Detailed Contents

PART I AN INTRODUCTION TO IMMUNO-**BIOLOGY AND INNATE IMMUNITY**

Chap	ter 1 Basic Concepts in Immunology	1
The o	rigins of vertebrate immune cells.	2
Princi	oles of innate immunity.	3
1-1	Commensal organisms cause little host damage while pathogens damage host tissues by a variety of mechanisms.	3
1-2	Anatomic and chemical barriers are the first defense against pathogens.	5
1-3	The immune system is activated by inflammatory inducers that indicate the presence of pathogens or tissue damage.	6
1-4	The myeloid lineage comprises most of the cells of the innate immune system.	7
1-5	Sensor cells express pattern recognition receptors that provide an initial discrimination between self and nonself.	8
1-6	Sensor cells induce an inflammatory response by producing mediators such as chemokines and cytokines.	9
1-7	Innate lymphocytes and natural killer cells are effector cells that share similarities with lymphoid lineages of the adaptive immune system.	11
Summary.		11
Princi	oles of adaptive immunity.	11
1-8	The interaction of antigens with antigen receptors induces lymphocytes to acquire effector and memory activity.	12
1-9	Antibodies and T-cell receptors are composed of constant and variable regions that provide distinct functions.	13
1-10	Antibodies and T-cell receptors recognize antigens by fundamentally different mechanisms.	14
1-11	Antigen-receptor genes are assembled by somatic gene rearrangements of incomplete receptor gene segments.	15
1-12	Lymphocytes activated by antigen give rise to clones of antigen-specific effector cells that mediate adaptive immunity.	15
1-13	Lymphocytes with self-reactive receptors are normally eliminated during development or are functionally inactivated.	16
1-14	Lymphocytes mature in the bone marrow or the thymus and then congregate in lymphoid tissues throughout the body.	17
1-15	Adaptive immune responses are initiated by antigen and antigen-presenting cells in secondary lymphoid tissues.	18

1-16	Lymphocytes encounter and respond to antigen in the peripheral lymphoid organs.	19
1-17	Mucosal surfaces have specialized immune structures that orchestrate responses to environmental microbial encounters.	22
1-18	Lymphocytes activated by antigen proliferate in the peripheral lymphoid organs, generating effector cells and immunological memory.	23
Summa	ary.	24
The ef	fector mechanisms of immunity.	25
1-19	Innate immune responses can select from several effector modules to protect against different types of pathogens.	26
1-20	Antibodies protect against extracellular pathogens and their toxic products.	27
1-21	T cells orchestrate cell-mediated immunity and regulate B-cell responses to most antigens.	29
1-22	Inherited and acquired defects in the immune system result in increased susceptibility to infection.	31
1-23	Understanding adaptive immune responses is important for the control of allergies, autoimmune disease, and the rejection of transplanted organs.	32
1-24	Vaccination is the most effective means of controlling infectious diseases.	33
Summa	ary.	34
Summa	ary to Chapter 1.	34
Questic	ons.	35
Referer	nces.	36
Chap	ter 2 Innate Immunity: The First Lines of Defense	37
Anator	mic barriers and initial chemical defenses.	38
2-1	Infectious diseases are caused by diverse living agents that replicate in their hosts.	38
2-2	Epithelial surfaces of the body provide the first barrier against infection.	42
2-3	Infectious agents must overcome innate host defenses to establish a focus of infection.	44
2-4	Epithelial cells and phagocytes produce several kinds of antimicrobial proteins.	45
Summa	ary.	48
The co	omplement system and innate immunity.	49
2-5	The complement system recognizes features of microbial surfaces and marks them for destruction by coating them with C3b.	50
2-6	The lectin pathway uses soluble receptors that recognize microbial surfaces to activate the complement cascade.	53

2-7 The classical pathway is initiated by activation of the C1 complex and is homologous to the lectin pathway. 56 2-8 Complement activation is largely confined to the surface on which it is initiated. 57 2-9 The alternative pathway is an amplification loop for C3b formation that is accelerated by properdin in the presence of pathogens. 58 Membrane and plasma proteins that regulate 2-10 the formation and stability of C3 convertases determine the extent of complement activation. 60 2-11 Complement developed early in the evolution of multicellular organisms. 61 2-12 Surface-bound C3 convertase deposits large numbers of C3b fragments on pathogen surfaces and generates C5 convertase activity. 62 2-13 Ingestion of complement-tagged pathogens by phagocytes is mediated by receptors for the bound complement proteins. 63 2-14 The small fragments of some complement 65 proteins initiate a local inflammatory response. 2-15 The terminal complement proteins polymerize to form pores in membranes that can kill certain pathogens. 66 2-16 Complement control proteins regulate all three pathways of complement activation and protect the host from their destructive effects. 67 2-17 Pathogens produce several types of proteins that can inhibit complement activation. 71 Summary. 72 Summary to Chapter 2. 73 Questions. 74 References. 75 Chapter 3 The Induced Responses of Innate Immunity 77 Pattern recognition by cells of the innate immune system. 77 3-1 After entering tissues, many microbes are recognized, ingested, and killed by phagocytes. 78 3-2 G-protein-coupled receptors on phagocytes link microbe recognition with increased efficiency of intracellular killing. 81 3-3 Microbial recognition and tissue damage initiate an inflammatory response. 85 3-4 Toll-like receptors represent an ancient pathogenrecognition system. 87 3-5 Mammalian Toll-like receptors are activated by many different pathogen-associated molecular 88 patterns. 3-6 TLR-4 recognizes bacterial lipopolysaccharide in association with the host accessory proteins MD-2 and CD14. 92 TLRs activate NFkB, AP-1, and IRF transcription 3-7 factors to induce the expression of inflammatory cytokines and type I interferons. 92

