Dieter Maurer

Acoustics of the Vowel

Preliminaries

Content

Acknowledgements

1 Introduction

Part I Prevailing Theory and Empirical References

14 1 Prevailing Theory

- 1.1 General Acoustic Characteristics of Vowel Sounds
- 1.2 Language-Specific Acoustic Characteristics of Vowel Sounds
- 1.3 Speaker Group-Specific Acoustic Characteristics of Vowel Sounds
- 1.4 Phonation Type-Specific Acoustic Characteristics of Vowel Sounds and Limitation to Voiced Oral Sounds
- 1.5 Limitation to Isolated Vowel Sounds
- 1.6 Limitation to Vowel Sounds as Monophthongs with Quasi-Constant Sound Characteristics
- 1.7 Speech Community-Specific Acoustic Characteristics of Vowel Sounds
- 1.8 The Prevailing Theory of Physical Vowel Representation
- 1.9 Formalising Prevailing Theory
- 1.10 Illustration

21 2 Prevailing Empirical References

- 2.1 General References
- 2.2 Empirical Reference for Standard German
- 2.3 Other Statistical References

Part II Reflections

32 3 Vowels and Number of Formants

- 3.1 Inconstant Number of Vowel-Specific Relative Spectral Energy Maxima in Sounds of Back Vowels and of /a-a/
- 3.2 Inconstant Correspondence between Vowel-Specific Relative Spectral Energy Maxima and Calculated Vowel-Specific Formant Patterns
- 3.3 Inconstant Number of Vowel-Specific Relative Spectral Energy Maxima and of Calculated Vowel-Specific Formants
- 3.4 Addition: "Spurious" Formants

Content vii

- 3.5 Addition: "Flat" Vowel Spectra
- 3.6 Addition: Inconstant Number of Vowel-Specific Formants in Synthesis

35 4 Vowels and Fundamental Frequency

- 4.1 Fundamental Frequency, First Formant and "Grade" of Vowels
- 4.2 Fundamental Frequency, Spectral Envelope, Formant Pattern and "Grade" of Vowels

38 5 Formant Patterns and Speaker Groups

- 5.1 Fundamental Frequency, Spectral Envelope, Formant Pattern and "Grade" of Vowels Uttered by Children, Women and Men
- 5.2 One Vowel. Different Formant Patterns
- 5.3 Different Vowels, One Formant Pattern
- 5.4 A Gap in the Reasoning
- 5.5 Addition: Formant Patterns of Voiced and Whispered Vowel Sounds

45 6 Terms of Reference, Methods of Formant Estimation

- 6.1 Formant and Sound Spectrum
- 6.2 Speaker Group and Vocal-Tract Size
- 6.3 Formant Analysis and Objectivisation
- 6.4 Formant Analysis, Fundamental Frequency and Speaker Group or Vocal-Tract Size
- 6.5 Addition: Parameter Adjustments in Formant Analysis and Inconsistent References to Vocal-Tract Size
- 6.6 Addition: Spectrum, Formant Pattern, Resynthesis
- 6.7 Addition: Formant Analysis and Objectivity with Regard to Synthesised Vowel Sounds
- 6.8 Addition: Formant Patterns and Resynthesis outside of the Framework of Prevailing Theory

viii Content

Part III Experiences and Observations

56 7 Unsystematic Correspondence between Vowels, Patterns of Relative Spectral Energy Maxima and Formant Patterns

- 7.1 Inconstant Number of Vowel-Specific Relative Spectral Energy Maxima and Incongruence of Vowel-Specific Formant Patterns
- 7.2 Partial Lack of Manifestation of Vowel-Specific Relative Spectral Energy Maxima
- 7.3 Addition: Resynthesis and Synthesis

59 8 Lack of Correspondence between Vowels and Patterns of Relative Spectral Energy Maxima or Formant Patterns

- 8.1 Dependence of Vowel-Specific, Relative Spectral Energy Maxima and Lower Formants≤1.5kHz on Fundamental Frequency
- 8.2 Vowel Perception at Fundamental Frequencies above Statistical Values of the First-Formant Frequency
- 8.3 "Inversions" of Relative Spectral Energy Maxima and Minima and "Inverse" Formant Patterns in Sounds of Individual Vowels
- 8.4 Addition: Whispered Vowel Sounds, Fundamental-Frequency Dependence of Vowel-Specific Spectral Characteristics and "Inversions"
- 8.5 Addition: Resynthesis and Synthesis

