Elektrische Antriebe - Grundlagen

Mit durchgerechneten Übungs- und Prüfungsaufgaben

Bearbeitet von
Dierk Schröder

1. Auflage 2013. Buch. XXV, 775 S. Softcover
ISBN 978 3 642 30470 5
Format (B x L): 16,8 x 24 cm
Gewicht: 1320 g

Weitere Fachgebiete > Technik > Technik Allgemein

Zu Leseprobe

schnell und portofrei erhältlich bei

beck-shop.de
DIE FACHBUCHHANDLUNG

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte.
Einführung

1 Antriebsanordnungen: Grundlagen

1.1 Mechanische Grundgesetze ... 9
1.1.1 Analogien zwischen Translation und Rotation 9
1.1.2 Übertragungsstellen und Getriebe 13
1.1.3 Drehmomentbilanz im Antriebssystem 17
1.1.4 Normierung der Gleichungen und Differentialgleichungen 18
1.2 Zeitliches Verhalten des rotierenden mechanischen Systems 21
1.2.1 Analytische Behandlung ... 21
1.2.2 Graphische Behandlung von Bewegungsvorgängen 24
1.2.3 Numerische Lösung über Differenzengleichung 27
1.3 System Arbeitsmaschine–Antriebsmaschine 28
1.3.1 Stationäres Verhalten der Arbeitsmaschine 28
1.3.1.1 Widerstandsraum \(M_W = \text{const.} \) 28
1.3.1.2 Widerstandsraum \(M_W = f(N, V) \) 29
1.3.1.3 Widerstandsraum \(M_W = f(\varphi) \) 30
1.3.1.4 Widerstandsraum \(M_W = f(r) \) 30
1.3.1.5 Widerstandsraum \(M_W = f(t) \) 31
1.3.2 Stationäres Verhalten der Antriebsmaschinen: \(M_M = f(N, \varphi) \) 31
1.3.2.1 Asynchrones bzw. Nebenschluß-Verhalten 32
1.3.2.2 Konstant-Moment-Verhalten 33
1.3.2.3 Synchrones Verhalten ... 33
1.3.2.4 Beispiel: Gleichstrom–Nebenschlußmaschine 34
1.3.3 Statische Stabilität im Arbeitspunkt 36
1.3.3.1 Graphische Methoden ... 36
1.3.3.2 Rechnerische Stabilitätsprüfung über die linearisierte Differentialgleichung im Arbeitspunkt 37
1.3.3.3 Stabilitätsprüfung über die Laplace-Transformation 38
1.3.4 Benessung der Antriebsanordnung 40
1.3.4.1 Arbeitsmaschinen ... 40
1.3.4.2 Antriebsmaschinen ... 41
II Inhaltsverzeichnis

2 Verluste und Erwärmung im Antriebssystem

2.1 Verluste an der Übertragungsstelle ... 44
2.1.1 Leistungsbilanz ... 44
2.1.2 Verlustarbeit an der Übertragungsstelle „Motor“ 47
2.1.3 Verluste beim Beschleunigen ... 49
2.2 Erwärmung elektrischer Maschinen ... 52
2.2.1 Verlustleistung und Temperatur .. 52
2.2.2 Rechengang: mathematische Grundlagen 56
2.2.3 Strombelastung und Verlustleistung 57
2.2.4 Normen und Betriebsarten .. 59
2.2.4.1 Betriebsarten und Bemessungsdaten 61
2.2.4.2 Dauerbetrieb (Betriebsart S1) .. 62
2.2.4.3 Kurzzeitbetrieb (Betriebsart S2) 62
2.2.4.4 Aussetzbetrieb (Betriebsart S3) .. 63
2.2.4.5 Aussetzbetrieb mit Einfluß des Anlaufvorgangs (Betriebsart S4) 65
2.2.4.6 Aussetzbetrieb mit elektrischer Bremsung (Betriebsart S5) 66
2.2.4.7 Ununterbrochener periodischer Betrieb mit Aussetzbelastung (Betriebsart S6) .. 66
2.2.4.8 Ununterbrochener periodischer Betrieb mit elektrischer Bremsung (Betriebsart S7) .. 66
2.2.4.9 Ununterbrochener periodischer Betrieb mit Last- und Drehzahländerungen (Betriebsart S8) ... 68
2.2.4.10 Ununterbrochener Betrieb mit nichtperiodischer Last- und Drehzahländerung (Betriebsart S9) .. 68
2.2.4.11 Betrieb mit diskretem konstantem Belastungszustand (Betriebsart S10) ... 69
2.2.5 Mittelwertbetrieb bei periodischer Belastung 69
2.3 Maschinen mit mehreren Bemessungsbetrieben 72
2.4 Aufstellungshöhe, Temperatur und Kühlmittel 72
2.4.1 Belüftung und Kühlung .. 73
2.4.2 Elektrische Bedingungen ... 74