 3-8 The NOD-like receptors are intracellular sensors of bacterial infection and cellular damage. 96 3-9 NLRP proteins react to infection or cellular damage through an inflammasome to induce cell death and inflammation. 3-10 The RIG-l-like receptors detect cytoplasmic viral RNAs and activate MAVS to induce type I interferon production and pro-inflammatory cytokines. 3-11 Cytosolic DNA sensors signal through STING to induce production of type I interferons. 3-12 Activation of innate sensors in macrophages and dendritic cells triggers changes in gene expression that have far-reaching effects on the immune response. 3-14 TLR and NOD genes have undergone extensive diversification in both invertebrates and some primitive chordates. 3-15 Cytokines and their receptors fall into distinct families of structurally related proteins. 3-16 Cytokine receptors of the hematopoietin family are associated with the JAK family of tyrosine kinases, which activate STAT transcription factors. 3-17 Chemokines released by macrophages and dendritic cells recruit effector cells to sites of infection. 3-18 Cell-adhesion molecules control interactions between leukocytes and endothelial cells
damage through an inflammasome to induce cell death and inflammation.983-10The RIG-I-like receptors detect cytoplasmic viral RNAs and activate MAVS to induce type I interferon production and pro-inflammatory cytokines.1013-11Cytosolic DNA sensors signal through STING to induce production of type I interferons.1033-12Activation of innate sensors in macrophages and dendritic cells triggers changes in gene expression that have far-reaching effects on the immune response.1043-13Toll signaling in <i>Drosophila</i> is downstream of a distinct set of pathogen-recognition molecules.1053-14TLR and NOD genes have undergone extensive diversification in both invertebrates and some primitive chordates.106Summary.106Induced innate responses to infection.1073-15Cytokine receptors of the hematopoietin family are associated with the JAK family of tyrosine kinases, which activate STAT transcription factors.1093-17Chemokines released by macrophages and dendritic cells recruit effector cells to sites of infection.1113-18Cell-adhesion molecules control interactions111
RNAs and activate MAVS to induce type I interferon production and pro-inflammatory cytokines.1013-11Cytosolic DNA sensors signal through STING to induce production of type I interferons.1033-12Activation of innate sensors in macrophages and dendritic cells triggers changes in gene expression that have far-reaching effects on the immune response.1043-13Toll signaling in <i>Drosophila</i> is downstream of a distinct set of pathogen-recognition molecules.1053-14TLR and NOD genes have undergone extensive diversification in both invertebrates and some primitive chordates.106Summary.106Induced innate responses to infection.1073-15Cytokine receptors of the hematopoietin family are associated with the JAK family of tyrosine kinases, which activate STAT transcription factors.1093-17Chemokines released by macrophages and dendritic cells recruit effector cells to sites of infection.1113-18Cell-adhesion molecules control interactions111
induce production of type I interferons.1033-12Activation of innate sensors in macrophages and dendritic cells triggers changes in gene expression that have far-reaching effects on the immune response.1043-13Toll signaling in <i>Drosophila</i> is downstream of a distinct set of pathogen-recognition molecules.1043-14TLR and NOD genes have undergone extensive diversification in both invertebrates and some primitive chordates.106Summary.106Induced innate responses to infection.1073-15Cytokines and their receptors fall into distinct families of structurally related proteins.1073-16Cytokine receptors of the hematopoietin family are associated with the JAK family of tyrosine kinases, which activate STAT transcription factors.1093-17Chemokines released by macrophages and dendritic cells recruit effector cells to sites of infection.1113-18Cell-adhesion molecules control interactions111
dendritic cells triggers changes in gene expression that have far-reaching effects on the immune response. 104 3-13 Toll signaling in <i>Drosophila</i> is downstream of a distinct set of pathogen-recognition molecules. 105 3-14 TLR and NOD genes have undergone extensive diversification in both invertebrates and some primitive chordates. 106 Summary. 106 Induced innate responses to infection. 107 3-15 Cytokines and their receptors fall into distinct families of structurally related proteins. 107 3-16 Cytokine receptors of the hematopoietin family are associated with the JAK family of tyrosine kinases, which activate STAT transcription factors. 109 3-17 Chemokines released by macrophages and dendritic cells recruit effector cells to sites of infection. 111 3-18 Cell-adhesion molecules control interactions 111
 3-13 Toll signaling in <i>Drosophila</i> is downstream of a distinct set of pathogen-recognition molecules. 3-14 TLR and NOD genes have undergone extensive diversification in both invertebrates and some primitive chordates. Summary. 106 Induced innate responses to infection. 3-15 Cytokines and their receptors fall into distinct families of structurally related proteins. 3-16 Cytokine receptors of the hematopoietin family are associated with the JAK family of tyrosine kinases, which activate STAT transcription factors. 3-17 Chemokines released by macrophages and dendritic cells recruit effector cells to sites of infection. 3-18 Cell-adhesion molecules control interactions
diversification in both invertebrates and some primitive chordates.106Summary.106Induced innate responses to infection.1073-15Cytokines and their receptors fall into distinct families of structurally related proteins.1073-16Cytokine receptors of the hematopoietin family are associated with the JAK family of tyrosine kinases, which activate STAT transcription factors.1093-17Chemokines released by macrophages and dendritic cells recruit effector cells to sites of infection.1113-18Cell-adhesion molecules control interactions111
Summary. 106 Induced innate responses to infection. 107 3-15 Cytokines and their receptors fall into distinct families of structurally related proteins. 107 3-16 Cytokine receptors of the hematopoietin family are associated with the JAK family of tyrosine kinases, which activate STAT transcription factors. 109 3-17 Chemokines released by macrophages and dendritic cells recruit effector cells to sites of infection. 111 3-18 Cell-adhesion molecules control interactions 111
Induced innate responses to infection. 107 3-15 Cytokines and their receptors fall into distinct families of structurally related proteins. 107 3-16 Cytokine receptors of the hematopoietin family are associated with the JAK family of tyrosine kinases, which activate STAT transcription factors. 109 3-17 Chemokines released by macrophages and dendritic cells recruit effector cells to sites of infection. 111 3-18 Cell-adhesion molecules control interactions 111
 3-15 Cytokines and their receptors fall into distinct families of structurally related proteins. 3-16 Cytokine receptors of the hematopoietin family are associated with the JAK family of tyrosine kinases, which activate STAT transcription factors. 3-17 Chemokines released by macrophages and dendritic cells recruit effector cells to sites of infection. 3-18 Cell-adhesion molecules control interactions
 are associated with the JAK family of tyrosine kinases, which activate STAT transcription factors. 109 3-17 Chemokines released by macrophages and dendritic cells recruit effector cells to sites of infection. 111 3-18 Cell-adhesion molecules control interactions
dendritic cells recruit effector cells to sites of infection. 111 3-18 Cell-adhesion molecules control interactions
during an inflammatory response. 113
 3-19 Neutrophils make up the first wave of cells that cross the blood vessel wall to enter an inflamed tissue. 116
 3-20 TNF-α is an important cytokine that triggers local containment of infection but induces shock when released systemically.
 3-21 Cytokines made by macrophages and dendritic cells induce a systemic reaction known as the acute-phase response. 118
3-22 Interferons induced by viral infection make several contributions to host defense. 121
3-23 Several types of innate lymphoid cells provide protection in early infection. 124
3-24 NK cells are activated by type I interferon and macrophage-derived cytokines. 125
 3-25 NK cells express activating and inhibitory receptors to distinguish between healthy and infected cells. 126
3-26NK-cell receptors belong to several structural families, the KIRs, KLRs, and NCRs.128
 3-27 NK cells express activating receptors that recognize ligands induced on infected cells or tumor cells. 130
Summary. 131

