

Measure Theory and Filtering Introduction and Applications

The estimation of noisily observed states from a sequence of data has traditionally incorporated ideas from Hilbert spaces and calculus-based probability theory. As conditional expectation is the key concept, the correct setting for filtering theory is that of a probability space. Graduate engineers, mathematicians, and those working in quantitative finance wishing to use filtering techniques will find in the first half of this book an accessible introduction to measure theory, stochastic calculus, and stochastic processes, with particular emphasis on martingales and Brownian motion. Exercises are included, solutions to which are available from www.cambridge.org. The book then provides an excellent user's guide to filtering: basic theory is followed by a thorough treatment of Kalman filtering, including recent results that exend the Kalman filter to provide parameter estimates. These ideas are then applied to problems arising in finance, genetics, and population modelling in three separate chapters, making this a comprehensive resource for both practitioners and researchers.

LAKHDAR AGGOUN is Associate Professor in the Department of Mathematics and Statistics at Sultan Qabos University, Oman.

ROBERT ELLIOTT is RBC Financial Group Professor of Finance at the University of Calgary, Canada.

CAMBRIDGE SERIES IN STATISTICAL AND PROBABILISTIC MATHEMATICS

Editorial Board

- R. Gill (Department of Mathematics, Utrecht University)
- B. D. Ripley (Department of Statistics, University of Oxford)
- S. Ross (Department of Industrial Engineering, University of California, Berkeley)
- M. Stein (Department of Statistics, University of Chicago)
- B. Silverman (St. Peter's College, University of Oxford)

This series of high-quality upper-division textbooks and expository monographs covers all aspects of stochastic applicable mathematics. The topics range from pure and applied statistics to probability theory, operations research, optimization, and mathematical programming. The books contain clear presentations of new developments in the field and also of the state of the art in classical methods. While emphasizing rigorous treatment of theoretical methods, the books also contain applications and discussions of new techniques made possible by advances in computational practice.

Already published

- 1. Bootstrap Methods and Their Application, by A. C. Davison and D. V. Hinkley
- 2. Markov Chains, by J. Norris
- 3. Asymptotic Statistics, by A. W. van der Vaart
- 4. Wavelet Methods for Time Series Analysis, by Donald B. Percival and Andrew T. Walden
- 5. Bayesian Methods, by Thomas Leonard and John S. J. Hsu
- 6. Empirical Processes in M-Estimation, by Sara van de Geer
- 7. Numerical Methods of Statistics, by John F. Monahan
- 8. A User's Guide to Measure Theoretic Probability, by David Pollard
- 9. The Estimation and Tracking of Frequency, by B. G. Quinn and E. J. Hannan
- 10. Data Analysis and Graphics using R, by John Maindonald and John Braun
- 11. Statistical Models, by A. C. Davison
- 12. Semiparametric Regression, by D. Ruppert, M. P. Wand, R. J. Carroll
- 13. Exercises in Probability, by Loic Chaumont and Marc Yor

Measure Theory and Filtering

Introduction and Applications

Lakhdar Aggoun

Department of Mathematics and Statistics, Sultan Qaboos University, Oman

Robert J. Elliott

Haskayne School of Business, University of Calgary

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

CAMBRIDGE UNIVERSITY PRESS

The Edinburgh Building, Cambridge CB2 2RU, UK

40 West 20th Street, New York, NY 10011–4211, USA

477 Williamstown Road, Port Melbourne, VIC 3207, Australia
Ruiz de Alarcón 13, 28014 Madrid, Spain

Dock House, The Waterfront, Cape Town 8001, South Africa

http://www.cambridge.org

© Cambridge University Press 2004

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2004

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times 10/13 pt. System LATEX $2_{\mathcal{E}}$ [TB]

A catalog record for this book is available from the British Library

Aggoun Lakhdar

Measure theory and filtering: introduction and applications/Lakhdar Aggoun, Robert J. Elliott.
p. cm. – (Cambridge series on statistical and probabilistic mathematics)
Includes bibliographical references and index.