3 Gleichstrommaschine

3.1 Einführung ... 80
3.2 Theorie der Felder .. 81
3.2.1 Elektrostatisches Feld, Coulomb-Kraft 82
3.2.2 Magnetfeld - Lorentzkraft .. 84
3.2.3 Magnetfeld - Induktionsspannung 87
3.2.3.1 Wechselwirkungen zwischen Ladungen – Lenz’sche Regel 90
3.2.4 Magnetische Feldstärke .. 90
3.2.5 Magnetische Flussdichte .. 94
3.2.5.1 Lorentzkraft ... 94
3.2.5.2 Materialabhängigkeit der Lorentzkraft bzw. magnetischen Flussdichte .. 95
3.2.5.3 Magnetische Flussdichte in nicht ferromagnetischen Materialien ... 100
3.2.5.4 Magnetische Flussdichte in ferromagnetischen Materialien (Hysterese Kurve) .. 100
3.2.6 Wichtige Eigenschaften des magnetischen Feldaes für das Verständnis elektrischer Maschinen 106
3.2.6.1 Magnetfeldbindende Wirkung ferromagnetischer Materialien .. 106
3.2.6.2 Quellenfreiheit des magnetischen Feldaes ... 107
3.2.6.3 Kraft auf bewegte Ladungen im Luftspalt zwischen ferromagnetischen Materialien 108
3.2.6.4 Oberflächenströme .. 109
3.2.6.5 Wechselwirkung zwischen ferromagnetischen Werkstoffen ... 110
3.2.6.6 Magnetischer Kreis .. 114
3.2.6.7 Grenzflächenkräfte: magnetischer Querdruck und Längszug ... 120
3.2.6.8 Brechungsgesetze für magnetische Feldlinien .. 126
3.2.7 Zusammenfassung .. 137
3.3 Physikalisches Funktionsprinzip der Gleichstrommaschine .. 138
3.3.1 Prinzip der Momenterzeugung – Ableitung der Momenten-Grundgleichung .. 139
3.3.1.1 Betrachtung der Gleichstrommaschine als magnetischen Kreis .. 139
3.3.1.2 Kommutator .. 143
3.3.1.3 Ableitung der Momenten-Grundgleichung .. 147
3.3.1.4 Rotor mit Nuten .. 148
3.3.2 Beschleunigung des Rotors – Ableitung der Mechanik-Grundgleichung ... 152
3.3.3 Entstehung einer Gegenspannung – Ableitung der Bewegungsinduktions-Grundgleichung 152
3.3.4 Eigeninduktivität des Rotors – Ableitung der Ankerkreis-Grundgleichung ... 155
3.4 Signalflußplan der Gleichstrom–Nebenschlußmaschine .. 157
3.4.1 Ankerkreis .. 157
3.4.2 Feldkreis, Erregerkreis .. 163
3.4.3 Zusammenfassung von Ankerkreis und Erregerkreis .. 170
3.5 Signalflußpläne, Übergangsverhalten ... 176
3.5.1 Führungsverhalten und Führungs–Übertragungsfunktion .. 176
3.5.2 Lastverhalten und Stör–Übertragungsfunktion .. 179
3.5.3 Einfluß von ψ auf n (Feldschwächung) .. 179
3.5.4 Zusammengefaßter Plan (linearisiert, überlagert, vereinfacht) ... 182
3.6 Steuerung der Drehzahl .. 184
3.6.1 Drehzahlsteuerung durch die Ankerspannung .. 184
3.6.2 Steuerung durch den Fluß .. 186
3.6.3 Steuerung durch Ankerspannung und Feld .. 187
Stellglieder und Regelung für die Gleichstrommaschine