Summary to Chapter 3.	131
Questions.	132
References.	133

PART II THE RECOGNITION OF ANTIGEN

Chap	ter 4 Antigen Recognition by B-cell and T-cell Receptors	139
The st	ructure of a typical antibody molecule.	140
4-1	IgG antibodies consist of four polypeptide chains.	141
4-2	Immunoglobulin heavy and light chains are composed of constant and variable regions.	142
4-3	The domains of an immunoglobulin molecule have similar structures.	142
4-4	The antibody molecule can readily be cleaved into functionally distinct fragments.	144
4-5	The hinge region of the immunoglobulin molecule allows flexibility in binding to multiple antigens.	145
Summ	ary.	145
	teraction of the antibody molecule with specific	
antige		146
4-6	Localized regions of hypervariable sequence form the antigen-binding site.	146
4-7	Antibodies bind antigens via contacts in CDRs that are complementary to the size and shape of the antigen.	147
4-8	Antibodies bind to conformational shapes on the surfaces of antigens using a variety of noncovalent forces.	148
4-9	Antibody interaction with intact antigens is influenced by steric constraints.	150
4-10	Some species generate antibodies with alternative structures.	151
Summ	ary.	152
Antige	en recognition by T cells.	152
4-11	The TCRα:β heterodimer is very similar to a Fab fragment of immunoglobulin.	153
4-12	A T-cell receptor recognizes antigen in the form of a complex of a foreign peptide bound to an MHC molecule.	155
4-13	There are two classes of MHC molecules with distinct subunit compositions but similar three- dimensional structures.	155
4-14	Peptides are stably bound to MHC molecules, and also serve to stabilize the MHC molecule on the cell surface.	158
4-15	MHC class I molecules bind short peptides of 8–10 amino acids by both ends.	158
4-16	The length of the peptides bound by MHC class II molecules is not constrained.	160
4-17	The crystal structures of several peptide:MHC:T-cell receptor complexes show a similar orientation of the T-cell receptor over the peptide:MHC complex.	161

4-18	The CD4 and CD8 cell-surface proteins of T cells directly contact MHC molecules and are required to make an effective response to antigen.	163
4-19	The two classes of MHC molecules are expressed differentially on cells.	166
4-20	A distinct subset of T cells bears an alternative receptor made up of γ and δ chains.	166
Summ	ary.	167
Summ	ary to Chapter 4.	168
Questi	ons.	169
Refere	nces.	170
Chap	ter 5 The Generation of Lymphocyte Antigen Receptors	173
Prima	ry immunoglobulin gene rearrangement.	174
5-1	Immunoglobulin genes are rearranged in the progenitors of antibody-producing cells.	174
5-2	Complete genes that encode a variable region are generated by the somatic recombination of separate gene segments.	175
5-3	Multiple contiguous V gene segments are present at each immunoglobulin locus.	176
5-4	Rearrangement of V, D, and J gene segments is guided by flanking DNA sequences.	178
5-5	The reaction that recombines V, D, and J gene segments involves both lymphocyte-specific and ubiquitous DNA-modifying enzymes.	179
5-6	The diversity of the immunoglobulin repertoire is generated by four main processes.	184
5-7	The multiple inherited gene segments are used in different combinations.	184
5-8	Variable addition and subtraction of nucleotides at the junctions between gene segments contributes to the diversity of the third hypervariable region.	185
Summ	ary.	186
T-cell	receptor gene rearrangement.	187
5-9	The T-cell receptor gene segments are arranged in a similar pattern to immunoglobulin gene segments and are rearranged by the same enzymes.	187
5-10	T-cell receptors concentrate diversity in the third hypervariable region.	189
5-11	$\gamma{:}\delta$ T-cell receptors are also generated by gene rearrangement.	190
Summ	ary.	191
Struct region	ural variation in immunoglobulin constant	191
5-12	Different classes of immunoglobulins are distinguished by the structure of their heavy- chain constant regions.	192
5-13	The constant region confers functional specialization on the antibody.	193
5-14	IgM and IgD are derived from the same pre-mRNA transcript and are both expressed on the surface of mature B cells.	194

5-15	Transmembrane and secreted forms of immuno- globulin are generated from alternative heavy-chain mRNA transcripts.	195
5-16	IgM and IgA can form polymers by interacting with the J chain.	197
Summa	ary.	198
Evolut	ion of the adaptive immune response.	198
5-17	Some invertebrates generate extensive diversity in a repertoire of immunoglobulin-like genes.	198
5-18	Agnathans possess an adaptive immune system that uses somatic gene rearrangement to diversify receptors built from LRR domains.	200
5-19	RAG-dependent adaptive immunity based on a diversified repertoire of immunoglobulin-like genes appeared abruptly in the cartilaginous fishes.	202
5-20	Different species generate immunoglobulin diversity in different ways.	203
5-21	Both α : β and γ : δ T-cell receptors are present in cartilaginous fishes.	206
5-22	MHC class I and class II molecules are also first found in the cartilaginous fishes.	206
Summa	ary.	207
Summa	ary to Chapter 5.	207
Questic	ons.	208
References.		209
Chapt	ter 6 Antigen Presentation to	
onup	T Lymphocytes	213
The ge	eneration of α : β T-cell receptor ligands.	214
6-1	Antigen presentation functions both in arming effector T cells and in triggering their effector functions to attack pathogen-infected cells.	214
6-2	Peptides are generated from ubiquitinated proteins in the cytosol by the proteasome.	216
6-3	Peptides from the cytosol are transported by TAP into the endoplasmic reticulum and further processed before binding to MHC class I molecules.	218
6-4	Newly synthesized MHC class I molecules are retained in the endoplasmic reticulum until they bind a peptide.	219
6-5	Dendritic cells use cross-presentation to present exogenous proteins on MHC class I molecules to prime CD8 T cells.	222
6-6	Peptide:MHC class II complexes are generated in acidified endocytic vesicles from proteins obtained through endocytosis, phagocytosis, and autophagy.	223
6-7	The invariant chain directs newly synthesized MHC class II molecules to acidified intracellular vesicles.	225
6-8	The MHC class II-like molecules HLA-DM and HLA-DO regulate exchange of CLIP for other peptides.	226
6-9	Cessation of antigen processing occurs in dendritic cells after their activation through reduced expression of the MARCH-1 E3 ligase.	229
Summa	arv.	230

The m	najor histocompatibility complex and its function.	231
6-10	Many proteins involved in antigen processing and presentation are encoded by genes within the MHC.	231
6-11	The protein products of MHC class I and class II genes are highly polymorphic.	234
6-12	MHC polymorphism affects antigen recognition by T cells by influencing both peptide binding and the contacts between T-cell receptor and MHC molecule.	235
6-13	Alloreactive T cells recognizing nonself MHC molecules are very abundant.	239
6-14	Many T cells respond to superantigens.	240
6-15	MHC polymorphism extends the range of antigens to which the immune system can respond.	241
Summary.		242
Generation of ligands for unconventional T-cell subsets.		242
6-16	A variety of genes with specialized functions in immunity are also encoded in the MHC.	243
6-17	Specialized MHC class I molecules act as ligands for the activation and inhibition of NK cells and unconventional T-cell subsets.	245
6-18	Members of the CD1 family of MHC class I-like molecules present microbial lipids to invariant NKT cells.	246
6-19	The nonclassical MHC class I molecule MR1 presents microbial folate metabolites to MAIT cells.	248
6-20	$\gamma{:}\delta$ T cells can recognize a variety of diverse ligands.	249
Summ	ary.	250
Summary to Chapter 6.		250
Questi	ons.	251
Refere	nces.	252

