Contents

Volume I

List of Contributors
xxvii

Preface
xxxi

Materials Physics

Chapter 1
Polymer Materials Characterization, Modeling and Application

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1. Introduction</td>
<td>3</td>
</tr>
<tr>
<td>1.2. Polymers in Microelectronics</td>
<td>4</td>
</tr>
<tr>
<td>1.3. Basics of Visco-Elastic Modeling</td>
<td>6</td>
</tr>
<tr>
<td>1.3.1. Preliminary: State Dependent Viscoelasticity</td>
<td>6</td>
</tr>
<tr>
<td>1.3.2. Incremental Relationship</td>
<td>10</td>
</tr>
<tr>
<td>1.3.3. Linear State Dependent Viscoelasticity</td>
<td>13</td>
</tr>
<tr>
<td>1.3.4. Isotropic Material Behavior</td>
<td>14</td>
</tr>
<tr>
<td>1.3.5. Interrelations between Property Functions</td>
<td>15</td>
</tr>
<tr>
<td>1.3.6. Elastic Approximations</td>
<td>17</td>
</tr>
<tr>
<td>1.4. Linear Visco-Elastic Modeling (Fully Cured Polymers)</td>
<td>18</td>
</tr>
<tr>
<td>1.4.1. Introduction</td>
<td>18</td>
</tr>
<tr>
<td>1.4.2. Static Testing of Relaxation Moduli</td>
<td>18</td>
</tr>
<tr>
<td>1.4.3. Time-Temperature Superposition Principle</td>
<td>23</td>
</tr>
<tr>
<td>1.4.4. Static Testing of Creep Compliances</td>
<td>24</td>
</tr>
<tr>
<td>1.4.5. Dynamic Testing</td>
<td>27</td>
</tr>
<tr>
<td>1.5. Modeling of Curing Polymers</td>
<td>34</td>
</tr>
<tr>
<td>1.5.1. “Partly State Dependent” Modeling (Curing Polymers)</td>
<td>35</td>
</tr>
<tr>
<td>1.5.2. “Fully State Dependent” Modeling (Curing Polymers)</td>
<td>49</td>
</tr>
<tr>
<td>1.6. Parameterized Polymer Modeling (PPM)</td>
<td>53</td>
</tr>
<tr>
<td>1.6.1. PPM Hypotheses</td>
<td>54</td>
</tr>
<tr>
<td>1.6.2. Experimental Characterizations</td>
<td>55</td>
</tr>
<tr>
<td>1.6.3. PPM Modeling in Virtual Prototyping</td>
<td>62</td>
</tr>
</tbody>
</table>

Acknowledgments
62

References
62
Chapter 2
Thermo-Optic Effects in Polymer Bragg Gratings
Avram Bar-Cohen, Bongtae Han and Kyoung Joon Kim

2.1. Introduction
 65
2.2. Fundamentals of Bragg Gratings
 67
 2.2.1. Physical Descriptions
 67
 2.2.2. Basic Optical Principles
 68
2.3. Thermo-Optical Modeling of Polymer Fiber Bragg Grating
 70
 2.3.1. Heat Generation by Intrinsic Absorption
 70
 2.3.2. Analytical Thermal Model of PFBG
 78
 2.3.3. FEA Thermal Model of PFBG
 80
 2.3.4. Thermo-Optical Model of PFBG
 80
2.4. Thermo-Optical Behavior of PMMA-Based PFBG
 84
 2.4.1. Description of a PMMA-Based PFBG and Light Sources
 85
 2.4.2. Power Variation Along the PFBG
 86
 2.4.3. Thermo-Optical Behavior of the PFBG–LED Illumination
 87
 2.4.4. Thermo-Optical Behavior of the PFBG–SM LD Illumination
 92
 2.4.5. Thermo-Optical Behavior of the PFBG Associated with Other Light Sources
 101
2.5. Concluding Remarks
 102
References
 102
Appendix 2.A: Solution Procedure to Obtain the Optical Power Along the PFBG
 104
Appendix 2.B: Solution Procedure to Determine the Temperature Profile Along the PFBG
 106
 2.B.1. Solution Procedure of the Temperature Profile Along the PFBG with the LED
 106
 2.B.2. Solution Procedure of the Temperature Profile Along the PFBG with the SM LD
 106

Chapter 3
Photorefractive Materials and Devices for Passive Components in WDM Systems
Claire Gu, Yisi Liu, Yuan Xu, J.J. Pan, Fengqing Zhou, Liang Dong and Henry He