4

Einleitung Leistungselektronik
Gleichstromsteller, DC-DC-Wandler
Tiefsetzsteller
Steuerverfahren für Gleichstromsteller
Pulsweitensteuerung (T konstant)
Pulsfolgesteuerung (T variabel)
Hysterese-Regelung des Gleichstromstellers
Gleichstromstellerschaltungen für Ein- und Mehr-Quadrant-Betrieb von Gleichstrommaschinen
Prinzip des Tiefsetzstellers (Buck-Wandler)
Prinzip des Hochsetzstellers (Boost-Wandler)
Motorischer Ein-Quadrant-Betrieb
Generatorischer Ein-Quadrant-Betrieb
Zwei-Quadrant-Betrieb
Vier-Quadrant-Betrieb
Antriebssystem Gleichstromsteller–Gleichstrommaschine
Netzgeführte Stromrichter-Stellglieder
Grundprinzip
Dreiphasen-Mittelpunktschaltung
Dreiphasen-Brückenschaltung (B6-Schaltung)
Netzstrom, Verschiebungs faktor \(\cos \varphi_1 \) und Leistungs faktor \(\lambda \)
Grenzen des Betriebsbereichs von Stromrichter und Maschine
Verfahren zur Drehmomentumkehr bei Stromrichtern
Drehmomentumkehr durch Wenden des Ankerstroms
Drehrichtungsumkehr eines Gleichstromantriebes, der von einem kreisstromfreien Umkehrstromrichter gespeist wird
Drehmomentumkehr durch Wenden des Feldstroms
Strom- und Drehzahlregelung der Gleichstrommaschine
Ankerstromregelung
5 Drehfeldmaschinen

4.4.2 Drehzahlregelung ... 265
4.4.3 Querverweise Gleichstrommaschine - Regelung 268
4.4.4 Führungs- und Störverhalten von Regelkreisen 271

5 Drehfeldmaschinen .. 277

5.1 Einführung .. 277
5.2 Funktionsweise von Asynchronmaschinen 278
5.2.1 Erzeugung eines Drehfeldes im Luftspalt durch den Stator 279
5.2.2 Spannungsinduktion im Rotor 290
5.2.3 Stromaufbau im Rotor 295
5.2.4 Entstehung des Drehmoments, stationäre Drehzahl-Drehmoment-
Kennlinie ... 297
5.2.5 Höhere Polpaarzahlen 299
5.3 Raumzeiger-Darstellung .. 301
5.3.1 Definition eines Raumzeigers 302
5.3.2 Rücktransformation auf Momentanwerte 305
5.3.3 Koordinatensysteme .. 306
5.3.4 Differentiation im umlaufenden Koordinatensystem 308
5.4 Allgemeine Drehfeldmaschine 309
5.5 Asynchronmaschine: Signalflußplan mit Verzögerungsgliedern . 323
5.6 Asynchronmaschine im stationären Betrieb 325
5.6.1 Drehzahl-Drehmoment-Kennlinie der Asynchronmaschine . 326
5.6.2 Elektrische Verhältnisse im stationären Betrieb 333
5.6.2.1 Ersatzschaltbilder der Asynchronmaschine 333
5.6.2.2 Stromortskurve des Statorstroms 334
5.7 Asynchronmaschine bei Umrichterbetrieb 338
5.7.1 Steuerverfahren bei Statorflußorientierung 339
5.7.2 Steuerverfahren bei Rotorflußorientierung 350
5.7.3 Asynchronmaschine am Umrichter mit eingeprägtem Statorstrom . 359