PART III THE DEVELOPMENT OF MATURE LYMPHOCYTE RECEPTOR REPERTOIRES

Chap	ter 7 Lymphocyte Receptor Signaling	257
	ral principles of signal transduction and gation.	257
7-1	Transmembrane receptors convert extracellular signals into intracellular biochemical events.	258
7-2	Intracellular signal propagation is mediated by large multiprotein signaling complexes.	260
7-3	Small G proteins act as molecular switches in many different signaling pathways.	262
7-4	Signaling proteins are recruited to the membrane by a variety of mechanisms.	262
7-5	Post-translational modifications of proteins can both activate and inhibit signaling responses.	263
7-6	The activation of some receptors generates small- molecule second messengers.	264
Summ	ary.	265

Antigen receptor signaling and lymphocyte activation.		265
7-7	Antigen receptors consist of variable antigen-binding chains associated with invariant chains that carry out the signaling function of the receptor.	266
7-8	Antigen recognition by the T-cell receptor and its co-receptors transduces a signal across the plasma membrane to initiate signaling.	267
7-9	Antigen recognition by the T-cell receptor and its co-receptors leads to phosphorylation of ITAMs by Src-family kinases, generating the first intracellular signal in a signaling cascade.	268
7-10	Phosphorylated ITAMs recruit and activate the tyrosine kinase ZAP-70.	270
7-11	ITAMs are also found in other receptors on leukocytes that signal for cell activation.	270
7-12	Activated ZAP-70 phosphorylates scaffold proteins and promotes PI 3-kinase activation.	271
7-13	Activated PLC- γ generates the second messengers diacylglycerol and inositol trisphosphate that lead to transcription factor activation.	272
7-14	Ca ²⁺ entry activates the transcription factor NFAT.	273
7-15	Ras activation stimulates the mitogen-activated protein kinase (MAPK) relay and induces expression of the transcription factor AP-1.	274
7-16	Protein kinase C activates the transcription factors NF κ B and AP-1.	276
7-17	PI 3-kinase activation upregulates cellular metabolic pathways via the serine/threonine kinase Akt.	277
7-18	T-cell receptor signaling leads to enhanced integrin- mediated cell adhesion.	278
7-19	T-cell receptor signaling induces cytoskeletal reorganization by activating the small GTPase Cdc42.	279
7-20	The logic of B-cell receptor signaling is similar to that of T-cell receptor signaling, but some of the signaling components are specific to B cells.	279
Summa	ary.	282
	mulatory and inhibitory receptors modulate n receptor signaling in T and B lymphocytes.	282
7-21	The cell-surface protein CD28 is a required co-stimulatory signaling receptor for naive T-cell activation.	283
7-22	Maximal activation of PLC- γ , which is important for transcription factor activation, requires a co-stimulatory signal induced by CD28.	284
7-23	TNF receptor superfamily members augment T-cell and B-cell activation.	284
7-24	Inhibitory receptors on lymphocytes downregulate immune responses by interfering with co-stimulatory signaling pathways.	286
7-25	Inhibitory receptors on lymphocytes downregulate immune responses by recruiting protein or lipid phosphatases.	287
Summa		288
Summary to Chapter 7.		289

Quest	ions.	290
Refere	ences.	291
Chap	oter 8 The Development of B and T Lymphocytes	295
Deve	lopment of B lymphocytes.	296
8-1	Lymphocytes derive from hematopoietic stem cells in the bone marrow.	297
8-2	B-cell development begins by rearrangement of the heavy-chain locus.	299
8-3	The pre-B-cell receptor tests for successful production of a complete heavy chain and signals for the transition from the pro-B cell to the pre-B cell stage.	302
8-4	Pre-B-cell receptor signaling inhibits further heavy-chain locus rearrangement and enforces allelic exclusion.	303
8-5	Pre-B cells rearrange the light-chain locus and express cell-surface immunoglobulin.	304
8-6	Immature B cells are tested for autoreactivity before they leave the bone marrow.	305
8-7	Lymphocytes that encounter sufficient quantities of self antigens for the first time in the periphery are eliminated or inactivated.	308
8-8	Immature B cells arriving in the spleen turn over rapidly and require cytokines and positive signals through the B-cell receptor for maturation and long-term survival.	309
8-9	B-1 B cells are an innate lymphocyte subset that arises early in development.	312
Summ	nary.	313
Deve	lopment of T lymphocytes.	315
8-10	T-cell progenitors originate in the bone marrow, but all the important events in their development occur in the thymus.	315
8-11	Commitment to the T-cell lineage occurs in the thymus following Notch signaling.	317
8-12	T-cell precursors proliferate extensively in the thymus, but most die there.	317
8-13	Successive stages in the development of thymocytes are marked by changes in cell-surface molecules.	319
8-14	Thymocytes at different developmental stages are found in distinct parts of the thymus.	321
8-15	T cells with $\alpha{:}\beta$ or $\gamma{:}\delta$ receptors arise from a common progenitor.	322
8-16	T cells expressing γ : δ T-cell receptors arise in two distinct phases during development.	322
8-17	Successful synthesis of a rearranged β chain allows the production of a pre-T-cell receptor that triggers cell proliferation and blocks further β -chain gene rearrangement.	324
8-18	T-cell α -chain genes undergo successive rearrangements until positive selection or cell death intervenes.	326
Summ	nary.	328

Positi	ve and negative selection of T cells.	328
8-19	Only thymocytes whose receptors interact with self peptide:self MHC complexes can survive and mature.	328
8-20	Positive selection acts on a repertoire of T-cell receptors with inherent specificity for MHC molecules.	329
8-21	Positive selection coordinates the expression of CD4 or CD8 with the specificity of the T-cell receptor and the potential effector functions of the T cell.	330
8-22	Thymic cortical epithelial cells mediate positive selection of developing thymocytes.	331
8-23	T cells that react strongly with ubiquitous self antigens are deleted in the thymus.	332
8-24	Negative selection is driven most efficiently by bone marrow-derived antigen-presenting cells.	334
8-25	The specificity and/or the strength of signals for negative and positive selection must differ.	334
8-26	Self-recognizing regulatory T cells and innate T cells develop in the thymus.	335
8-27	The final stage of T-cell maturation occurs in the thymic medulla.	336
8-28	T cells that encounter sufficient quantities of self antigens for the first time in the periphery are	
_	eliminated or inactivated.	336
Summ		337
Summ	ary to Chapter 8.	337
Questi	ons.	339
Refere	nces.	340
PAR	T IV THE ADAPTIVE IMMUNE	
	PONSE	345
Chap	ter 9 T-cell-Mediated Immunity	345
organ	opment and function of secondary lymphoid s—sites for the initiation of adaptive immune	0.47
respo 9-1		347
	T and B lymphocytes are found in distinct locations in secondary lymphoid tissues.	347
9-2	The development of secondary lymphoid tissues is controlled by lymphoid tissue inducer cells and proteins of the tumor necrosis factor family.	349
9-3	T and B cells are partitioned into distinct regions of secondary lymphoid tissues by the actions of chemokines.	350
9-4	Naive T cells migrate through secondary lymphoid tissues, sampling peptide:MHC complexes on dendritic cells.	351
9-5	Lymphocyte entry into lymphoid tissues depends on chemokines and adhesion molecules.	352
9-6	Activation of integrins by chemokines is responsible for the entry of naive T cells into lymph nodes.	353
9-7	The exit of T cells from lymph nodes is controlled by a chemotactic lipid.	355
9-8	T-cell responses are initiated in secondary lymphoid organs by activated dendritic cells.	356