3.1. Introduction
 111
3.2. Tunable Flat-Topped Filter
 114
 3.2.1. Principle of Operation
 114
 3.2.2. Device Simulation
 116
 3.2.3. Design for Implementation
 117
3.3. Wavelength Selective 2 × 2 Switch
 117
 3.3.1. Principle of Operation
 118
 3.3.2. Experimental Demonstration
 119
 3.3.3. Theoretical Analysis
 121
 3.3.4. Optimized Switch Design
 123
 3.3.5. Discussion
 125
3.4. High Performance Dispersion Compensators
 126
 3.4.1. Multi-Channel Dispersion-Slope Compensator
 126
 3.4.2. High Precision FBG Fabrication Method and Dispersion Management Filters
 129
3.5. Conclusions
 133
References
 133
Chapter 4
Thin Films for Microelectronics and Photonics: Physics, Mechanics, Characterization, and Reliability
David T. Read and Alex A. Volinsky

4.1. Terminology and Scope
4.1.1. Thin Films
4.1.2. Motivation
4.1.3. Chapter Outline

4.2. Thin Film Structures and Materials
4.2.1. Substrates
4.2.2. Epitaxial Films
4.2.3. Dielectric Films
4.2.4. Metal Films
4.2.5. Organic and Polymer Films
4.2.6. MEMS Structures
4.2.7. Intermediate Layers: Adhesion, Barrier, Buffer, and Seed Layers

4.3. Manufacturability/Reliability Challenges
4.3.1. Film Deposition and Stress
4.3.2. Grain Structure and Texture
4.3.3. Impurities
4.3.4. Dislocations
4.3.5. Electromigration and Voiding
4.3.6. Structural Considerations
4.3.7. Need for Mechanical Characterization
4.3.8. Properties of Interest

4.4. Methods for mechanical characterization of thin films
4.4.1. Microtensile Testing
4.4.2. Instrumented Indentation
4.4.3. Other Techniques
4.4.4. Adhesion Tests

4.5. Materials and Properties
4.5.1. Grain Size and Structure Size Effects

4.6. Properties of Specific Materials
4.7. Future Research
4.7.1. Techniques
4.7.2. Properties
4.7.3. Length Scale

References

Chapter 5
Carbon Nanotube Based Interconnect Technology: Opportunities and Challenges
Alan M. Cassell and Jun Li

5.1. Introduction: Physical Characteristics of Carbon Nanotubes
5.1.1. Structural
5.1.2. Electrical
5.1.3. Mechanical
5.1.4. Thermal

5.2. CNT Fabrication Technologies
Chapter 10
Metallurgy, Processing and Reliability of Lead-Free Solder Joint Interconnections

Jin Liang, Nader Dariavach and Dongkai Shangguan

10.1. Introduction
10.2. Physical Metallurgy of Lead-Free Solder Alloys
 10.2.1. Tin-Lead Solders
 10.2.2. Lead-Free Solder Alloys
 10.2.3. Interfacial Reaction: Wetting and Spreading
 10.2.4. Interfacial Intermetallic Formation and Growth at Liquid–Solid Interfaces
10.3. Lead-Free Soldering Processes and Compatibility
 10.3.1. Lead-Free Soldering Materials
 10.3.2. PCB Substrates and Metalization Finishes
 10.3.3. Lead-Free Soldering Processes
 10.3.4. Components for Lead-Free Soldering
 10.3.5. Design, Equipment and Cost Considerations
10.4. Reliability of Pb-Free Solder Interconnects
 10.4.1. Reliability and Failure Distribution of Pb-Free Solder Joints
 10.4.2. Effects of Loading and Thermal Conditions on Reliability of Solder Interconnection
 10.4.3. Reliability of Pb-Free Solder Joints in Comparison to Sn-Pb Eutectic Solder Joints
10.5. Guidelines for Pb-free Soldering and Improvement in Reliability

Chapter 11
Fatigue Life Assessment for Lead-Free Solder Joints

Masaki Shiratori and Qiang Yu

11.1. Introduction
11.2. The Intermetallic Compound Formed at the Interface of the Solder Joints and the Cu-pad
11.3. Mechanical Fatigue Testing Equipment and Load Condition in the Lead Free Solder
11.4. Results of Mechanical Fatigue Test
11.5. Critical Fatigue Stress Limit for the Intermetallic Compound Layer
11.6. Influence of the Plating Material on the Fatigue Life of Sn-Zn (Sn-9Zn and Sn-8Zn-3Bi) Solder Joints
11.7. Conclusion

Chapter 12
Lead-Free Solder Materials: Design For Reliability

John H.L. Pang

12.1. Introduction
12.2. Mechanics of Solder Materials
 12.2.1. Fatigue Behavior of Solder Materials
12.3. Design For Reliability (DFR)
12.4. Constitutive Models For Lead Free Solders 435
 12.4.1. Tensile Test Results 435
 12.4.2. Creep Test Results 440
12.5. Low Cycle Fatigue Models 443
12.6. FEA Modeling and Simulation 448
12.7. Reliability Test and Analysis 454
12.8. Conclusions 456
Acknowledgments 456
References 456