6 Synchronmaschine .. 360

6.1 Funktionsweise von Synchronmaschinen 360
6.2 Synchron-Schenkelpolmaschine ohne Dämpferwicklung 365
6.2.1 Beschreibendes Gleichungssystem 365
6.2.2 Synchron-Schenkelpolmaschine in normierter Darstellung . 370
6.2.3 Signalflußplan Synchron-Schenkelpolmaschine –
Spannungseinprägung ... 374
6.2.4 Signalflußplan Synchron-Schenkelpolmaschine – Stromeinprägung 378
6.2.5 Ersatzschaltbild der Synchron-Schenkelpolmaschine 380
6.3 Schenkelpolmaschine mit Dämpferwicklung 382
6.4 Synchron-Vollpolmaschine 386
6.4.1 Beschreibendes Gleichungssystem und Signalflußpläne 386
6.4.2 Ersatzschaltbild der Synchron-Vollpolmaschine 392
<table>
<thead>
<tr>
<th>XXII</th>
<th>Inhaltsverzeichnis</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.3</td>
<td>Steuerbedingungen der Synchron-Vollpolmaschine ohne Dämpferwicklung</td>
</tr>
<tr>
<td>6.5</td>
<td>Permanentmagneterregte Maschinen</td>
</tr>
<tr>
<td>7</td>
<td>Transversalflußmaschine</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr.-Ing. Dr.h.c. H. Weh</td>
</tr>
<tr>
<td>7.1</td>
<td>Die neueren Entwicklungen in der Antriebstechnik</td>
</tr>
<tr>
<td>7.2</td>
<td>Magnetkreise bei Longitudinalfluß (LF)- und Transversalfluß (TF)-Anordnung</td>
</tr>
<tr>
<td>7.2.1</td>
<td>Longitudinalfluß-Anordnung (LF) mit Permanentmagneten</td>
</tr>
<tr>
<td>7.2.2</td>
<td>Zahlenbeispiel</td>
</tr>
<tr>
<td>7.3</td>
<td>Magnetkreise der Transversalfluß-Familie (TF)</td>
</tr>
<tr>
<td>7.3.1</td>
<td>Übergang von der Flachmagnet- zur Sammleranordnung</td>
</tr>
<tr>
<td>7.3.2</td>
<td>Zu erwartende TFM-Ergebnisse</td>
</tr>
<tr>
<td>8</td>
<td>Geschaltete Reluktanzmaschinen</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. H. Bausch, Universität d. Bundeswehr München</td>
</tr>
<tr>
<td>8.1</td>
<td>Einleitung</td>
</tr>
<tr>
<td>8.2</td>
<td>Aufbau</td>
</tr>
<tr>
<td>8.3</td>
<td>Betriebsverhalten</td>
</tr>
<tr>
<td>8.4</td>
<td>Energieumwandlung</td>
</tr>
<tr>
<td>8.5</td>
<td>Stromrichterschaltungen</td>
</tr>
<tr>
<td>8.6</td>
<td>Steuerung und Regelung</td>
</tr>
<tr>
<td>9</td>
<td>Linearmotoren</td>
</tr>
<tr>
<td></td>
<td>Prof. Dr. G. Henneberger, RWTH Aachen</td>
</tr>
<tr>
<td>9.1</td>
<td>Einführung</td>
</tr>
<tr>
<td>9.2</td>
<td>Technik von Linearmotoren</td>
</tr>
<tr>
<td>9.3</td>
<td>Industrielle Anwendungsmöglichkeiten</td>
</tr>
<tr>
<td>9.4</td>
<td>Hochgeschwindigkeits-Anwendungen</td>
</tr>
<tr>
<td>10</td>
<td>Lagerlose Permanentmagnetmotoren</td>
</tr>
</tbody>
</table>
| | Prof. Dr. W. Amrhein; Dr. S. Silber
| | ACCM/ Johannes Kepler Universität Linz | |
| 10.1 | Einleitung | 469 |
| 10.2 | Kraft- und Drehmomentberechnung | 473 |
| 10.2.1 | Magnetische Koenergie | 474 |
| 10.2.2 | Maxwellscher Spannungstensor | 474 |
| 10.2.2.1 | Fourier-Reihendarstellung der Feldgrößen | 478 |
| 10.2.2.2 | Drehmomentberechnung | 480 |
| 10.2.2.3 | Kraftberechnung | 481 |
| 10.2.2.4 | Interpretation der Ergebnisse | 482 |
11 Kleinantriebe

11.1 Schrittmotoren
11.1.1 Einführung, Funktionsprinzip
11.1.2 Grundtypen von Schrittmotoren
11.1.2.1 Reluktanz-Schrittmotor
11.1.2.2 Permanentmagneterregter Schrittmotor
11.1.2.3 Hybrid-Schrittmotor
11.1.3 Gegenüberstellung Drehfeld–Schrittfeld
11.1.4 Betriebskennlinien, Betriebsverhalten
11.1.4.1 Statischer Drehmomentverlauf
11.1.4.2 Statisches Lastverhalten
11.1.4.3 Einzelschritt-Fortschaltung
11.1.4.4 Grenzkennlinien, Betriebsbereiche
11.1.5 Ansteuerung, Leistungselektronik
11.1.5.1 Ersatzschaltbild eines Motorstrangs
11.1.5.2 Unipolare und bipolare Speisung der Strangwicklungen
11.1.5.3 Leistungstreiber
11.1.5.4 Betriebsarten: Voll-, Halb- und Mikroschrittbetrieb
11.1.5.5 Bestromungstabelle
11.1.6 Positioniergenauigkeit, Schrittwinkelfehler
11.1.7 Drehzahlverhalten, Resonanzfrequenzen
11.1.7.1 Parametrische Anregung
11.1.7.2 Dämpfung
11.1.8 Modellbildung
11.1.9 Auslegung von Schrittmotorantrieben
11.1.9.1 Ermittlung der Startgrenzfrequenz
11.1.9.2 Berechnung von linearen Frequenzrampen
11.2 Elektronisch kommutierte Gleichstrommaschine

