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Section II

Elements of solid mechanics

1
Nature of elastic stiffness

The theory of elasticity is a structure of beauty and complexity. No one person sat down and
wrote it out. From its first glimmerings in the mind of Galileo (ca. 1638) to the settlement
of the question of the minimum number of coefficients required to specify a general elastic
response took about 250 years. The latter work was done by Voigt (ca. 1888). Even then
very little was known about the underlying factors that determine the coefficients; that is,
the chemical properties that determine how resistant a material is to changes in its volume
(the bulk modulus), and changes in its shape (the shear moduli). Even now the theory of
shear moduli is only partially satisfactory.
Given the ongoing controversy regarding which comes first, practice or science, it is of

interest to note that the early history of the theory of elasticity wasmotivated by the practical
interests of those whomade the important early advances. Leonardo da Vinci was interested
in the design of arches. Galileo was concerned with naval architecture. Hooke wanted to
make better clock springs. And Mariotte needed to build effective water piping to supply
the palace at Versailles.
Complexity in the theory of elasticity is unavoidable because elastic behavior is intrin-

sically three-dimensional. Furthermore, most materialsare not structurally isotropic; they
have textures. Something as simple as a wooden post with a square cross-section looks dif-
ferent, in general, along each of the perpendiculars to its faces. These structural differences
translate into different elastic stiffnesses in the three perpendicular directions. The situation
is further complicated by the need to describe the shear responses in terms of a shear plane,
plus a direction on the plane.
If forces are applied to the opposite ends of a slender bar, it will elongate or contract in

proportion to the size of the forces (Hooke’s Law). The coefficient of response is Young’s
modulus. However, the bar might also be twisted around its length, or it might be bent
around an axis perpendicular to its length. The twisting mode of deformation requires
another response coefficient, the shear modulus. If the slenderness of the bar is reduced to
the limit of a line, both of its elastic moduli become meaningless. They cannot exist in the
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6 Elements of solid mechanics

absence of finite atoms, and the bonds between the atoms which are formed by electrons
that behave according to quantum mechanics.
Consider a squaremesh of wires soldered together at the intersections of the wires (a wire

screen). Suppose a square piece is cut from themesh with the edges of the square parallel to
the wires. If forces are applied parallel to the edges of the square, the response will be stiff,
whereas if forces are applied parallel to one of the diagonals of the square, the response will
be relatively soft. Thus two distinctly different response coefficients are needed to describe
the square’s mechanical behavior.
Next imagine a three-dimensional framework of wires in a cubic array soldered together

at the nodes of the wires (on a larger scale this would be like the framework of a steel
building with all of the girders of the same length). This will have three different response
coefficients in general: one for forces applied parallel to thewires, another for forces applied
parallel to the diagonals of the faces of the cubes, and the third for forces applied along the
diagonals of the cubes (lines connecting the opposite far corners). The three coefficients
can be reduced to two by adjusting the design of the nodes; thenthe structure is said to be
elastically isotropic.
More response coefficients will be required if the symmetry of the structure is less than

that of a cube. For example,if the framework consists of rectangular parallelepipeds, the
number of coefficients increases to nine (orthorhombic symmetry). Then if the number
of different lengths is reduced from three to two (tetragonal symmetry), the number of
coefficients drops from nine to six; and if thenumber of different lengths is further reduced
to one, only three coefficients are needed (cubic symmetry) as already indicated.
Clearly, a standardized framework is necessary within which the elastic coefficients can

be defined. This is provided by tensor calculus which, as the name suggests, was devised
for this purpose. It is necessarily more complex than vector calculus because the elastic
state of a solid requires both tensions (or compressions) and shears to describe it.
The first step is to define what is meant bystressand bystrain. This will include a

definition of the notation that is used to distinguish the various possible components of the
stress and strain tensors. Then the response coefficients that connect them can be defined.
One of the purposes of this book is to show how the response coefficients (elastic con-

stants) are determined by the chemical and physical constitutions of various solids. This
involves the interior geometry of the solid, and its corresponding electronic structure.
Temperature and time both have small and large effectson elastic stiffness depending on