Chapter 13
Application of Moire Interferometry to Strain Analysis of PCB Deformations at Low Temperatures
Arkady Voloshin 459
13.1. Introduction 459
13.2. Optical Method and Recording of Fringe Patterns 460
 13.2.1. Fractional Fringe Approach 461
 13.2.2. Grating Frequency Increase 461
 13.2.3. Creation of a High-Frequency Master Grating 462
 13.2.4. Combination of the High Grating Frequency and Fractional Fringe Approach 463
13.3. Data Processing 463
13.4. Test Boards and Specimen Grating 463
13.5. Elevated Temperature Test 465
13.6. Low Temperature Test 468
13.7. Conclusions 470
Acknowledgment 472
References 473

Chapter 14
Characterization of Stresses and Strains in Microelectronics and Photonics Devices Using Photomechanics Methods
Bongtae Han 475
14.1. Introduction 475
14.2. Stress/Strain analysis 476
 14.2.1. Moiré Interferometry 476
 14.2.2. Extension: Microscopic Moiré Interferometry 477
 14.2.3. Specimen Gratings 479
 14.2.4. Strain Analysis 480
 14.2.5. Thermal Deformation Measured at Room Temperature 481
 14.2.6. Deformation as a Function of Temperature 485
 14.2.7. Hygroscopic Deformation 494
 14.2.8. Micromechanics 501
14.3. Warpage Analysis 505
 14.3.1. Twyman/Green Interferometry 505
 14.3.2. Shadow Moiré 509
 14.3.3. Far InfraRed Fizeau Interferometry 514
Acknowledgment 520
References 520
Chapter 15
Analysis of Reliability of IC Packages Using the Fracture Mechanics Approach
Andrew A.O. Tay

15.1. Introduction
15.2. Heat Transfer and Moisture Diffusion in IC Packages
15.3. Fundamentals of Interfacial Fracture Mechanics
15.4. Criterion for Crack Propagation
15.5. Interface Fracture Toughness
15.6. Total Stress Intensity Factor
15.7. Calculation of SERR and Mode Mixity
 15.7.1. Crack Surface Displacement Extrapolation Method
 15.7.2. Modified J-integral Method
 15.7.3. Modified Virtual Crack Closure Method
 15.7.4. Variable Order Boundary Element Method
 15.7.5. Interaction Integral Method
15.8. Experimental Verification
15.9. Case Studies
 15.9.1. Delamination Along Pad-Encapsulant Interface
 15.9.2. Delamination Along Die-Attach/Pad Interface
 15.9.3. Analysis Using Variable Order Boundary Element Method
15.10. Discussion of the Various Numerical Methods for Calculating G and ψ
15.11. Conclusion
References

Chapter 16
Dynamic Response of Micro- and Opto-Electronic Systems to Shocks and Vibrations: Review and Extension
E. Suhir

16.1. Introduction
16.2. Review
16.3. Extension: Quality of Shock Protection with a Flexible Wire Elements
16.4. Analysis
 16.4.1. Pre-Buckling Mode: Small Displacements
 16.4.2. Post-Buckling Mode: Large Displacements
16.5. Conclusions
References

Chapter 17
Dynamic Physical Reliability in Application to Photonic Materials
Dov Ingman, Tatiana Mirer and Ephraim Suhir

17.1. Introduction: Dynamic Reliability Approach to the Evolution of Silica Fiber Performance
 17.1.1. Dynamic Physical Model of Damage Accumulation
 17.1.2. Impact of the Three-Dimensional Mechanical-Temperature-Humidity Load on the Optical Fiber Reliability
 17.1.3. Effect of Bimodality and Its Explanation Based on the Suggested Model
17.2. Reliability Improvement through NPM-Based Fiber Structures
References
Chapter 18
High-Speed Tensile Testing of Optical Fibers—New Understanding for Reliability Prediction
Sergey Semjonov and G. Scott Glaesemann

18.1. INTRODUCTION 595
18.2. Theory 596
18.2.1. Single-Region Power-Law Model 596
18.2.2. Two-Region Power-Law Model 598
18.2.3. Universal Static and Dynamic Fatigue Curves 599
18.3. Experimental 602
18.3.1. Sample Preparation 602
18.3.2. Dynamic Fatigue Tests 604
18.3.3. Static Fatigue Tests 605
18.4. Results and Discussion 606
18.4.1. High-Speed Testing 606
18.4.2. Static Fatigue 610
18.4.3. Influence of Multiregion Model on Lifetime Prediction 613
18.5. Conclusion 613
References 614

Appendix 18.B: Incorporating Static Fatigue Results into Dynamic Fatigue Curves 620
18.B.1. Static Fatigue Test 620
18.B.2. Dynamic Fatigue Test 621
18.B.3. Discussion 622

Chapter 19
The Effect of Temperature on the Microstructure Nonlinear Dynamics Behavior
Xiaoling He

