ELECTRONIC BASIS OF THE STRENGTH OF MATERIALS

JOHN J. GILMAN

PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building, Trumpington Street, Cambridge, United Kingdom

> CAMBRIDGE UNIVERSITY PRESS The Edinburgh Building, Cambridge CB2 2RU, UK 40 West 20th Street, New York, NY 10011-4211, USA 477 Williamstown Road, Port Melbourne, VIC 3207, Australia Ruiz de Alarcón 13, 28014 Madrid, Spain Dock House, The Waterfront, Cape Town 8001, South Africa

> > http://www.cambridge.org

© John Gilman 2003

This book is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part may take place without the written permission of Cambridge University Press.

First published 2003

Printed in the United Kingdom at the University Press, Cambridge

Typeface Times 10/13 pt System $LAT_{FX} 2_{\mathcal{E}}$ [TB]

A catalogue record for this book is available from the British Library

Library of Congress Cataloguing in Publication data

Gilman, John J. (John Joseph) Electronic basis of the strength of materials / John J. Gilman. p. cm. Includes bibliographical references and index. ISBN 0 521 62005 8 1. Strength of materials. 2. Electronic structure. I. Title. TA405.G54 2003 620.1'12 - dc21 2002073591

ISBN 0 521 62005 8 hardback

Contents

	Pr	eface	<i>page</i> ix			
Section I	In	Introduction				
Section II	El	ements of solid mechanics	5			
	1	Nature of elastic stiffness	5			
	2	Generalized stress	9			
		2.1 Specification of a plane	10			
		2.2 Resolution of an area element	11			
		2.3 Resolution of a force element	12			
		2.4 Definition of the local state of stress	12			
		2.5 Principal stresses	14			
	3	Generalized strain	16			
	4	Elastic coefficients	20			
		4.1 Cubic crystals	23			
		4.2 Strain energy	24			
		4.3 Contracted notation	24			
		4.4 Young's modulus	25			
		4.5 Cauchy's relations	27			
Section III	El	ements of electron mechanics	31			
	5	Properties of electrons	31			
	6	Quantum states	37			
		6.1 Wave-like fields	38			
		6.2 Particle on a ring	40			
		6.3 Particle on a sphere	42			
		6.4 The most simple atom (hydrogen)	45			
		6.5 Electron spin	49			
		6.6 The Pauli Principle	50			
		6.7 Summing up	51			
	7	Periodic patterns of electrons	52			
	8	Heisenberg's Principle	56			
		8.1 Heisenberg hydrogen atom	60			

Section IV	Ela	stic stif	fness	63	
	9 Cohesion of atoms				
		9.1	Limiting bond types	66	
		9.2	Covalent bonds	67	
		9.3	The importance of symmetry factors	69	
		9.4	Ionic bonding	73	
		9.5	Metallic bonding	73	
		9.6	London forces	74	
		9.7	Hydrogen bonding	75	
		9.8	Magnetic contributions to cohesion	75	
	10	Intram	Intramolecular cohesion		
		10.1	Covalent diatomic molecules (time independent)	77	
		10.2	Time dependent theory (resonance)	80	
		10.3	Polyatomic molecules	87	
	11	Interm	olecular cohesion	97	
		11.1	London forces	97	
		11.2	Polarizability	100	
		11.3	Casimir forces	103	
		11.4	Derjaguin forces	103	
		11.5	Dipole-dipole crystals	103	
		11.6	Hydrogen bonds	106	
	12	Bulk n	nodulus	110	
		12.1	Bulk stiffnesses of the elements (chemical factors)	111	
		12.2	Metals	113	
		12.3	Simple metals	113	
		12.4	Alkali metals	115	
		12.5	Transition metals	117	
		12.6	Theory of the bulk modulus (simple metals)	121	
		12.7	The lanthanides	128	
		12.8	Hard metals (metalloid-metal interstitial compounds)	128	
		12.9	Intermetallic compounds	129	
		12.10	Covalent crystals	129	
		12.11	Ionic crystals	133	
		12.12	Fluorites	137	
		12.13	Chalcogenides (oxygen column of the Periodic Table)	137	
		12.14	Silicates	138	
		12.15	Molecular crystals	139	
	13	Shear modulus			
		13.1	General comments	142	
		13.2	Shear stiffnesses	143	
		13.3	The Cauchy relations	146	