thematerial. At very low temperatures elastic stiffness becomes independent of temperature,
but at higher temperatures (near the Debye temperature and above) variousanelasticeffects
occur. Then a given material has two stiffnesses: one for fast loading when there is too little
time for anelastic relaxation (called the unrelaxed modulus), and the other for slow loading
which allows relaxation to occur (called the relaxedmodulus). The difference between these
two stiffnesses is small for solids in which the atoms are densely packed. A much larger
effect is found in less densematerials suchaselastomers (rubber-likematerials). In these, the
molecules tend to curl up into coils which have high entropy because they can be formed in
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many different ways. When applied tractions stretch them, there are fewer ways for them to
coil so their entropies decrease. This increases their free energies, so they resist stretching,
but relatively weakly. They are sometimes said to have “entropic elasticity”, as contrasted
with the more usual “enthalpic elasticity”.
Theelastic responsecoefficients are themost fundamental of all of thepropertiesof solids,

and themost important sub-set of them is the shear coefficients. If thesewere not sufficiently
large, all matter would be liquid-like. There would be no aeronautical, civil, or mechanical
engineering. Furthermore, modern micro-electronics, as well as opto-electronics would not
be possible. The elastic stiffnesses set limits on how strong materials can be, how slowly
geological processes occur, and how natural structures respond to wind and rain. This is
why the scientific study that began with Galileo continues today.
Imagine a world in which everything has the same elastic stiffness. If all the bulk stiff-

nesses (the resistance to volume changes) were the same, nails could not be driven into
wood, and plows could not turn earth. Or, suppose that the stiffness of aluminum were
one-fifth as large as it actually is. Then the wing tips of large aircraft would drag on the
ground because the elastic deflections would be so large. It is for reasons like these that
the elastic properties of solids have great engineering significance, and why the theory of
elasticity played such an important role in the histories of bothengineering and physics.
The architecture of the theory of elasticity is now considered to be applied mathematics,

but once was in the mainstream of the development of calculus and differential equations,
as well as physics. For a long time (centuries), the elastic properties werecoefficients to
be measured and tabulated. Their relationship to the properties of atomic particles, and to
one another, awaited the development of quantummechanics. Although there remain some
aspects of the theory that are not entirely satisfactory, the progress that has been made
toward a general theory is impressive.
All forms of matter (gases, liquids, solids, plasmas, etc.) resist changes of volume, and

the amount of this resistance is measured by means of the bulk modulus. Its inverse is
the compressibility. Solids are defined by their shear stiffness moduli. These have inverses
calledshear compliances.Since theshear response isdifficult to separate from thevolumetric
response, the overall description of elastic behavior is complicated.
The primary factor determining elastic stiffness is chemical constitution because it de-

termines the internal bonding. Broadly, there are four kinds of bonding: covalent, ionic,
metallic, and molecular. Each has its idiosyncrasies. Thestiffest bonds are of covalent
character, while the least stiff are molecular.
In addition to their shear stiffnesses, solids have another special feature. They can be

either perfect, nearly perfect, or imperfect, in terms of their structural geometry. An ideal, or
perfect, solid has a specific crystal structure, and each site of the crystal structure is occupied
by a specific atomic species. However, virtually all solids contain defects, including thermal
vibrations, vacancies, interstitials, impurity atoms, dislocations, stacking faults, domain
boundaries, and grain boundaries. These affect the elastic stiffness, particularly the shear
stiffness.
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The time dependence of elasticity, oranelasticresponse, results from a variety of effects.
Some of these are the thermo-elastic effect, the hopping of carbon atoms in iron (Snoek
effect), and the stress-induced ordering of atomic pairs in some alloys. The anelasticity of
elastomers (rubber) is a much larger effect.
Changes of shape (strains) can be induced by fields other than stresses. Electric fields

cause electrostriction, or piezoelectric strains; and magnetic fields cause magnetostriction.
An aimhere is to describe the connections of the various response coefficients to chemical

constitution. This is unlike many books on strength which describe the field variables,
leaving the elastic stiffnesses as coefficients to be measured and tabulated.