19.1. Introduction 627
19.2. Theoretical Development 630
19.2.1. Background on Nonlinear Dynamics and Nonlinear Thermo-Elasticity Theories 630
19.2.2. Nonlinear Thermo-Elasticity Development for an Isotropic Laminate Subject to Thermal and Mechanical Load 631
19.3. Thin Laminate Deflection Response Subject to Thermal Effect and Mechanical Load 633
19.3.1. Steady State Temperature Effect 633
19.3.2. Transient Thermal Field Effect 638
19.4. Stress Field in Nonlinear Dynamics Response 653
19.4.1. Stress Field Formulation 653
19.4.2. Stress Distribution 654
19.4.3. Failure Analysis 654
Chapter 20
Effect of Material’s Nonlinearity on the Mechanical Response of some Piezoelectric and Photonic Systems
Victor Birman and Ephraim Suhir

20.1. Introduction

20.2. Effect of Physical Nonlinearity on Vibrations of Piezoelectric Rods Driven by Alternating Electric Field

20.2.1. Physically Nonlinear Constitutive Relationships for an Orthotropic Cylindrical Piezoelectric Rod Subject to an Electric Field in the Axial Direction

20.2.2. Analysis of Uncoupled Axial Vibrations

20.2.3. Solution for Coupled Axial-Radial Axisymmetric Vibrations by the Generalized Galerkin Procedure

20.2.4. Numerical Results and Discussion

20.3. The Effect of the Nonlinear Stress–Strain Relationship on the Response of Optical Fibers

20.3.1. Stability of Optical Fibers

20.3.2. Stresses and Strains in a Lightwave Coupler Subjected to Tension

20.3.3. Free Vibrations

20.3.4. Bending of an Optical Fiber

20.4. Conclusions

Acknowledgment

References

Index
CONTENTS

1.5. Die-Substrate and other Bi-Material Assemblies 6
1.6. Solder Joints 8
1.7. Design Recommendations 9
1.8. “Global” and “Local” Mismatch and Assemblies Bonded at the Ends 10
1.9. Assemblies with Low Modulus Adhesive Layer at the Ends 11
1.10. thermally Matched Assemblies 11
1.11. Thin Films 12
1.13. Thermal Stress Induced Bowing and Bow-Free Assemblies 14
1.15. Optical Fibers and other Photonic Structures 15
1.16. Conclusion 16

References 17

Chapter 2
Probabilistic Physical Design of Fiber-Optic Structures

Satish Radhakrishnan, Ganesh Subbarayan and Luu Nguyen 23

2.1. Introduction 23
2.1.1. Demonstration Vehicle 24

2.2. Optical Model 25
2.2.1. Mode Field Diameter 26
2.2.2. Refraction and Reflection Losses 27
2.2.3. Calculations for Coupling Losses 27
2.2.4. Coupling Efficiency 28

2.3. Interactions in System and Identification of Critical Variables 30
2.3.1. Function Variable Incidence Matrix 30
2.3.2. Function Variable Incidence Matrix to Graph Conversion 31
2.3.3. Graph Partitioning Techniques 34
2.3.4. System Decomposition using Simulated Annealing 34

2.4. Deterministic Design Procedures 37
2.4.1. Optimal and Robust Design 40
2.4.2. A Brief Review of Multi-Objective Optimization 42
2.4.3. Implementation 43
2.4.4. Results 43

2.5. Stochastic Analysis 44
2.5.1. The First and Second Order Second Moment Methods 44

2.6. Probabilistic Design for Maximum Reliability 46
2.6.1. Results 49

2.7. Stochastic Characterization of Epoxy Behavior 51
2.7.1. Viscoelastic Models 52
2.7.2. Modeling the Creep Test 53
2.7.3. Dynamic Mechanical Analysis 54
2.7.4. Experimental Results 55

2.8. Analytical Model to Determine VCSEL Displacement 57
2.8.1. Results 63

2.9. Summary 67

References 67
Chapter 3
The Wirebonded Interconnect: A Mainstay for Electronics
Harry K. Charles, Jr.

3.1. Introduction
3.1.1. Integrated Circuit Revolution
3.1.2. Interconnection Types
3.1.3. Wirebond Importance

3.2. Wirebonding Basics
3.2.1. Thermocompression Bonding
3.2.2. Ultrasonic Bonding
3.2.3. Thermosonic Bonding
3.2.4. Wirebond Reliability
3.2.5. Wirebond Testing
3.2.6. Bonding Automation and Optimization

3.3. Materials
3.3.1. Bonding Wire
3.3.2. Bond Pad Metallurgy
3.3.3. Gold Plating
3.3.4. Pad Cleaning

3.4. Advanced Bonding Methods
3.4.1. Fine Pitch Bonding
3.4.2. Soft Substrates
3.4.3. Machine Improvements
3.4.4. Higher Frequency Wirebonding
3.4.5. Stud Bumping

3.5. Summary
Acknowledgments
References

Chapter 4
Metallurgical Interconnections for Extreme High and Low Temperature Environments
George G. Harman

4.1. Introduction
4.2. High Temperature Interconnections Requirements
4.2.1. Wire Bonding
4.2.2. The Use of Flip Chips in HTE
4.2.3. General Overview of Metallurgical Interfaces for Both HTE and LTE

