

CONTENTS

List of figures	page x1
List of tables	xvii
Preface	xxi
1. Tallying and Counting: Fundamentals	1
Paleozoological Concepts	4
Mathematical and Statistical Concepts	8
Scales of Measurement	8
Measured and Target Variables: Reliability and Validity	11
Absolute and Relative Frequencies and Closed Arrays	13
Discussion	16
Background of Some Faunal Samples	17
2. Estimating Taxonomic Abundances: NISP and MNI	21
The Number of Identified Specimens (NISP)	27
Advantages of NISP	28
Problems with NISP	29
Problems, Schmoblems	30
A Problem We <i>Should</i> Worry About	36
The Minimum Number of Individuals (MNI)	38
Strengths(?) of MNI	43
Problems with MNI	45
Aggregation	57
Defining Aggregates	67
Discussion	69
Which Scale of Measurement?	71
Resolution	78
Conclusion	81

vii

viii contents

3.	Estimating Taxonomic Abundances: Other Methods	83
	Biomass and Meat Weight	84
	Measuring Biomass	85
	Problems with Measuring Biomass (based on MNI)	86
	Solving Some Problems in Biomass Measurement	88
	Measuring Meat Weight	89
	The Weight Method (Skeletal Mass Allometry)	93
	Bone Weight	102
	Bone Size and Animal Size Allometry	108
	Ubiquity	114
	Matching and Pairing	119
	More Pairs Means Fewer Individuals	121
	The Lincoln–Petersen Index	123
	Identifying Bilateral Pairs	129
	Correcting for Various Things	134
	Size	137
	Discussion	139
4.	Sampling, Recovery, and Sample Size	141
	Sampling to Redundancy	143
	Excavation Amount	144
	NISP as a Measure of Sample Redundancy	146
	Volume Excavated or NISP	149
	The Influences of Recovery Techniques	152
	Hand Picking Specimens by Eye	152
	Screen Mesh Size	154
	To Correct or Not to Correct for Differential Loss	156
	Summary	158
	The Species—Area Relationship	159
	Species—Area Curves Are Not All the Same	164
	Nestedness	167
	Conclusion	171
5.	Measuring the Taxonomic Structure and Composition ("Diversity")	
	of Faunas	172
	Basic Variables of Structure and Composition	174
	Indices of Structure and Similarity	178
	Taxonomic Richness	179
	Taxonomic Composition	185

	CON	TENTS ix
Taxonomic Heterogeneity		192
Taxonomic Evenness		194
Discussion		198
Trends in Taxonomic Abundances		203
Conclusion		209
6. Skeletal Completeness, Frequencies of	Skeletal Parts, and	
Fragmentation		214
History of the MNE Quantitative Unit		215
Determination of MNE Values		218
MNE Is Ordinal Scale at Best		222
A Digression on Frequencies of Left a	nd Right Elements	229
Using MNE Values to Measure Skeletal-	Part Frequencies	232
Modeling and Adjusting Skeletal-Part	Frequencies	233
Measuring Skeletal Completeness		241
A Suggestion		244
Measuring Fragmentation		250
Fragmentation Intensity and Extent		250
The NISP:MNE Ratio		251
Discussion		254
Conclusion		261
7. Tallying for Taphonomy: Weathering, I	Burning, Corrosion,	
and Butchering		264
Yet Another Quantitative Unit		266
Weathering		267
Chemical Corrosion and Mechanical Ab	rasion	273
Burning and Charring		274
A Digression		276
Gnawing Damage		277
Butchering Marks		279
Types of Butchering Damage		280
Tallying Butchering Evidence: Genera	l Comments	281
Tallying Percussion Damage		283
Tallying Cut Marks and Cut Marked	Specimens	284
The Surface Area Solution		286
Discussion		291
Conclusion		296

X CONTENTS

8. Final I noughts	299
Counting as Exploration	302
Glossary	309
References	313
Index	345