ISBN 0 521 83803 7 (hardback)

Measure theory.
 Kalman filtering.
 Elliott, Robert J., 1940–
 Title.
 III. Series.
 QA312 A34 2004
 515'.42 – dc22
 2004040397

ISBN 0 521 83803 7 hardback

Contents

	Preface		
Par	tI T	Theory	1
1	Basic	3	
	1.1	Random experiments and probabilities	3
	1.2	Conditional probabilities and independence	9
	1.3	Random variables	14
	1.4	Conditional expectations	28
	1.5	Problems	34
2	Stochastic processes		38
	2.1	Definitions and general results	38
	2.2	Stopping times	46
	2.3	Discrete time martingales	50
	2.4	Doob decomposition	56
	2.5	Continuous time martingales	59
	2.6	Doob–Meyer decomposition	62
	2.7	Brownian motion	70
	2.8	Brownian motion process with drift	72
	2.9	Brownian paths	72
	2.10	Poisson process	75
	2.11	Problems	75
3	Stochastic calculus		79
	3.1	Introduction	79
	3.2	Quadratic variations	80
	3.3	Simple examples of stochastic integrals	87
	3.4	Stochastic integration with respect to a Brownian motion	90
	3.5	Stochastic integration with respect to general martingales	94
	3.6	The Itô formula for semimartingales	97
	3.7	The Itô formula for Brownian motion	108
	3.8	Representation results	115
	3.9	Random measures	123
	3.10	Problems	127

vi Contents

4	Chai	nge of measures	131
	4.1	Introduction	131
	4.2	Measure change for discrete time processes	134
	4.3	Girsanov's theorem	145
	4.4	The single jump process	150
	4.5	Change of parameter in poisson processes	157
	4.6	Poisson process with drift	161
	4.7	Continuous-time Markov chains	163
	4.8	Problems	165
Par	t II	Applications	167
5	Kalr	169	
	5.1	Introduction	169
	5.2	Discrete-time scalar dynamics	169
	5.3	Recursive estimation	169
	5.4	Vector dynamics	175
	5.5	The EM algorithm	177
	5.6	Discrete-time model parameter estimation	178
	5.7	Finite-dimensional filters	180
	5.8	Continuous-time vector dynamics	190
	5.9	Continuous-time model parameters estimation	196
	5.10	Direct parameter estimation	206
	5.11	Continuous-time nonlinear filtering	211
	5.12	Problems	215
6	Financial applications		217
	6.1	Volatility estimation	217
	6.2	Parameter estimation	221
	6.3	Filtering a price process	222
	6.4	Parameter estimation for a modified Kalman filter	223
	6.5	Estimating the implicit interest rate of a risky asset	229
7	A genetics model		235
	7.1	Introduction	235
	7.2	Recursive estimates	235
	7.3	Approximate formulae	239
8	Hido	242	
	8.1	Introduction	242
	8.2	Distribution estimation	243
	8.3	Parameter estimation	246
	8.4	Pathwise estimation	247
	8.5	A Markov chain model	248

	Contents	vii
8.6	Recursive parameter estimation	250
8.7	A tags loss model	250
8.8	Gaussian noise approximation	253
References		255
Index		257

Preface

Traditional courses for engineers in filtering and signal processing have been based on elementary linear algebra, Hilbert space theory and calculus. However, the key objective underlying such procedures is the (recursive) estimation of indirectly observed states given observed data. This means that one is discussing conditional expected values, given the observations. The correct setting for conditional expected value is in the context of measurable spaces equipped with a probability measure, and the initial object of this book is to provide an overview of required measure theory. Secondly, conditional expectation, as an inverse operation, is best formulated as a form of Bayes' Theorem. A mathematically pleasing presentation of Bayes' theorem is to consider processes as being initially defined under a "reference probability." This is an idealized probability under which all the observations are independent and identically distributed. The reference probability is a much nicer measure under which to work. A suitably defined change of measure then transforms the distribution of the observations to their real world form. This setting for the derivation of the estimation and filtering results enables more general results to be obtained in a transparent way.

The book commences with a leisurely and intuitive introduction to σ -fields and the results in measure theory that will be required.

The first chapter also discusses random variables, integration and conditional expectation. Chapter 2 introduces stochastic processes, with particular emphasis on martingales and Brownian motion.

Stochastic calculus is developed in Chapter 3 and techniques related to changing probability measures are described in Chapter 4.

The change of measure method is the basic technique used in this book.

The second part of the book commences with a treatment of Kalman filtering in Chapter 5. Recent results, which extend the Kalman filter and enable parameter estimates to be obtained, are included. These results are applied to financial models in Chapter 6. The final two chapters give some filtering applications to genetics and population models.

The authors would like to express their gratitude to Professor Nadjib Bouzar of the Department of Mathematics and Computer Science, University of Indianapolis, for the incredible amount of time he spent reading through the whole manuscript and making many useful suggestions.

Robert Elliott would like to acknowledge the support of NSERC and the hospitality of the Department of Applied Mathematics at the University of Adelaide, South Australia.

x Preface

Lakhdar Aggoun would like to acknowledge the support of the Department of Mathematics and Statistics, Sultan Qaboos University, Al-Khoud, Sultanate of Oman; the hospitality of the Department of Mathematical Sciences at the University of Alberta, Canada; and the Haskayne School of Business, University of Calgary, Calgary, Canada.