4.3. Low Temperature Environment Interconnection Requirements
4.4. Corrosion and Other Problems in Both HTE, and LTE
4.5. The Potential Use of High Temperature Polymers in HTE

4.6. Conclusions
Acknowledgments
References

Chapter 5
Design, Process, and Reliability of Wafer Level Packaging
Zhuqing Zhang and C.P. Wong

5.1. Introduction
CONTENTS

5.2. WLCSP 137
- **5.2.1. Thin Film Redistribution** 137
- **5.2.2. Encapsulated Package** 139
- **5.2.3. Compliant Interconnect** 139

5.3. Wafer Level Underfill 141
- **5.3.1. Challenges of Wafer Level Underfill** 142
- **5.3.2. Examples of Wafer Level Underfill Process** 143

5.4. Comparison of Flip-Chip and WLCSP 145

5.5. Wafer Level Test and Burn-In 145

5.6. Summary 149

References 149

Chapter 6

Passive Alignment of Optical Fibers in V-grooves with Low Viscosity Epoxy Flow

S.W. Ricky Lee and C.C. Lo 151

6.1. Introduction 151

6.2. Design and Fabrication of Silicon Optical Bench with V-grooves 152

6.3. Issues of Conventional Passive Alignment Methods 158
- **6.3.1. V-grooves with Cover Plate** 158
- **6.3.2. Edge Dispensing of Epoxy** 161

6.4. Modified Passive Alignment Method 162
- **6.4.1. Working Principle** 162
- **6.4.2. Alignment Mechanism** 163
- **6.4.3. Design of Experiment** 164
- **6.4.4. Experimental Procedures** 164
- **6.4.5. Experimental Results** 165

6.5. Effects of Epoxy Viscosity and Dispensing Volume 168

6.6. Application to Fiber Array Passive Alignment 170

6.7. Conclusions and Discussion 172

References 172

Reliability and Packaging

Chapter 7

Fundamentals of Reliability and Stress Testing

H. Anthony Chan 177

7.1. More Performance at Lower Cost in Shorter Time-to-market 178
- **7.1.1. Rapid Technological Developments** 178
- **7.1.2. Integration of More Products into Human Life** 178
- **7.1.3. Diverse Environmental Stresses** 178
- **7.1.4. Competitive Market** 179
- **7.1.5. Short Product Cycles** 179
- **7.1.6. The Bottom Line** 179

7.2. Measure of Reliability 180
- **7.2.1. Failure Rate** 180
- **7.2.2. Systems with Multiple Independent Failure Modes** 181
- **7.2.3. Failure Rate Distribution** 182

7.3. Failure Mechanisms in Electronics and Packaging 184
7.3.1. Failure Mechanisms at Chip Level Include 184
7.3.2. Failure Mechanisms at Bonding Include 184
7.3.3. Failure Mechanisms in Device Packages Include 185
7.3.4. Failure Mechanisms in Epoxy Compounds Include 185
7.3.5. Failure Mechanisms at Shelf Level Include 185
7.3.6. Failure Mechanisms in Material Handling Include 185
7.3.7. Failure Mechanisms in Fiber Optics Include 185
7.3.8. Failure Mechanisms in Flat Panel Displays Include 186
7.4. Reliability Programs and Strategies 186
7.5. Product Weaknesses and Stress Testing 187
7.5.1. Why do Products Fail? 187
7.5.2. Stress Testing Principle 189
7.6. Stress Testing Formulation 191
7.6.1. Threshold and Cumulative Stress Failures 191
7.6.2. Stress Stimuli and Flaws 192
7.6.3. Modes of Stress Testing 193
7.6.4. Lifetime Failure Fraction 194
7.6.5. Robustness Against Maximum Service Life Stress 195
7.6.6. Stress–Strength Contour 197
7.6.7. Common Issues 198
7.7. Further Reading 201

Chapter 8
How to Make a Device into a Product: Accelerated Life Testing (ALT), Its Role, Attributes, Challenges, Pitfalls, and Interaction with Qualification Tests
E. Suhir 203
8.1. Introduction 203
8.2. Some Major Definitions 204
8.3. Engineering Reliability 204
8.4. Field Failures 205
8.5. Reliability is a Complex Property 206
8.6. Three Major Classes of Engineering Products and Market Demands 206
8.7. Reliability, Cost and Time-to-Market 208
8.8. Reliability Costs Money 208
8.9. Reliability Should Be Taken Care of on a Permanent Basis 209
8.10. Ways to Prevent and Accommodate Failures 210
8.11. Redundancy 211
8.12. Maintenance and Warranty 211
8.13. Test Types 212
8.15. Accelerated Test Levels 213
8.16. Qualification Standards 213
8.17. Accelerated Life Tests (ALTs) 214
8.18. Accelerated Test Conditions 215
8.19. Acceleration Factor 216
8.20. Accelerated Stress Categories 217
8.21. Accelerated Life Tests (ALTs) and Highly Accelerated Life Tests (HALTs) 218
8.22. Failure Mechanisms and Accelerated Stresses 219
Chapter 8

