed and spoken – share aspects of their design? Drawing on findings from a broad range of disciplines including linguistics, experimental psychology, neuroscience, and comparative animal studies, Iris Berent explores these questions and proposes a new hypothesis about the architecture of the phonological mind.

IRIS BERENT is a Professor of Psychology at Northeastern University, Boston. Her research concerns phonology, morphology, and reading. She has published extensively in psychological and linguistic journals.

The Phonological Mind

Iris Berent

> CAMBRIDGE UNIVERSITY PRESS Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo, Delhi, Mexico City

Cambridge University Press The Edinburgh Building, Cambridge CB2 8RU, UK

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org Information on this title: www.cambridge.org/9780521149709

© Iris Berent 2013

This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2013

Printed and Bound in the United Kingdom by the MPG Books Group

A catalogue record for this publication is available from the British Library

Library of Congress Cataloguing in Publication data Berent, Iris, 1960– The phonological mind / Iris Berent. pages cm Includes bibliographical references and index. ISBN 978-0-521-76940-2 (hardback) – ISBN 978-0-521-14970-9 (paperback) 1. Grammar, Comparative and general – Phonology. 2. Phonetics. 3. Cognitive grammar. I. Title. P217.3.B47 2012 414-dc23

2012017898

ISBN 978-0-521-76940-2 Hardback ISBN 978-0-521-14970-9 Paperback

Cambridge University Press has no responsibility for the persistence or accuracy of URLs for external or third-party internet websites referred to in this publication, and does not guarantee that any content on such websites is, or will remain, accurate or appropriate.

Contents

List of figures	<i>page</i> viii
List of tables	Х
Copyright acknowledgements	xi
Preface	xiii

I Introduction

1	Gei	nesis	3
2	Inst	inctive phonology	9
	2.1	People possess knowledge of sound patterns	9
	2.2	Productivity	11
	2.3	Regenesis	12
	2.4	Shared design	18
	2.5	Unique design	28
	2.6	Phonological knowledge lays the foundation for the cultural invention of	
		writing and reading	32
3	The	e anatomy of the phonological mind	35
	3.1	The phonological grammar is a core algebraic system	35
	3.2	Phonology is a core system	44
	3.3	Domain-general and non-algebraic alternatives	49
	3.4	Rebuttals and open questions	55
	3.5	A roadmap	58

II Algebraic phonology

4	Ho	w phonological categories are represented: the role of	
	equ	ivalence classes	63
	4.1	What are phonological patterns made of?	63
	4.2	The role of syllables	65
	4.3	The dissociations between consonants and vowels	73
	4.4	Conclusions and caveats	82

v

vi Contents

5	How phonological patterns are assembled: the role of algebraic		
	var	iables in phonology	84
	5.1	How do phonological categories combine to form patterns?	84
	5.2	A case study: the restriction on identical root consonants in Hebrew	87
	5.3	The restriction on identical consonants generalizes to native Hebrew consonants	91
	5.4	The restriction on identical consonants generalizes across the board	97
	5.5	Coda: on the role of lexical analogies	111
	5.6	Conclusion	113

III Universal design: phonological universals and their role in individual grammars

6	Pho	onological universals: typological evidence and grammatical	
	exp	lanations	117
	6.1	Phonological universals in typology: primitives and combinatorial principles	119
	6.2	Grammatical accounts for typological universals	123
	6.3	Non-grammatical explanations for language universals	131
	6.4	Why are phonological universals non-absolute?	132
	6.5	Algebraic, phonological universals are autonomous from phonetic pressures	139
	6.6	Conclusion	147
7	Pho	onological universals are mirrored in behavior: evidence from	
	arti	ficial language learning	149
	7.1	Phonological interactions target segments that share features	151
	7.2	Learners favor directional phonological changes	155
	7.3	Learners favor phonetically grounded interactions	158
	7.4	Discussion	160
8	Pho	phological universals are core knowledge: evidence from	
	son	ority restrictions	165
	8.1	Grammatical universals and experimental results: correlation or causation?	165
	8.2	Sonority restrictions are active in spoken languages: linguistic and typological	1.((
	02	Providence	100
	0.5	experimental evidence	176
	8.4	Summary and conclusions	196
w	0	ntagany nhylogany nhanalogical hardwara	
1 V	0	ntogeny, phylogeny, phonological natuware,	
	a	iu cennology	
9	Out	t of the mouths of babes	201
	0.1	Commutational mashingmy	202

9.1	Computational machinery	202
9.2	Gauging core phonology: some ground rules	204
9.3	Phonological primitives	205
9.4	Universal combinatorial principles: some markedness reflexes	213
9.5	Conclusions	223

