

Contents

	Preface	page	хi
1	Preliminaries		1
1.1	Linearization of the equations of fluid flow		1
1.2	The equations of Stokes flow		3
1.3	Reversibility of Stokes flow		7
1.4	The reciprocal identity		9
1.5	Uniqueness of solution, significance of homogeneous		
	boundary conditions, and further properties of Stokes flow		14
1.6	Unsteady Stokes flow		16
2	The boundary integral equations		19
2.1	Green's functions of Stokes flow		19
2.2	The free-space Green's function		22
2.3	The boundary integral equation		24
	Infinite flow		29
	Simplification by the use of proper Green's functions		30
	Eliminating the single-layer or double-layer potential		31
	The boundary integral equation as a Fredholm integral		
	equation		35
2.4	Flow in an axisymmetric domain		38
2.5	Applications to particulate flows		45
	The far flow due to an immersed particle		45
	The viscosity of a suspension of force-free particles		48
	Generalized Faxen relations		51
	Boundary effects on the motion of a particle		55
2.6	Two-dimensional Stokes flow		58
	The two-dimensional Stokeslet		60
	The boundary integral equation		61
	Semi-direct and indirect boundary integral methods		62
2.7	Unsteady Stokes flow		66
			vii

Viii	Contents	
	The unsteady Stokeslet	66
	The boundary integral equation	68
2.8	Swirling flow	71
3	Green's functions	76
_	Properties of Green's functions	76
	Properties of the pressure and stress	80
	Computation of Green's functions	82
	Flow bounded by an infinite plane wall	84
	Flow bounded internally by a solid sphere	87
3.4	Axisymmetric flow	88
	A ring of point forces	89
	A ring of point forces in a cylindrical tube	89
	An array of rings of point forces in a cylindrical tube	91
3.5	Two-dimensional flow	93
	A point force above an infinite plane wall	93
	An array of point forces in an infinite fluid	94
	An array of point forces above a plane wall	95
	A point force between two parallel plane walls	96
	An array of point forces between two parallel plane walls	99
	A point force in the exterior of a circular cylinder	99
3.6	Unsteady flow	100
4	Generalized boundary integral methods	103
4.1	The single-layer potential	104
4.2	Representation of a flow in terms of a single-layer potential	107
4.3	The double-layer potential	109
4.4	Representation of a flow in terms of a double-layer	442
	potential	113
4.5	The eigenvalues of the double-layer potential	114
	Internal flow	116
	External flow	117
	Summary	120
4.6	Regularizing the double-layer potential: removing the	120
	marginal eigenvalues	120
	Removing the $\beta = 1$ eigenvalue	121
47	Removing both eigenvalues	124 127
	A compound double-layer representation for external flow	130
	The resistance problem	130
4.7	The mobility problem	133

	Contents	1X
5	Flow due to interfaces	139
5.1	Introduction	139
5.2	The boundary integral formulation	141
5.3	The single-layer formulation	143
5.4	Investigation of the integral equations	145
5.5	The discontinuity in the interfacial surface force	147
	Interfaces with isotropic tension	148
	Interfaces with elastic behaviour	151
	Incompressible interfaces	155
5.6	Computing the shape of interfaces	156
	Evolving interfaces	156
	Stationary interfaces	157
6	The boundary element method	159
6.1	General procedures	159
6.2	Boundary element representations	162
	Planar boundaries	163
	Three-dimensional boundaries	167
	Three-dimensional boundary elements	171
6.3	Adaptive representation of evolving planar boundaries	176
6.4	Numerical computation of the boundary integrals	177
6.5	Accuracy of boundary element methods	180
6.6	Computer implementations	182
7	The singularity method	190
7.1	Introduction	190
7.2	The singularities of Stokes flow	192
	Free-space singularities	192
	Singularities of bounded flow	196
	Singularities of internal flow	198
	The contribution of the singularities to the global	
	properties of a flow	199
	Two-dimensional flow	199
7.3	Singularity representations	201
	A translating solid sphere	202
	A sphere in linear flow	203
	Flow due to a rotating sphere	205
	Flow due to the translation or rotation of a prolate	
	spheroid	206
	A translating liquid drop	206

Contents X Further singularity representations 208 Thin and slender bodies 208 7.4 Numerical methods 210 7.5 Unsteady flow 212 Answers and keys 215 References 249 Index 257