8.23. ALTs: Pitfalls and Challenges
8.24. Burn-ins
8.25. Wear-Out Failures
8.26. Non-Destructive Evaluations (NDE’s)
8.27. Predictive Modeling
8.28. Some Accelerated Life Test (ALT) Models
 8.28.1. Power Law
 8.28.2. Boltzmann-Arrhenius Equation
 8.28.3. Coffin-Manson Equation (Inverse Power Law)
 8.28.4. Paris-Erdogan Equation
 8.28.5. Bueche-Zhurkov Equation
 8.28.6. Eyring Equation
 8.28.7. Peck and Black Equations
 8.28.8. Fatigue Damage Model (Miner’s Rule)
 8.28.9. Creep Rate Equations
 8.28.10. Weakest Link Models
 8.28.11. Stress–Strength Models
8.29. Probability of Failure
8.30. Conclusions
References

Chapter 9

Micro-Deformation Analysis and Reliability Estimation of Micro-Components by Means of NanoDAC Technique
Bernd Michel and Jürgen Keller
9.1. Introduction
9.2. Basics of Digital Image Correlation
 9.2.1. Cross Correlation Algorithms on Gray Scale Images
 9.2.2. Subpixel Analysis for Enhanced Resolution
 9.2.3. Results of Digital Image Correlation
9.3. Displacement and Strain Measurements on SFM Images
 9.3.1. Digital Image Correlation under SPM Conditions
 9.3.2. Technical Requirements for the Application of the Correlation Technique
9.4. Deformation Analysis on Thermally and Mechanically Loaded Objects under the SFM
 9.4.2. Thermally Loaded Gas Sensor under SFM
 9.4.3. Crack Detection and Evaluation by SFM
9.5. Conclusion and Outlook
References

Chapter 10

Interconnect Reliability Considerations in Portable Consumer Electronic Products
Sridhar Canumalla and Puligandla Viswanadham
10.1. Introduction
10.2. Reliability—Thermal, Mechanical and Electrochemical
 10.2.1. Accelerated Life Testing
 10.2.2. Thermal Environment
References
CONTENTS

13.1. High Efficiency Quantum Confined (Nanostructured) III-Nitride Based Light Emitting Diodes And Lasers 342
 13.1.1. Introduction 342

13.2. Investigation of Reliability Issues in High Power Laser Diode Bar Packages 348
 13.2.1. Introduction 348
 13.2.2. Preparation of Packaged Samples for Reliability Testing 349
 13.2.3. Finding and Model of Reliability Results 350

13.3. Conclusions 357
Acknowledgments 358
References 358

Chapter 14
Review of the Technology and Reliability Issues Arising as Optical Interconnects Migrate onto the Circuit Board
P. Misselbrook, D. Gwyer, C. Bailey, D. Gwyer, C. Bailey, P.P. Conway and K. Williams 361
14.1. Background to Optical Interconnects 362
14.2. Transmission Equipment for Optical Interconnects 362
14.3. Very Short Reach Optical Interconnects 365
14.4. Free Space USR Optical Interconnects 366
14.5. Guided Wave USR Interconnects 367
14.6. Component Assembly of OECB’s 370
14.7. Computational Modeling of Optical Interconnects 373
14.8. Conclusions 380
Acknowledgments 380
References 381

Chapter 15
Adhesives for Micro- and Opto-Electronics Application: Chemistry, Reliability and Mechanics
D.W. Dahringer 383
15.1. Introduction 383
 15.1.1. Use of Adhesives in Micro and Opto-Electronic Assemblies 383
 15.1.2. Specific Applications 384
15.2. Adhesive Characteristics 385
 15.2.1. General Properties of Adhesives 385
 15.2.2. Adhesive Chemistry 390
15.3. Design Objective 393
 15.3.1. Adhesive Joint Design 393
 15.3.2. Manufacturing Issues 397
15.4. Failure Mechanism 401
 15.4.1. General 401
 15.4.2. Adhesive Changes 401
 15.4.3. Interfacial Changes 401
 15.4.4. Interfacial Stress 401
 15.4.5. External Stress 402
References 402
Chapter 16
Multi-Stage Peel Tests and Evaluation of Interfacial Adhesion Strength for Micro-
and Opto-Electronic Materials