	(Contents	vii
10	The	phonological mind evolves	226
	10.1	The human phonological instinct from a comparative perspective	226
	10.2	Is phonological patterning special?	228
	10.3	The evolution of the phonological mind	247
11	The	phonological brain	251
	11.1	Individuating cognitive functions: functional specialization vs. hardware	0.5.1
		segregation	251
	11.2	The phonological network of spoken language	254
	11.3	Is the phonological network dedicated to phonological computation?	265
	11.4	Minds, and brains, and core phonology	275
12	Pho	nological technologies: reading and writing	280
	12.1	Core knowledge as a scaffold for mature knowledge systems	280
	12.2	Writing systems recapitulate core phonology	283
	12.3	Reading recovers phonological form from print	287
	12.4	Reading recruits the phonological brain network	295
	12.5	Grammatical phonological reflexes in reading	296
	12.6	Conclusion	305
13	Con	clusions, caveats, questions	307
	13.1	Phonological instincts: what needs to be explained	307
	13.2	Some explanations	309
	13.3	The core phonology hypothesis: some open questions	311
Dofo	nonc	20	216
кеје	rence	3	510
Inde	x		352

Figures

2.1	The emergence of movement in ABSL (from Sandler, 2011)	page 15
2.2	Two classifiers for object vs. handling of an object	16
2.3	Twinkle, Twinkle, Little Star	31
3.1	The use of atomic shapes as symbols for singleton	
	phonemes, either specific phoneme instances (a) or phoneme	
	categories (b)	40
3.2	The use of atomic shapes to encode geminates	41
3.3	The use of complex shapes to encode geminates	41
3.4	The representation of semantic complexity using forms that are	
	either syntactically complex (on the left) or simple (on the right)	50
4.1	The prosodic structure of multisyllabic words	67
4.2	An illustration of the cohorts activated by the initial syllable of	
	two Spanish words	71
4.3	Color naming as a function of the CV-skeletal structure (from	
	Marom & Berent, 2010, Experiments 1 & 3)	78
5.1	The formation of the root <i>smm</i> from <i>sm</i>	88
5.2	Rating result for novel roots generated from nonnative	
	consonants (from Berent et al., 2002, Experiment 2)	103
5.3	Rating result of novel roots generated from roots with the	
	nonnative phoneme θ (Data from Berent et al., 2002,	
	Experiment 2)	105
6.1	The distinction between syllable and morphological structure in	
	American Sign Language	144
8.1	Response accuracy in the syllable count task (from Berent et al.,	
	2007a)	182
8.2	Response accuracy and response time to non-identity trials in the	
	identity-judgment task (from Berent et al., 2007a)	183
8.3	The phonetic vs. phonological accounts of misidentification	188
8.4	The effect of task demands on the misidentification of ill-formed	
	onsets (from Berent et al., 2012a)	191

viii

© in this web service Cambridge University Press

	List of figures	ix
8.5	The effect of phonological ill-formedness on the identification of printed materials (from Berent & Lennertz, 2010,	
	Experiment 1)	193
8.6	The sensitivity of Korean speakers to the sonority hierarchy in an identity-judgment task (from Berent et al., 2008)	195
9.1	The effect of markedness on response accuracy to unattested onsets in the "unsuccessful imitation" condition (Berent et al.,	
	2011a)	223
10.1	The hierarchical structure of the Zebra Finch song (from	
	Berwick et al., 2011)	228
10.2	Learned variations in song patterns of Swamp Sparrows (from	
	Balaban, 1988a)	236
11.1	Two cartoon accounts of the relationship between two cognitive	
	functions – phonology and audition – and their hardware	
	implementation	252
11.2	Functional anatomy of left hemisphere areas engaged in the	
	phonological processing in spoken language and their	
	interconnectivity (from Hickok & Poeppel, 2007)	255
11.3	The design of Phillips et al.'s experiments (2000)	258
11.4	Brain responses to the phonological and acoustic control	
	conditions in Phillips et al.'s (2000) experiments.	258
12.1	Lexical access from print	288
12.2	Reading without phonology	289
12.3	Two routes to phonology from print: assembled and addressed	
	phonology	291

Tables

3.1	The contingency between geminate consonants and their	
	singleton counterparts in the UCLA Phonological Segment	
	Inventory Database	page 43
4.1	An illustration of the materials in illusory conjunctions	67
4.2	An illustration of the materials in Marom & Berent (2009)	77
5.1	The structure of Hebrew words	87
5.2	An illustration of various word classes, generated by inserting a	
	root in various word patterns	93
6.1	Tone-bearing capacity of syllables in Standard Thai and Navajo	
	as a function of the duration of the nucleus, coda, and rhyme	
	(in ms) (from Zhang, 2004)	138
6.2	The distinction between syllable structure and morphological	
	structure in spoken language	143
7.1	English phonemes and diphthongs (following Hayes, 2009)	152
7.2	The design of Finley and Badecker's experiments (from Finley &	
	Badecker, 2008; 2010)	157
7.3	The design of Wilson's (2006) palatalization experiment	159

Copyright acknowledgements

I would like to thank the publishers for permission to reproduce the following material:

Figures 2.1 and 2.2 source: Figures 24.10 and 24.11 in W. Sandler (2011). The phonology of movement in sign language. In M. Oostendorp, C. Ewen, B. Hume & K. Rice (eds.), *The Blackwell Companion to Phonology* (pp. 577–603). Oxford: John Wiley and Sons.