9-9	Dendritic cells process antigens from a wide array of pathogens.	358	
9-10	Microbe-induced TLR signaling in tissue-resident dendritic cells induces their migration to lymphoid organs and enhances antigen processing.	361	
9-11	Plasmacytoid dendritic cells produce abundant type I interferons and may act as helper cells for antigen presentation by conventional dendritic cells.	363	
9-12	Macrophages are scavenger cells that can be induced by pathogens to present foreign antigens to naive T cells.	363	
9-13	B cells are highly efficient at presenting antigens that bind to their surface immunoglobulin.	364	
Summa	ary.	366	
	g of naive T cells by pathogen-activated itic cells.	366	
9-14	Cell-adhesion molecules mediate the initial interaction of naive T cells with antigen- presenting cells.	367	
9-15	Antigen-presenting cells deliver multiple signals for the clonal expansion and differentiation of naive T cells.	368	
9-16	CD28-dependent co-stimulation of activated T cells induces expression of interleukin-2 and the high-affinity IL-2 receptor.	368	
9-17	Additional co-stimulatory pathways are involved in T-cell activation.	369	
9-18	Proliferating T cells differentiate into effector T cells that do not require co-stimulation to act.	370	
9-19	CD8 T cells can be activated in different ways to become cytotoxic effector cells.	372	
9-20	CD4 T cells differentiate into several subsets of functionally different effector cells.	372	
9-21	Cytokines induce the differentiation of naive CD4 T cells down distinct effector pathways.	375	
9-22	CD4 T-cell subsets can cross-regulate each other's differentiation through the cytokines they produce.	377	
9-23	Regulatory CD4 T cells are involved in controlling adaptive immune responses.	379	
Summa	ary.	380	
	al properties of effector T cells and ytokines.	380	
9-24	Effector T-cell interactions with target cells are initiated by antigen-nonspecific cell-adhesion molecules.	381	
9-25	An immunological synapse forms between effector T cells and their targets to regulate signaling and to direct the release of effector molecules.	381	
9-26	The effector functions of T cells are determined by the array of effector molecules that they produce.	383	
9-27	Cytokines can act locally or at a distance.	383	
9-28	T cells express several TNF-family cytokines as trimeric proteins that are usually associated with the cell surface.	386	
Summa		386	
,			

T-cell-	mediated cytotoxicity.	387
9-29	Cytotoxic T cells induce target cells to undergo programmed cell death via extrinsic and intrinsic pathways of apoptosis.	387
9-30	The intrinsic pathway of apoptosis is mediated by the release of cytochrome <i>c</i> from mitochondria.	389
9-31	Cytotoxic effector proteins that trigger apoptosis are contained in the granules of CD8 cytotoxic T cells.	390
9-32	Cytotoxic T cells are selective serial killers of targets expressing a specific antigen.	391
9-33	Cytotoxic T cells also act by releasing cytokines.	392
Summa	ary.	392
Summa	ary to Chapter 9.	392
Questio	ons.	393
Referer	nces.	395
Chap	ter 10 The Humoral Immune Response	399
B-cell	activation by antigen and helper T cells.	400
10-1	Activation of B cells by antigen involves signals from the B-cell receptor and either T_{FH} cells or microbial antigens.	400
10-2	Linked recognition of antigen by T cells and B cells promotes robust antibody responses.	402
10-3	B cells that encounter their antigens migrate toward the boundaries between B-cell and T-cell areas in secondary lymphoid tissues.	403
10-4	T cells express surface molecules and cytokines that activate B cells, which in turn promote $\rm T_{\rm FH}\mathchar`-cell$ development.	406
10-5	Activated B cells differentiate into antibody-secreting plasmablasts and plasma cells.	406
10-6	The second phase of a primary B-cell immune response occurs when activated B cells migrate into follicles and proliferate to form germinal centers.	408
10-7	Germinal center B cells undergo V-region somatic hypermutation, and cells with mutations that improve affinity for antigen are selected.	410
10-8	Positive selection of germinal center B cells involves contact with $\rm T_{FH}$ cells and CD40 signaling.	412
10-9	Activation-induced cytidine deaminase (AID) introduces mutations into genes transcribed in B cells.	413
10-10	Mismatch and base-excision repair pathways contribute to somatic hypermutation following initiation by AID.	414
10-11	AID initiates class switching to allow the same assembled V_H exon to be associated with different C_H genes in the course of an immune response.	415
10-12	Cytokines made by T _{FH} cells direct the choice of isotype for class switching in T-dependent antibody responses.	418
10-13	B cells that survive the germinal center reaction eventually differentiate into either plasma cells or memory cells.	419
	,	🕶

10-14	Some antigens do not require T-cell help to induce B-cell responses.	419
Summ	ary.	421
The d	istributions and functions of immunoglobulin	422
10-15	Antibodies of different classes operate in distinct places and have distinct effector functions.	423
10-16	Polymeric immunoglobulin receptor binds to the Fc regions of IgA and IgM and transports them across epithelial barriers.	425
10-17	The neonatal Fc receptor carries IgG across the placenta and prevents IgG excretion from the body.	426
10-18	High-affinity IgG and IgA antibodies can neutralize toxins and block the infectivity of viruses and bacteria.	426
10-19	Antibody:antigen complexes activate the classical pathway of complement by binding to C1q.	429
10-20	Complement receptors and Fc receptors both contribute to removal of immune complexes from the circulation.	430
Summ	ary.	431
	estruction of antibody-coated pathogens receptors.	432
10-21	The Fc receptors of accessory cells are signaling receptors specific for immunoglobulins of different classes.	432
10-22	Fc receptors on phagocytes are activated by antibodies bound to the surface of pathogens and enable the phagocytes to ingest and destroy pathogens.	433
10-23	Fc receptors activate NK cells to destroy antibody-coated targets.	435
10-24	Mast cells and basophils bind IgE antibody via the high-affinity Fc $_{\epsilon}$ receptor.	436
10-25	IgE-mediated activation of accessory cells has an important role in resistance to parasite infection.	437
Summ	ary.	438
Summ	ary to Chapter 10.	439
Questi	ons.	440
Refere	nces.	441
Chap	ter 11 Integrated Dynamics of Innate and Adaptive Immunity	445
	ation of innate and adaptive immunity in nse to specific types of pathogens.	446
11-1	The course of an infection can be divided into several distinct phases.	446
11-2	The effector mechanisms that are recruited to clear an infection depend on the infectious agent.	449
Summ	ary.	452
	or T cells augment the effector functions of immune cells.	452
11-3	Effector T cells are guided to specific tissues and sites of infection by changes in their expression of adhesion molecules and chemokine receptors.	453