64 9 Ambiguous Correspondence between Vowels and Patterns of Relative Spectral Energy Maxima or Formant Patterns or Complete Spectral Envelopes

- 9.1 Ambiguous Patterns of Relative Spectral Energy Maxima and Ambiguous Formant Patterns
- 9.2 Ambiguous Spectral Envelopes
- 9.3 Ambiguity and Individual Vowels
- 9.4 Addition: Resynthesis and Synthesis

66 10 Lack of Correspondence between Patterns of Relative Spectral Energy Maxima or Formant Patterns and Speaker Groups or Vocal-Tract Sizes

- 10.1 Similar Patterns of Relative Spectral Maxima and Similar Formant Patterns≤1.5 kHz for Different Speaker Groups or Different Vocal-Tract Sizes
- 10.2 The Dichotomy of the Vowel Spectrum

Content ix

- 10.3 Addition: Whispered Vowel Sounds and Speaker Groups or Vocal-Tract Sizes
- 10.4 Addition: Vowel Imitations by Birds
- 10.5 Addition: Resynthesis and Synthesis

70 11 Lack of Correlation between Methodological Limitations of Formant Determination and Limitations of Vowel Perception

- 11.1 Vowel Perception at Fundamental Frequencies > 350 Hz
- 11.2 Lack of Correspondence between Methodological Problems of Formant Pattern Estimation at Fundamental Frequencies ≤ 350 Hz and Impaired Vowel Perception
- 11.3 Addition: Lack of Methodological Basis of Determining Formant Patterns for Vowel Mimicry by Birds

Part IV Falsification

- 74 12 Empirical Falsification despite Methodological Limitations of Determining Patterns of Relative Spectral Envelope Maxima or Formant Patterns
 - 12.1 Lack of Methodological Basis for Verifying Prevailing Theory
 - 12.2 Systematic Divergence of Empirical Findings from Predictions of Prevailing Theory
 - 12.3 Empirical Findings Directly Contradicting Prevailing Theory

Part V Commentary

- 78 13 Preliminaries
 - 13.1 Impediments to Adjusting Prevailing Theory
 - 13.2 Prevailing Theory as an Index
 - 13.3 Excursus: Vowel Quality and Harmonic Spectrum
 - 13.4 "Forefield"
 - 13.5 Two Approaches
 - 13.6 Phenomenology
 - 13.7 Theory Building

87 Afterword

x Content

Materials

М	ate	ria	ls	Pa	ırt	I

- 98 M1 Prevailing Theory
- 102 M2 Prevailing Empirical References

Materials Part II

- 106 M3 Vowels and Number of Formants
- 107 M4 Vowels and Fundamental Frequency
- 112 M5 Formant Patterns and Speaker Groups
- 118 M6 Terms of Reference, Methods of Formant Estimation

Materials Part III

- 128 Note on the Method
- 132 M7 Unsystematic Correspondence between Vowels,
 Patterns of Relative Spectral Energy Maxima
 and Formant Patterns
 - M7.1 Inconstant Number of Vowel-Specific Relative Spectral Energy Maxima and Incongruence of Vowel-Specific Formant Patterns
 - M7.2 Partial Lack of Manifestation of Vowel-Specific Relative Spectral Energy Maxima
- 158 M8 Lack of Correspondence between Vowels and Patterns of Relative Spectral Energy Maxima or Formant Patterns
 - M8.1 Dependence of Vowel-Specific, Relative Spectral Energy Maxima and Lower Formants ≤ 1.5 kHz on Fundamental Frequency
 - M8.2 Vowel Perception at Fundamental Frequencies above Statistical Values of the Respective First Formant Frequency
 - M8.3 "Inversions" of Relative Spectral Energy Maxima and Minima and "Inverse" Formant Patterns in Sounds of Individual Vowels

Content xi

187 M9 Ambiguous Correspondence between Vowels and Patterns of Relative Spectral Energy Maxima or Formant Patterns or Complete Spectral Envelopes

- M9.1 Ambiguous Patterns of Relative Spectral Energy Maxima and Ambiguous Formant Patterns
- M9.2 Ambiguous Spectral Envelopes
- M9.3 Ambiguity and Individual Vowels

217 M10 Lack of Correspondence between Patterns of Relative Spectral Energy Maxima or Formant Patterns and Age- and Gender-Related Speaker Groups or Vocal-Tract Sizes