Contents

vi

		Contents		
	13.4 Simple metals			147
		13.5	Failure of radial potentials	150
		13.6	Alkali metals	153
		13.7	Compounds	155
		13.8	Ionic crystals	159
		13.9	Covalent crystals	162
		13.10	Isotope effect	169
		13.11	Quasicrystals	169
		13.12	Polymers	170
		13.13	Atomic vibrations	171
	14	Entrop	Entropic elasticity (polymers)	
		14.1	Introduction	174
		14.2	Enthalpic stiffness	175
		14.3	Entropic stiffness	175
		14.4	Rubbery elasticity	176
	15	Univer	sality and unification	179
		15.1	Bulk modulus	180
		15.2	Shear stiffness	181
		15.3	Plastic resistance (physical hardness)	181
		15.4	Shear-induced phase transitions	182
		15.5	Shear-induced chemical reactions	182
Section V	Pla	stic stre	ngth	185
	16	Macro	scopic plastic deformation	185
		16.1	Distinction between elastic and plastic deformations	187
		16.2	Plastic equation of state	188
		16.3	Modes of plastic deformation	189
	17	Microscopic plastic deformation		193
		17.1	Plasticity as linear transport	193
		17.2	Multiplication of dislocations	195
		17.3	Some kinematics	198
		17.4	Importance of dislocation mobility	199
	18	Disloc	ation mobility	201
		18.1	Introduction	201
		18.2	Mobilities, general	201
		18.3	Dislocations with low mobilities	204
		18.4	Steadiness of motion	205
		18.5	Resistance to individual dislocation motion	206
		18.6	Chemical theory of dislocation mobility	224
		18.7	Molecular solids	234
		18.8	Alloys and intermetallic compounds	236
		18.9	Oxide crystals (including silicates)	238

Contents

		18 10	Glasses	239
		18 11	Self-interactions (strain hardening)	237
		18.12	Activation of motion	240
Section VI	Fra	10.12	Activation of motion	241
Section VI	10	Ma harden familie		247
	19	Mecha		247
		19.1	Elements of cracking	247
		19.2	Fracture surface energies	249
		19.3	Inelastic effects	251
		19.4	Environmental factors	252
	20	Surfac	e and interfacial energies	254
		20.1	Introduction	254
		20.2	Surface states	255
		20.3	Surface energies	257
		20.4	Surface energy from the Heisenberg Principle	258
		20.5	Surface energy from elastic stiffness	260
		20.6	Surface energy from plasmon theory	261
		20.7	Interfacial energies from plasmon theory	262
		20.8	Long-range attraction of cleavage faces	262
		20.9	Importance of polarizability	265
	21	Fractur	ring rates	267
		21.1	Introduction	267
		21.2	Thermal activation	267
		21.3	Fracture via tunneling	269
		21.4	Zener tunneling	271
		21.5	Conformance of experimental data with	
			the tunneling equation	272
	Ind	ex		277

Section II

Elements of solid mechanics

1

Nature of elastic stiffness

The theory of elasticity is a structure of beauty and complexity. No one person sat down and wrote it out. From its first glimmerings in the mind of Galileo (ca. 1638) to the settlement of the question of the minimum number of coefficients required to specify a general elastic response took about 250 years. The latter work was done by Voigt (ca. 1888). Even then very little was known about the underlying factors that determine the coefficients; that is, the chemical properties that determine how resistant a material is to changes in its volume (the bulk modulus), and changes in its shape (the shear moduli). Even now the theory of shear moduli is only partially satisfactory.

Given the ongoing controversy regarding which comes first, practice or science, it is of interest to note that the early history of the theory of elasticity was motivated by the practical interests of those who made the important early advances. Leonardo da Vinci was interested in the design of arches. Galileo was concerned with naval architecture. Hooke wanted to make better clock springs. And Mariotte needed to build effective water piping to supply the palace at Versailles.

Complexity in the theory of elasticity is unavoidable because elastic behavior is intrinsically three-dimensional. Furthermore, most materials are not structurally isotropic; they have textures. Something as simple as a wooden post with a square cross-section looks different, in general, along each of the perpendiculars to its faces. These structural differences translate into different elastic stiffnesses in the three perpendicular directions. The situation is further complicated by the need to describe the shear responses in terms of a shear plane, plus a direction on the plane.

If forces are applied to the opposite ends of a slender bar, it will elongate or contract in proportion to the size of the forces (Hooke's Law). The coefficient of response is Young's modulus. However, the bar might also be twisted around its length, or it might be bent around an axis perpendicular to its length. The twisting mode of deformation requires another response coefficient, the shear modulus. If the slenderness of the bar is reduced to the limit of a line, both of its elastic moduli become meaningless. They cannot exist in the

absence of finite atoms, and the bonds between the atoms which are formed by electrons that behave according to quantum mechanics.

Consider a square mesh of wires soldered together at the intersections of the wires (a wire screen). Suppose a square piece is cut from the mesh with the edges of the square parallel to the wires. If forces are applied parallel to the edges of the square, the response will be stiff, whereas if forces are applied parallel to one of the diagonals of the square, the response will be relatively soft. Thus two distinctly different response coefficients are needed to describe the square's mechanical behavior.

Next imagine a three-dimensional framework of wires in a cubic array soldered together at the nodes of the wires (on a larger scale this would be like the framework of a steel building with all of the girders of the same length). This will have three different response coefficients in general: one for forces applied parallel to the wires, another for forces applied parallel to the diagonals of the faces of the cubes, and the third for forces applied along the diagonals of the cubes (lines connecting the opposite far corners). The three coefficients can be reduced to two by adjusting the design of the nodes; then the structure is said to be elastically isotropic.