11-4	Pathogen-specific effector T cells are enriched at sites of infection as adaptive immunity progresses.	457
11-5	T_{H} 1 cells coordinate and amplify the host response to intracellular pathogens through classical activation of macrophages.	458
11-6	Activation of macrophages by T _H 1 cells must be tightly regulated to avoid tissue damage.	460
11-7	Chronic activation of macrophages by T _H 1 cells mediates the formation of granulomas to contain intracellular pathogens that cannot be cleared.	461
11-8	Defects in type 1 immunity reveal its important role in the elimination of intracellular pathogens.	461
11-9	$\rm T_{\rm H}2$ cells coordinate type 2 responses to expel intestinal helminths and repair tissue injury.	462
11-10	$T_{\rm H} 17$ cells coordinate type 3 responses to enhance the clearance of extracellular bacteria and fungi.	465
11-11	Differentiated effector T cells continue to respond to signals as they carry out their effector functions.	466
11-12	Effector T cells can be activated to release cytokines independently of antigen recognition.	467
11-13	Effector T cells demonstrate plasticity and cooperativity that enable adaptation during anti-pathogen responses.	468
11-14	Integration of cell- and antibody-mediated immunity is critical for protection against many types of pathogens.	469
11-15	Primary CD8 T-cell responses to pathogens can occur in the absence of CD4 T-cell help.	470
11-16	Resolution of an infection is accompanied by the death of most of the effector cells and the generation of memory cells.	471
Summa	ary.	472
	nological memory.	473
11-17	Immunological memory is long lived after infection or vaccination.	473
11-18	Memory B-cell responses are more rapid and have higher affinity for antigen compared with responses of naive B cells.	475
11-19	Memory B cells can reenter germinal centers and undergo additional somatic hypermutation and affinity maturation during secondary immune responses.	476
11-20	MHC tetramers identify memory T cells that persist at an increased frequency relative to their frequency as naive T cells.	477
11-21	Memory T cells arise from effector T cells that maintain sensitivity to IL-7 or IL-15.	478
11-22	Memory T cells are heterogeneous and include central memory, effector memory, and tissue-resident subsets.	480
11-23	CD4 T-cell help is required for CD8 T-cell memory and involves CD40 and IL-2 signaling.	482
11-24	In immune individuals, secondary and subsequent responses are mainly attributable to memory lymphocytes.	484

Sumr	nary.	485	
	Summary to Chapter 11.		
	Questions.		
	References.		
	oter 12 The Mucosal Immune System	493	
	nature and structure of the mucosal une system.	493	
12-1	The mucosal immune system protects the internal surfaces of the body.	493	
12-2	Cells of the mucosal immune system are located both in anatomically defined compartments and scattered throughout mucosal tissues.	496	
12-3	The intestine has distinctive routes and mechanisms of antigen uptake.	499	
12-4	The mucosal immune system contains large numbers of effector lymphocytes even in the absence of disease.	500	
12-5	The circulation of lymphocytes within the mucosal immune system is controlled by tissue-specific adhesion molecules and chemokine receptors.	501	
12-6	Priming of lymphocytes in one mucosal tissue may induce protective immunity at other mucosal surfaces.	502	
12-7	Distinct populations of dendritic cells control mucosal immune responses.	503	
12-8	Macrophages and dendritic cells have different roles in mucosal immune responses.	505	
12-9	Antigen-presenting cells in the intestinal mucosa acquire antigen by a variety of routes.	505	
12-10	Secretory IgA is the class of antibody associated with the mucosal immune system.	506	
12-11	T-independent processes can contribute to IgA production in some species.	509	
12-12	IgA deficiency is relatively common in humans but may be compensated for by secretory IgM.	509	
12-13	The intestinal lamina propria contains antigen- experienced T cells and populations of unusual innate lymphoid cells.	510	
12-14	The intestinal epithelium is a unique compartment of the immune system.	511	
Sumr	nary.	514	
	nucosal response to infection and regulation ucosal immune responses.	514	
12-15		515	
12-16	Pathogens induce adaptive immune responses when innate defenses have been breached.	518	
12-17	Effector T-cell responses in the intestine protect the function of the epithelium.	518	
12-18	The mucosal immune system must maintain tolerance to harmless foreign antigens.	519	
12-19	The normal intestine contains large quantities of bacteria that are required for health.	520	

12-20	Innate and adaptive immune systems control microbiota while preventing inflammation without compromising the ability to react to invaders.	521
12-21	The intestinal microbiota plays a major role in shaping intestinal and systemic immune function.	522
12-22	Full immune responses to commensal bacteria provoke intestinal disease.	524
Summary.		525
Summary to Chapter 12.		525
Questions.		526
References.		527

PART V THE IMMUNE SYSTEM IN HEALTH AND DISEASE

Chapt		Failures of Host Defense Mechanisms	533
Immun		ncy diseases.	533
13-1	A history	of repeated infections suggests a s of immunodeficiency.	534
13-2	-	mmunodeficiency diseases are caused ed gene defects.	534
13-3		n T-cell development can result in severe d immunodeficiencies.	535
13-4	SCID can salvage p	also be due to defects in the purine bathway.	538
13-5		n antigen receptor gene rearrangement t in SCID.	538
13-6		n signaling from T-cell antigen receptors e severe immunodeficiency.	539
13-7		defects in thymic function that block T-cell nent result in severe immunodeficiencies.	539
13-8	in antiboo	n B-cell development result in deficiencies dy production that cause an inability to acellular bacteria and some viruses.	541
13-9	B-cell or	deficiencies can be caused by defects in T-cell activation and function that lead to I antibody responses.	543
13-10	infectious of cytokir	athways for host defense against different s agents are pinpointed by genetic deficiencies ne pathways central to type 1/T _H 1 and type sponses.	546
13-11	lymphocy	defects in the cytolytic pathway of tes can cause uncontrolled lympho- ion and inflammatory responses to viral s.	548
13-12	with fatal	ymphoproliferative syndrome is associated infection by Epstein–Barr virus and with the nent of lymphomas.	550
13-13		leficiency is caused by inherited defects velopment of dendritic cells.	551
13-14	regulator	n complement components and complement- y proteins cause defective humoral immune and tissue damage.	552
13-15		n phagocytic cells permit widespread infections.	553