Masaki Omiya, Kikuo Kishimoto and Wei Yang

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.1. Introduction</td>
<td>403</td>
</tr>
<tr>
<td>16.2. Multi-Stage Peel Test (MPT)</td>
<td>407</td>
</tr>
<tr>
<td>16.2.1. Testing Setup</td>
<td>407</td>
</tr>
<tr>
<td>16.2.2. Multi-Stage Peel Test</td>
<td>408</td>
</tr>
<tr>
<td>16.2.3. Energy Variation in Steady State Peeling</td>
<td>409</td>
</tr>
<tr>
<td>16.3. Interfacial Adhesion Strength of Copper Thin Film</td>
<td>413</td>
</tr>
<tr>
<td>16.3.1. Preparation of Specimen</td>
<td>413</td>
</tr>
<tr>
<td>16.3.2. Measurement of Adhesion Strength by the MPT</td>
<td>414</td>
</tr>
<tr>
<td>16.3.3. Discussions</td>
<td>415</td>
</tr>
<tr>
<td>16.4. UV-Irradiation Effect on Ceramic/Polymer Interfacial Strength</td>
<td>419</td>
</tr>
<tr>
<td>16.4.1. Preparation of PET/ITO Specimen</td>
<td>419</td>
</tr>
<tr>
<td>16.4.2. Measurement of Interfacial Strength by MPT</td>
<td>422</td>
</tr>
<tr>
<td>16.4.3. Surface Crack Formation on ITO Layer under Tensile Loading</td>
<td>424</td>
</tr>
<tr>
<td>16.5. Concluding Remarks</td>
<td>426</td>
</tr>
<tr>
<td>Acknowledgment</td>
<td>427</td>
</tr>
<tr>
<td>References</td>
<td>427</td>
</tr>
</tbody>
</table>

Chapter 17
The Effect of Moisture on the Adhesion and Fracture of Interfaces in Microelectronic Packaging

Timothy P. Ferguson and Jianmin Qu

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.1. Introduction</td>
<td>432</td>
</tr>
<tr>
<td>17.2. Moisture Transport Behavior</td>
<td>433</td>
</tr>
<tr>
<td>17.2.1. Background</td>
<td>433</td>
</tr>
<tr>
<td>17.2.2. Diffusion Theory</td>
<td>434</td>
</tr>
<tr>
<td>17.2.3. Underfill Moisture Absorption Characteristics</td>
<td>435</td>
</tr>
<tr>
<td>17.2.4. Moisture Absorption Modeling</td>
<td>438</td>
</tr>
<tr>
<td>17.3. Elastic Modulus Variation Due to Moisture Absorption</td>
<td>442</td>
</tr>
<tr>
<td>17.3.1. Background</td>
<td>442</td>
</tr>
<tr>
<td>17.3.2. Effect of Moisture Preconditioning</td>
<td>444</td>
</tr>
<tr>
<td>17.3.3. Elastic Modulus Recovery from Moisture Uptake</td>
<td>447</td>
</tr>
<tr>
<td>17.4. Effect of Moisture on Interfacial Adhesion</td>
<td>449</td>
</tr>
<tr>
<td>17.4.1. Background</td>
<td>449</td>
</tr>
<tr>
<td>17.4.2. Interfacial Fracture Testing</td>
<td>451</td>
</tr>
<tr>
<td>17.4.3. Effect of Moisture Preconditioning on Adhesion</td>
<td>452</td>
</tr>
<tr>
<td>17.4.4. Interfacial Fracture Toughness Recovery from Moisture Uptake</td>
<td>461</td>
</tr>
<tr>
<td>17.4.5. Interfacial Fracture Toughness Moisture Degradation Model</td>
<td>462</td>
</tr>
<tr>
<td>References</td>
<td>469</td>
</tr>
</tbody>
</table>

Chapter 18
Highly Compliant Bonding Material for Micro- and Opto-Electronic Applications

E. Suhir and D. Ingman

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.1. Introduction</td>
<td>473</td>
</tr>
</tbody>
</table>
Chapter 18
Effect of the Interfacial Compliance on the interfacial Shearing Stress
18.2. Effect of the Interfacial Compliance on the interfacial Shearing Stress 474
18.3. Internal Compressive Forces 476
18.4. Advanced Nano-Particle Material (NPM) 476
18.5. Highly-Compliant Nano-Systems 478
18.6. Conclusions 479
References 480
Appendix 18.A: Bimaterial Assembly Subjected to an External Shearing Load and Change in Temperature: Expected Stress Relief due to the Elevated Interfacial Compliance 480
Appendix 18.B: Cantilever Wire (“Beam”) Subjected at its Free End to a Lateral (Bending) and an Axial (Compressive) Force 483
Appendix 18.C: Compressive Forces in the NPM-Based Compound Structure 485

Chapter 19
Adhesive Bonding of Passive Optical Components
Anne-Claire Pliska and Christian Bosshard 487
19.1. Introduction 487
19.2. Optical Devices and Assemblies 489
19.2.1. Optical Components 489
19.2.2. Opto-electronics Assemblies: Specific Requirements 489
19.3. Adhesive Bonding in Optical Assemblies 503
19.3.1. Origin of Adhesion 503
19.3.2. Adhesive Selection and Dispensing 508
19.3.3. Dispensing Technologies 515
19.4. Some Applications 518
19.4.1. Laser to Fiber Assembly 518
19.4.2. Planar Lightwave Circuit (PLC) Pigtailing 520
19.5. Summary and Recommendations 522
Acknowledgments 523
References 523