Figure 4.3 source: Figure 3 in M. Marom & I. Berent (2010). Phonological constraints on the assembly of skeletal structure in reading. *Journal of Psycholinguistic Research*, 39, 67–88.

Figures 5.2 and 5.3 source: Results in I. Berent, G. F. Marcus, J. Shimron & A. I. Gafos (2002). The scope of linguistic generalizations: evidence from Hebrew word formation. *Cognition*, 83, 113–139

Ch. 8 (7) & (8) source: Illustrations 152 and 154 in P. Smolensky (2006). Optimality in phonology II: harmonic completeness, local constraint conjunction, and feature domain markedness. In P. Smolensky & G. Legendre (eds.), *The Harmonic Mind: From Neural Computation to Optimality-Theoretic Grammar (Vol. II: Linguistic and Philosophical Implications*, pp. 27–160). Cambridge, MA: MIT Press.

Figures 8.1 and 8.2 source: data from I. Berent, D. Steriade, T. Lennertz & V. Vaknin (2007). What we know about what we have never heard: evidence from perceptual illusions. *Cognition*, 104, 591–630.

Figure 8.4 source: Figure 5 in I. Berent, T. Lennertz & E. Balaban (2012). Language universals and misidentification: a two way street. *Language and Speech*, 55(3), 1–20.

Figure 8.5 source: Figure 1 in I. Berent & T. Lennertz (2010). Universal constraints on the sound structure of language: phonological or acoustic? *Journal of Experimental Psychology: Human Perception & Performance*, 36, 212–223.

xi

xii Copyright acknowledgements

Figure 8.6 source: Figure 2 from I. Berent, T. Lennertz, J. Jun, M. A. Moreno & P. Smolensky (2008). Language universals in human brains. *Proceedings of the National Academy of Sciences*, 105, 5321–5325.

Figure 9.1 source: Table 2 in I. Berent, K. Harder & T. Lennertz (2011). Phonological universals in early childhood: evidence from sonority restrictions. *Language Acquisition*, 18, 281–293.

Figure 10.1 source: Figure 1 in R. C. Berwick, K. Okanoya, G. J. L. Beckers & J. J. Bolhuis (2011). Songs to syntax: the linguistics of birdsong. *Trends in Cognitive Sciences*, 15, 113–121.

Figure 10.2 source: Figure 2 in E. Balaban (1988). Bird song syntax: learned intraspecific variation is meaningful. *Proceedings of the National Academy of Sciences of the United States of America*, 85, 3657–3660.

Figure 11.2 source: Figure 1 in G. Hickok & D. Poeppel (2007). The cortical organization of speech processing. *Nature Reviews Neuroscience*, 8, 393–402.

Figures 11.3 & 11.4 source: Figures 1 and 7 in C. Phillips, T. Pellathy, A. Marantz, E. Yellin, K. Wexler, D. Poeppel et al. (2000). Auditory cortex accesses phonological categories: an MEG mismatch study. *Journal of Cognitive Neuroscience*, 12, 1038–1055.

Ch. 6 (11) source: Table 36, 'Chamicuro I', in P. de Lacy (2006). *Markedness: Reduction and Preservation in Phonology* (p. 107). Cambridge; New York: Cambridge University Press.

Table 7.1 source: Table 2.2 in B. Hayes (2009). *Introductory Phonology*. Malden, MA; Oxford: Wiley Blackwell.

Ch. 9 (8) source: Table 1 in L. Davidson, P. Jusczyk & P. Smolensky (2006). Optimality in language acquisition I: the initial and final state of the phonological grammar. In P. Smolensky & G. Legendre (eds.), *The Harmonic Mind: From Neural Computation to Optimality-Theoretic Grammar (Vol. II: Linguistic and Philosophical Implications*, pp. 231–278). Cambridge, MA: MIT Press.