13-16	Mutations in the molecular regulators of inflammation can cause uncontrolled inflammatory responses that result in 'autoinflammatory disease.'	556
13-17	Hematopoietic stem cell transplantation or gene therapy can be useful to correct genetic defects.	557
13-18	Noninherited, secondary immunodeficiencies are major predisposing causes of infection and death.	558
Summa	ary.	559
Evasio	n and subversion of immune defenses.	560
13-19	Extracellular bacterial pathogens have evolved different strategies to avoid detection by pattern recognition receptors and destruction by antibody, complement, and antimicrobial peptides.	560
13-20	Intracellular bacterial pathogens can evade the immune system by seeking shelter within phagocytes.	563
13-21	Immune evasion is also practiced by protozoan parasites.	565
13-22	RNA viruses use different mechanisms of antigenic variation to keep a step ahead of the adaptive immune system.	566
13-23	DNA viruses use multiple mechanisms to subvert NK-cell and CTL responses.	568
13-24	Some latent viruses persist <i>in vivo</i> by ceasing to replicate until immunity wanes.	571
Summa	ary.	573
Acquir	ed immune deficiency syndrome.	573
13-25	HIV is a retrovirus that establishes a chronic infection that slowly progresses to AIDS.	574
13-26	HIV infects and replicates within cells of the immune system.	576
13-27	Activated CD4 T cells are the major source of HIV replication.	578
13-28	There are several routes by which HIV is transmitted and establishes infection.	579
13-29	HIV variants with tropism for different co-receptors play different roles in transmission and progression of disease.	580
13-30	A genetic deficiency of the co-receptor CCR5 confers resistance to HIV infection.	582
13-31	An immune response controls but does not eliminate HIV.	583
13-32	Lymphoid tissue is the major reservoir of HIV infection.	585
13-33	Genetic variation in the host can alter the rate of disease progression.	585
13-34	The destruction of immune function as a result of HIV infection leads to increased susceptibility to opportunistic infection and eventually to death.	587
13-35	Drugs that block HIV replication lead to a rapid decrease in titer of infectious virus and an increase in CD4 T cells.	588
13-36	In the course of infection HIV accumulates many mutations, which can result in the outgrowth of drug-resistant variants.	590

13-37	Vaccination against HIV is an attractive solution but poses many difficulties.	591
13-38	Prevention and education are important in controlling the spread of HIV and AIDS.	592
Summa	ıry.	593
Summa	ry to Chapter 13.	594
Questic	ons.	594
Referer	ices.	595
Chapt	er 14 Allergy and Allergic Diseases	601
IgE an	d IgE-mediated allergic diseases.	602
14-1	Sensitization involves class switching to IgE production on first contact with an allergen.	603
14-2	Although many types of antigens can cause allergic sensitization, proteases are common sensitizing agents.	605
14-3	Genetic factors contribute to the development of IgE-mediated allergic disease.	607
14-4	Environmental factors may interact with genetic susceptibility to cause allergic disease.	609
14-5	Regulatory T cells can control allergic responses.	611
Summa	ıry.	612
	or mechanisms in IgE-mediated c reactions.	612
14-6	Most IgE is cell-bound and engages effector mechanisms of the immune system by pathways different from those of other antibody isotypes.	613
14-7	Mast cells reside in tissues and orchestrate allergic reactions.	613
14-8	Eosinophils and basophils cause inflammation and tissue damage in allergic reactions.	616
14-9	IgE-mediated allergic reactions have a rapid onset but can also lead to chronic responses.	617
14-10	Allergen introduced into the bloodstream can cause anaphylaxis.	619
14-11	Allergen inhalation is associated with the development of rhinitis and asthma.	621
14-12	Allergy to particular foods causes systemic reactions as well as symptoms limited to the gut.	624
14-13	IgE-mediated allergic disease can be treated by inhibiting the effector pathways that lead to symptoms or by desensitization techniques that aim at restoring biological tolerance to the allergen.	625
Summa	ıry.	627
Non-lo	E-mediated allergic diseases.	628
14-14	Non-IgE dependent drug-induced hypersensitivity reactions in susceptible individuals occur by binding of the drug to the surface of circulating blood cells.	628
14-15	Systemic disease caused by immune-complex formation can follow the administration of large quantities of poorly catabolized antigens.	628
14-16	Hypersensitivity reactions can be mediated by $\rm T_{\rm H}1$ cells and CD8 cytotoxic T cells.	630

14-17	Celiac disease has features of both an allergic response and autoimmunity.	634	
Summary.			
Summary to Chapter 14.			
Questi	ons.	637	
Refere	nces.	638	
Chap	ter 15 Autoimmunity and Transplantation	643	
The m	aking and breaking of self-tolerance.	643	
15-1	A critical function of the immune system is to discriminate self from nonself.	643	
15-2	Multiple tolerance mechanisms normally prevent autoimmunity.	645	
15-3	Central deletion or inactivation of newly formed lymphocytes is the first checkpoint of self-tolerance.	646	
15-4	Lymphocytes that bind self antigens with relatively low affinity usually ignore them but in some circumstances become activated.	647	
15-5	Antigens in immunologically privileged sites do not induce immune attack but can serve as targets.	648	
15-6	Autoreactive T cells that express particular cytokines may be nonpathogenic or may suppress pathogenic lymphocytes.	649	
15-7	Autoimmune responses can be controlled at various stages by regulatory T cells.	650	
Summary.			
Autoir	nmune diseases and pathogenic mechanisms.	652	
15-8	Specific adaptive immune responses to self antigens can cause autoimmune disease.	652	
15-9	Autoimmunity can be classified into either organ- specific or systemic disease.	653	
15-10	Multiple components of the immune system are typically recruited in autoimmune disease.	654	
15-11	Chronic autoimmune disease develops through positive feedback from inflammation, inability to clear the self antigen, and a broadening of the autoimmune response.	657	
15-12	Both antibody and effector T cells can cause tissue damage in autoimmune disease.	659	
15-13	Autoantibodies against blood cells promote their destruction.	661	
15-14	The fixation of sublytic doses of complement to cells in tissues stimulates a powerful inflammatory response.	661	
15-15	Autoantibodies against receptors cause disease by stimulating or blocking receptor function.	662	
15-16	Autoantibodies against extracellular antigens cause inflammatory injury.	663	
15-17	T cells specific for self antigens can cause direct tissue injury and sustain autoantibody responses.	665	
Summary.			
The genetic and environmental basis of autoimmunity. 6 15-18 Autoimmune diseases have a strong genetic			
10-10	Autoimmune diseases have a strong genetic component.	669	