12 Umrichterantriebe

12.1 Direktumrichter
12.1.1 Matrix-Umrichter
12.2 Untersynchrone Stromrichterkaskade (USK)
12.2.1 Querverweise untersynchrone Stromrichterkaskade, USK
12.3 Stromrichtermotor
12.3.1 Prinzipielle Funktion
12.3.2 Lastgeführte Kommutierung
12.3.3 Anfahrvorgang
12.3.4 Drehmomentpendelungen
XXIV Inhaltsverzeichnis

12.3.5	Regelung des Stromrichtermotors ...	561
12.3.6	Querverweise Stromrichtermotor ...	563
12.4	Selbstgeführter Stromrichter mit Phasenfolgelöschung und einge-prägtem Strom ...	564
12.4.1	Prinzipielles Systemverhalten ...	564
12.4.2	Kommutierung des selbstgeführten Stromrichters	566
12.4.3	Steuer- und Regelverfahren ...	575
12.4.4	Weiterentwicklungen der selbstgeführten I-Umrichter	577
12.4.5	Querverweise I-Umrichter ...	578
12.5	Selbstgeführte Umrichter mit Gleichspannungszwischenkreis	580
12.5.1	Umrichter mit variabler Zwischenkreisspannung	581
12.5.2	Umrichter mit konstanter Zwischenkreisspannung (Pulsumrichter)	585
12.5.3	Modulationsverfahren bei Pulsumrichtern	588
12.5.3.1	Zweipunktregelung (Prinzipdarstellung)	588
12.5.3.2	Pulsweitenmodulation (PWM) ...	589
12.5.3.3	Raumzeiger-Darstellung ...	595
12.5.4	Bewertung „U-Umrichter - I-Umrichter“	597
12.5.5	Mehrpunkt-Wechselrichter ...	600
12.5.6	Leistungsfaktor-Korrektur (PFC) ...	606

13	Grundsätzliche Überlegungen zur Regelung von Drehfeldmaschinen	607
13.1	Entkopplung ...	608
13.1.1	Querverweise Entkopplung ...	611
13.2	Feldorientierung ...	612
13.2.1	Querverweise Feldorientierung ...	616

Übungsaufgaben 618

Prüfungsaufgaben 659

Variablenübersicht 686

Literaturverzeichnis 702

Kompendium ... 702
Antriebstechnik und benachbarte Gebiete (Bücher) ... 705
Elektroantrieb allgemein ... 710
Leistungshalbleiter ... 711
Leistungselektronik: Ansteuerung, Beschaltung, Kühlung ... 714
Gleichstromsteller, DC-DC-Wandler ... 715
Netzgeführte Stromrichter: Schaltungstechnik und Auslegung ... 717
Netzgeführte Stromrichter: Regelung .. 719
Direktumrichter .. 724
Untersynchrone Kaskade (USK) .. 726
Stromrichtermotor ... 728
Stromzwischenkreis-Umrichter (I-Umrichter) 730
Spannungszwischenkreis-Umrichter (U-Umrichter) 732
Asynchronmaschine: Regelung ... 734
Synchronmaschine ... 739
Reluktanzmaschine ... 740
Geberlose Reluktanzmaschine .. 746
Linearmotoren ... 747
Lagerlose Permanentmagnetmotoren ... 749
Kleinantriebe ... 754

Stichwortverzeichnis ... 758
Elektrische Antriebe - Grundlagen
Mit durchgerechneten Übungs- und Prüfungsaufgaben
Schröder, D.
2013, XXV, 775 S. Mit Online-Extras., Softcover
ISBN: 978-3-642-30470-5