Preface

This book concerns a linguistic human compulsion – our tendency to assemble words that comprise internal patterns. All natural languages manifest such patterns – no known human tongue uses only single atomic sounds as words (e.g., "*a o u*" for 'I love you'). Rather, words are intricately woven from smaller meaningless elements that form systematic patterns – we contrast *god* with *dog* and *blog* with *globe*. We begin spinning these webs in the womb, and we do so prodigiously, not only for familiar words but also for ones that we have never heard before. Our instinct to form those meaningless patterns is so robust that children have been shown to generate them spontaneously, even if they have witnessed no such patterns in their own linguistic community. In fact, people impose these patterns not only on their natural linguistic communication but also on their invented cultural technologies – reading and writing. This book seeks to unveil the basis of this human compulsion.

The human capacity to weave linguistic messages from patterns of meaningless elements (typically, speech sound) is *phonology*. Phonology has been the subject of much previous research, mostly in linguistics and psychology. For the most part, however, these efforts have proceeded in parallel lines across different disciplines, and as a result our understanding of the phonological mind remains fragmentary. Linguists (specifically, those in the field of formal phonology) have mostly concerned themselves with the structure of the phonological grammar, but the cognitive mechanisms underlying phonological patterns are rarely considered. Psychologists, for their part, have assumed without question that phonological patterns can be adequately handled by rather simple, non-specialized computational systems, but these investigations remain largely divorced from the progress made in formal phonological theory in recent decades. This book seeks to bridge the interdisciplinary divide and reconsider phonology in a new light.

At the center of this book is a novel hypothesis regarding the architecture of the phonological mind. The discussion evaluates this hypothesis against recent advances in formal linguistics, cognitive science, neuroscience, and genetics and reviews these literatures in a manner that is accessible to readers across various disciplines. In so doing, I hope to spark renewed interest in the design of

xiii

xiv Preface

phonological patterns and to demonstrate the benefits of an interdisciplinary approach to the study of this intricate human capacity. To facilitate dialog across disciplines, I have tried to present the material in a manner that is accessible to professionals and advanced students in either field – psychology or linguistics – who lack expertise in the neighboring discipline. This approach necessarily requires some measure of simplification. I have thus attempted to minimize the use of technical jargon; in as much as possible, I have deliberately attempted to avoid the use of phonetic transcription, and, when background information is absolutely necessary, I provide it in "Box" inserts.

Readers can choose to selectively focus on distinct portions of this book, depending on their interests. The Introduction (Part I, Chapters 1-3) provides an accessible overview of the main thesis of the book. The subsequent three parts provide more technical discussion of the different aspects of the thesis, and these sections can be read independently. Part II (Algebraic phonology, Chapters 4-5) examines the basis of the human capacity to generalize phonological knowledge by investigating the computational properties of the phonological mind. Part III (Chapters 6-8, Phonological universals) considers the design of phonological systems and the extent that they are constrained to putatively universal principles. Chapter 6 reviews linguistic evidence for phonological universals. Although the discussion targets readers with minimal linguistic expertise, this chapter is probably the heaviest on linguistic theory. Readers can therefore pick and choose, as subsequent chapters do not require detailed understanding of this one. Chapters 7-8 consider the role of grammatical phonological universals in light of experimental evidence; Chapter 7 evaluates numerous case studies, whereas Chapter 8 focuses in depth on a single case. The final part of the book, Chapters 9–12, examines phonological ontogeny (the development of phonological competence with special emphasis on the first year of life), phylogeny (a comparative analysis of "phonological" abilities across species and their evolution), hardware (brain areas mediating phonological computation and their genetic regulation) and technology (i.e., reading and writing - both typical and impaired, in dyslexia). Conclusions and caveats are presented in Chapter 13.

This book is the product of many years of research. The ideas have grown out of my interactions with several close collaborators. Steven Pinker and Gary Marcus have shaped my understanding of how the mind works, Paul Smolensky has sparked my interest in the problem of language universals, and Donca Steriade has challenged my thinking about phonology and its interactions with phonetics. These ideas, however, probably would not have materialized in a book if it weren't for Andrew Winnard, my editor at Cambridge, who saw this volume coming well before I did. Evan Balaban, Lisa Barrett, Bronwyn Bjorkman, Judit Gervain, Bruce Hayes, Ray Jackendoff, Paul de Lacy, Joanne Miller, Steven Pinker, Wendy Sandler, and Paul Smolensky offered valuable

Preface

XV

comments on significant portions of this manuscript – I am immensely grateful for their suggestions and encouragement. Saul Bitran and Monica Bennett have patiently proofread earlier drafts; Kristina McCarthy assisted on various technical matters; Vered Vaknin-Nusbaum has offered constant support; my students and lab assistants Athulya Aravind, Amanda Dupuis, Kimi LaSalle, Katalin Tamasi, Marriah Warren, and Xu Zhao, and two anonymous Cambridge readers have added many useful comments. I am indebted to Jacqueline French, who copyedited the entire manuscript with uncanny intelligence, sharp eye, and warm heart. Finally, Saul, Amir, and Alma Bitran have shared this journey with me. The book is dedicated to them.