15-19	Genomics-based approaches are providing new insight into the immunogenetic basis of autoimmunity.	670	
15-20	Many genes that predispose to autoimmunity fall into categories that affect one or more tolerance mechanisms.	674	
15-21	Monogenic defects of immune tolerance.	674	
15-22	MHC genes have an important role in controlling susceptibility to autoimmune disease.	676	
15-23	Genetic variants that impair innate immune responses can predispose to T-cell-mediated chronic inflammatory disease.	678	
15-24	External events can initiate autoimmunity.	679	
15-25	Infection can lead to autoimmune disease by providing an environment that promotes lymphocyte activation.	680	
15-26	Cross-reactivity between foreign molecules on pathogens and self molecules can lead to antiself responses and autoimmune disease.	680	
15-27	Drugs and toxins can cause autoimmune syndromes.	682	
15-28	Random events may be required for the initiation of autoimmunity.	682	
Summa	ary.	682	
Respo	nses to alloantigens and transplant rejection.	683	
15-29	Graft rejection is an immunological response mediated primarily by T cells.	683	
15-30	Transplant rejection is caused primarily by the strong immune response to nonself MHC molecules.	684	
15-31	In MHC-identical grafts, rejection is caused by peptides from other alloantigens bound to graft MHC molecules.	685	
15-32	There are two ways of presenting alloantigens on the transplanted donor organ to the recipient's T lymphocytes.	686	
15-33	Antibodies that react with endothelium cause hyperacute graft rejection.	688	
15-34	Late failure of transplanted organs is caused by chronic injury to the graft.	688	
15-35	A variety of organs are transplanted routinely in clinical medicine.	689	
15-36	The converse of graft rejection is graft-versus- host disease.	691	
15-37	Regulatory T cells are involved in alloreactive immune responses.	692	
15-38	The fetus is an allograft that is tolerated repeatedly.	693	
Summa	ary.	694	
Summa	ary to Chapter 15.	694	
Questions.		695	
Referer	nces.	696	
Chapt	ter 16 Manipulation of the Immune Response	701	
Treatm	nent of unwanted immune responses.	701	
16-1 Corticosteroids are powerful anti-inflammatory			
	drugs that alter the transcription of many genes.	702	

16-2	Cytotoxic drugs cause immunosuppression by killing dividing cells and have serious side-effects.	703
16-3	Cyclosporin A, tacrolimus, rapamycin, and JAK inhibitors are effective immunosuppressive agents that interfere with various T-cell signaling pathways.	704
16-4	Antibodies against cell-surface molecules can be used to eliminate lymphocyte subsets or to inhibit lymphocyte function.	706
16-5	Antibodies can be engineered to reduce their immunogenicity in humans.	707
16-6	Monoclonal antibodies can be used to prevent allograft rejection.	708
16-7	Depletion of autoreactive lymphocytes can treat autoimmune disease.	710
16-8	Biologics that block TNF- α , IL-1, or IL-6 can alleviate autoimmune diseases.	711
16-9	Biologic agents can block cell migration to sites of inflammation and reduce immune responses.	712
16-10	Blockade of co-stimulatory pathways that activate lymphocytes can be used to treat autoimmune disease.	713
16-11	Some commonly used drugs have immunomodulatory properties.	713
16-12	Controlled administration of antigen can be used to manipulate the nature of an antigen-specific	714
Summa	response. arv.	714
	the immune response to attack tumors.	716
16-13	The development of transplantable tumors in mice led to the discovery of protective immune responses to tumors.	716
16-14	Tumors are 'edited' by the immune system as they evolve and can escape rejection in many ways.	710
16-15	Tumor rejection antigens can be recognized by T cells and form the basis of immunotherapies.	720
16-16	T cells expressing chimeric antigen receptors are an effective treatment in some leukemias.	723
16-17	Monoclonal antibodies against tumor antigens, alone or linked to toxins, can control tumor growth.	724
16-18	Enhancing the immune response to tumors by vaccination holds promise for cancer prevention and therapy.	726
16-19	Checkpoint blockade can augment immune responses to existing tumors.	727
Summa	ary.	728
Fightir	g infectious diseases with vaccination.	729
16-20	Vaccines can be based on attenuated pathogens or material from killed organisms.	730
16-21	Most effective vaccines generate antibodies that prevent the damage caused by toxins or that neutralize the pathogen and stop infection.	731
16-22	Effective vaccines must induce long-lasting protection while being safe and inexpensive.	732

16-23	Live-attenuated viral vaccines are usually more potent than 'killed' vaccines and can be made safer by the use of recombinant DNA technology.	732
16-24	Live-attenuated vaccines can be developed by selecting nonpathogenic or disabled bacteria or by creating genetically attenuated parasites (GAPs).	734
16-25	The route of vaccination is an important determinant of success.	735
16-26	Bordetella pertussis vaccination illustrates the importance of the perceived safety of a vaccine.	736
16-27	Conjugate vaccines have been developed as a result of linked recognition between T and B cells.	737
16-28	Peptide-based vaccines can elicit protective immunity, but they require adjuvants and must be targeted to the appropriate cells and cell compartment to be effective.	738
16-29	Adjuvants are important for enhancing the immunogenicity of vaccines, but few are approved for use in humans.	739
16-30	Protective immunity can be induced by DNA-based vaccination.	740
16-31	Vaccination and checkpoint blockade may be useful in controlling existing chronic infections.	741
Summary.		742
Summary to Chapter 16.		
Questions.		
References.		

APPENDICES

Appendix I The Immunologist's Toolbox				
A-1.	Immunization.	749		
A-2	Antibody responses.	752		
A-3	Affinity chromatography.	753		
A-4	Radioimmunoassay (RIA), enzyme-linked immunosorbent assay (ELISA), and competitive inhibition assay.	753		
A-5	Hemagglutination and blood typing.	755		
A-6	Coombs tests and the detection of rhesus incompatibility.	756		
A-7	Monoclonal antibodies.	757		
A-8	Phage display libraries for antibody V-region production.	758		
A-9	Generation of human monoclonal antibodies from vaccinated individuals.	759		
A-10	Microscopy and imaging using fluorescent dyes.	760		
A-11	Immunoelectron microscopy.	761		
A-12	Immunohistochemistry.	762		
A-13	Immunoprecipitation and co-immunoprecipitation.	762		
A-14	Immunoblotting (Western blotting).	764		
A-15	Use of antibodies in the isolation and characterization of multiprotein complexes by mass spectrometry.	764		

A-16	Isolation of peripheral blood lymphocytes by density- gradient fractionation.	766
A-17	Isolation of lymphocytes from tissues other than blood.	766
A-18	Flow cytometry and FACS analysis.	767
A-19	Lymphocyte isolation using antibody-coated magnetic beads.	770
A-20	Isolation of homogeneous T-cell lines.	770
A-21	Limiting-dilution culture.	771
A-22	ELISPOT assay.	773
A-23	Identification of functional subsets of T cells based on cytokine production or transcription factor expression.	773
A-24	Identification of T-cell receptor specificity using peptide:MHC tetramers.	776
A-25	Biosensor assays for measuring the rates of association and dissociation of antigen receptors for their ligands.	777
A-26	Assays of lymphocyte proliferation.	778
A-27	Measurements of apoptosis.	779
A-28	Assays for cytotoxic T cells.	780
A-29	Assays for CD4 T cells.	782
A-30	Transfer of protective immunity.	782
A-31	Adoptive transfer of lymphocytes.	783
A-32	Hematopoietic stem-cell transfers.	784
A-33	In vivo administration of antibodies.	785
A-34	Transgenic mice.	786
A-35	Gene knockout by targeted disruption.	786
A-36	Knockdown of gene expression by RNA interference (RNAi).	790
Appe	ndix II CD antigens	791
Appe	ndix II Cytokines and their Receptors	811
Appe	ndix IV Chemokines and their Receptors	814
Biogr	aphies	816
-	- ograph Acknowledgments	817
Gloss		818
	•	
Index		855