- M10.1 Similar Patterns of Relative Spectral Maxima and Similar Formant Patterns≤1.5 kHz for Different Age and Gender-Related Speaker Groups or Vocal-Tract Sizes
- M10.2 The Dichotomy of the Vowel Spectrum
- M10.A Addition: Vowel Imitations by Birds

249 M11 Lack of Correlation between Methodological Limitations of Formant Determination and Limitations of Vowel Perception

- M11.1 Vowel Perception at Fundamental Frequencies>350 Hz
- M11.2 Lack of Correspondence between Methodological Problems of Formant Pattern Estimation at Fundamental Frequencies ≤ 350 Hz and Impaired Vowel Perception

Experiments

252 E1 Number of Relative Spectral Energy Maxima and Number of Formants

- E1.1 Sounds of Back Vowels Showing only One Lower Spectral Peak≤1.5 kHz
- E1.2 Sounds of Back Vowels Showing only One Pronounced Lower Formant≤1.5 kHz
- E1.3 Sounds of Single Front Vowels Showing Non-Corresponding F2 and F3
- E1.4 Sounds of Back Vowels Showing No Pronounced Spectral Peak≤1.5 kHz
- E1.5 Sounds of Front Vowels Showing No Pronounced Spectral Peak>2 kHz

xii Content

254 E2 Patterns of Relative Spectral Energy Maxima, Formant Patterns and Fundamental Frequency

- E2.1 Sounds of Single Vowels Produced at Different F0 Exhibiting Different Spectral Peaks and Different Calculated Formant Patterns: Part 1, Dependence of Formant Patterns on F0
- E2.2 Sounds of Single Vowels Produced at Different F0
 Exhibiting Different Spectral Peaks and Different
 Calculated Formant Patterns: Part 2, Vowel Intelligibility
 for Sounds at F0>500 Hz
- E2.3 Sounds of Single Vowels Produced at Different F0
 Exhibiting Different Spectral Peaks and Different
 Calculated Formant Patterns: Part 3, Resynthesising
 a Formant Pattern at Different F0
- E2.4 Sounds of Single Back Vowels Produced at Different F0 Exhibiting Inverse Spectral Peaks
- E2.5 Special Note Concerning Inconstant Numerical Relationship between Calculated F0 and Formant Patterns

257 E3 Formant Pattern Ambiguity

- E3.1 Formant Pattern Ambiguity in Natural Vocalisations
- E3.2 Formant Pattern Ambiguity in Model Synthesis

258 E4 Patterns of Relative Spectral Energy Maxima, Formant Patterns and Age- and Gender-Related Vocal-Tract Sizes

- E4.1 Comparison of Vowel-Specific Spectral Characteristics of Children, Women and Men Related to Different and Similar F0 of Vocalisations: Part 1, Natural Vocalisations
- E4.2 Comparison of Vowel-Specific Spectral Characteristics of Children, Women and Men Related to Different and Similar F0 of Vocalisations: Part 2, Resynthesis

260 E5 Patterns of Relative Spectral Energy Maxima, Formant Patterns and Phonation Types

- E5.1 Whispered Sounds Compared with Voiced Sounds at Different F0 in Utterances of a Single Speaker
- E5.2 Whispered Sounds Compared with Voiced Sounds at Different F0 in Utterances of Speakers of Different Speaker Groups
- E5.3 Sounds of Back Vowels Showing Three Spectral Peaks≤1.5 kHz
- E5.4 Sounds of Front Vowels Showing Two Spectral Peaks≤1.5kHz

Content xiii

262 E6 Patterns of Relative Spectral Energy Maxima, Formant Patterns and Vowel Imitation by Birds

- E6.1 Direct Comparisons of Selected Sounds of Humans and Birds
- E6.2 Resynthesis Relating to "Anomalous" Formant Patterns of Sounds of Birds

263 E7 Anomalous Vowel Spectra

- E7.1 Spectra with Increasing Number of Harmonics Equal in Amplitude ("Flat" Vowel Spectra)
- E7.2 Spectra with Increasing Number of Harmonic Pairs Showing Equal Amplitude Differences ("Ridged" Parts of Vowel Spectra)

264 E8 Aspects of Method

- E8.1 Formant Pattern Estimation Related to Non-Standard Parameters
- E8.2 Formant Pattern Estimation at F0>350Hz
- E8.3 Resynthesis of Sounds at Varying F0 and Subsequent Formant Pattern Estimation
- 268 List of Figures
- 274 List of Tables
- 275 References

xiv Content