More response coefficients will be required if the symmetry of the structure is less than that of a cube. For example, if the framework consists of rectangular parallelepipeds, the number of coefficients increases to nine (orthorhombic symmetry). Then if the number of different lengths is reduced from three to two (tetragonal symmetry), the number of coefficients drops from nine to six; and if the number of different lengths is further reduced to one, only three coefficients are needed (cubic symmetry) as already indicated.

Clearly, a standardized framework is necessary within which the elastic coefficients can be defined. This is provided by tensor calculus which, as the name suggests, was devised for this purpose. It is necessarily more complex than vector calculus because the elastic state of a solid requires both tensions (or compressions) and shears to describe it.

The first step is to define what is meant by *stress* and by *strain*. This will include a definition of the notation that is used to distinguish the various possible components of the stress and strain tensors. Then the response coefficients that connect them can be defined.

One of the purposes of this book is to show how the response coefficients (elastic constants) are determined by the chemical and physical constitutions of various solids. This involves the interior geometry of the solid, and its corresponding electronic structure.

Temperature and time both have small and large effects on elastic stiffness depending on the material. At very low temperatures elastic stiffness becomes independent of temperature, but at higher temperatures (near the Debye temperature and above) various *anelastic* effects occur. Then a given material has two stiffnesses: one for fast loading when there is too little time for anelastic relaxation (called the unrelaxed modulus), and the other for slow loading which allows relaxation to occur (called the relaxed modulus). The difference between these two stiffnesses is small for solids in which the atoms are densely packed. A much larger effect is found in less dense materials such as elastomers (rubber-like materials). In these, the molecules tend to curl up into coils which have high entropy because they can be formed in many different ways. When applied tractions stretch them, there are fewer ways for them to coil so their entropies decrease. This increases their free energies, so they resist stretching, but relatively weakly. They are sometimes said to have "entropic elasticity", as contrasted with the more usual "enthalpic elasticity".

The elastic response coefficients are the most fundamental of all of the properties of solids, and the most important sub-set of them is the shear coefficients. If these were not sufficiently large, all matter would be liquid-like. There would be no aeronautical, civil, or mechanical engineering. Furthermore, modern micro-electronics, as well as opto-electronics would not be possible. The elastic stiffnesses set limits on how strong materials can be, how slowly geological processes occur, and how natural structures respond to wind and rain. This is why the scientific study that began with Galileo continues today.

Imagine a world in which everything has the same elastic stiffness. If all the bulk stiffnesses (the resistance to volume changes) were the same, nails could not be driven into wood, and plows could not turn earth. Or, suppose that the stiffness of aluminum were one-fifth as large as it actually is. Then the wing tips of large aircraft would drag on the ground because the elastic deflections would be so large. It is for reasons like these that the elastic properties of solids have great engineering significance, and why the theory of elasticity played such an important role in the histories of both engineering and physics.

The architecture of the theory of elasticity is now considered to be applied mathematics, but once was in the mainstream of the development of calculus and differential equations, as well as physics. For a long time (centuries), the elastic properties were coefficients to be measured and tabulated. Their relationship to the properties of atomic particles, and to one another, awaited the development of quantum mechanics. Although there remain some aspects of the theory that are not entirely satisfactory, the progress that has been made toward a general theory is impressive.

All forms of matter (gases, liquids, solids, plasmas, etc.) resist changes of volume, and the amount of this resistance is measured by means of the bulk modulus. Its inverse is the compressibility. Solids are defined by their shear stiffness moduli. These have inverses called shear compliances. Since the shear response is difficult to separate from the volumetric response, the overall description of elastic behavior is complicated.

The primary factor determining elastic stiffness is chemical constitution because it determines the internal bonding. Broadly, there are four kinds of bonding: covalent, ionic, metallic, and molecular. Each has its idiosyncrasies. The stiffest bonds are of covalent character, while the least stiff are molecular.

In addition to their shear stiffnesses, solids have another special feature. They can be either perfect, nearly perfect, or imperfect, in terms of their structural geometry. An ideal, or perfect, solid has a specific crystal structure, and each site of the crystal structure is occupied by a specific atomic species. However, virtually all solids contain defects, including thermal vibrations, vacancies, interstitials, impurity atoms, dislocations, stacking faults, domain boundaries, and grain boundaries. These affect the elastic stiffness, particularly the shear stiffness. The time dependence of elasticity, or *anelastic* response, results from a variety of effects. Some of these are the thermo-elastic effect, the hopping of carbon atoms in iron (Snoek effect), and the stress-induced ordering of atomic pairs in some alloys. The anelasticity of elastomers (rubber) is a much larger effect.

Changes of shape (strains) can be induced by fields other than stresses. Electric fields cause electrostriction, or piezoelectric strains; and magnetic fields cause magnetostriction.

An aim here is to describe the connections of the various response coefficients to chemical constitution. This is unlike many books on strength which describe the field variables, leaving the elastic stiffnesses as coefficients to be measured and tabulated.