Chapter 20
Electrically Conductive Adhesives: A Research Status Review
James E. Morris and Johan Liu 527
20.1. Introduction 527
20.1.1. Technology Drivers 527
20.1.2. Isotropic Conductive Adhesives (ICAs) 529
20.1.3. Anisotropic Conductive Adhesives (ACAs) 529
20.1.4. Non-Conductive Adhesive (NCA) 529
20.2. Structure 529
20.2.1. ICA 529
20.2.2. ACA 532
20.2.3. Modeling 534
20.3. Materials and Processing 534
20.3.1. Polymers 534
20.3.2. ICA Filler 536
20.3.3. ACA Processing 536
20.4. Electrical Properties 538
<table>
<thead>
<tr>
<th>Section</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>20.4.1</td>
<td>ICA</td>
</tr>
<tr>
<td>20.4.2</td>
<td>Electrical Measurements</td>
</tr>
<tr>
<td>20.4.3</td>
<td>ACA</td>
</tr>
<tr>
<td>20.5.1</td>
<td>ICA</td>
</tr>
<tr>
<td>20.5.2</td>
<td>ACA</td>
</tr>
<tr>
<td>20.6.1</td>
<td>Thermal Characteristics</td>
</tr>
<tr>
<td>20.6.2</td>
<td>Maximum Current Carrying Capacity</td>
</tr>
<tr>
<td>20.7.1</td>
<td>ICA</td>
</tr>
<tr>
<td>20.7.2</td>
<td>ACA</td>
</tr>
<tr>
<td>20.7.3</td>
<td>General Comments</td>
</tr>
<tr>
<td>20.8</td>
<td>Environmental Impact</td>
</tr>
<tr>
<td>20.9</td>
<td>Further Study</td>
</tr>
<tr>
<td>References</td>
<td></td>
</tr>
</tbody>
</table>

Chapter 21
Electrically Conductive Adhesives
Johann Nicolics and Martin Mündlein
571

21.1. Introduction and Historical Background
571

21.2. Contact Formation
574
 21.2.1. Percolation and Critical Filler Content
 21.2.2. ICA Contact Model
 21.2.3. Results

21.3. Aging Behavior and Quality Assessment
595
 21.3.1. Introduction
 21.3.2. Material Selection and Experimental Parameters
 21.3.3. Curing Parameters and Definition of Curing Time
 21.3.4. Testing Conditions, Typical Results, and Conclusions

21.4. About Typical Applications
602
 21.4.1. ICA for Attachment of Power Devices
 21.4.2. ICA for Interconnecting Parts with Dissimilar Thermal Expansion Coefficient
 21.4.3. ICA for Cost-Effective Assembling of Multichip Modules

21.5. Summary
607
Notations and Definitions
References
608

Chapter 22
Recent Advances of Conductive Adhesives: A Lead-Free Alternative in Electronic Packaging
Grace Y. Li and C.P. Wong
611

22.1. Introduction
611

22.2. Isotropic Conductive Adhesives (ICAs)
613
 22.2.1. Improvement of Electrical Conductivity of ICAs
 22.2.2. Stabilization of Contact Resistance on Non-Noble Metal Finishes
 22.2.3. Silver Migration Control of ICA
22.2.4. Improvement of Reliability in Thermal Shock Environment 618
22.2.5. Improvement of Impact Performance of ICA 619

22.3. Anisotropic Conductive Adhesives (ACAs)/Anisotropic Conductive Film (ACF) 619
22.3.1. Materials 620
22.3.2. Application of ACA/ACF in Flip Chip 621
22.3.3. Improvement of Electrical Properties of ACAs 621
22.3.4. Thermal Conductivity of ACA 623

22.4. Future Advances of ECAs 623
22.4.1. Electrical Characteristics 623
22.4.2. High Frequency Compatibility 623
22.4.3. Reliability 623
22.4.4. ECAs with Nano-filler for Wafer Level Application 625

References 625

Chapter 23
Die Attach Quality Testing by Structure Function Evaluation
Márta Rencz, Vladimir Székely and Bernard Courtois 629

Nomenclature 629
Greek symbols 629
Subscripts 630

23.1. Introduction 630
23.2. Theoretical Background 630
23.3. Detecting Voids in the Die Attach of Single Die Packages 634
23.4. Simulation Experiments for Locating the Die Attach Failure on Stacked Die Packages 636
23.4.1. Simulation Tests Considering Stacked Dies of the Same Size 637
23.4.2. Simulation Experiments on a Pyramidal Structure 639

23.5. Verification of the Methodology by Measurements 642
23.5.1. Comparison of the Transient Behavior of Stacked Die Packages Containing Test Dies, Prior Subjected to Accelerated Moisture and Temperature Testing 642
23.5.2. Comparison of the Transient Behavior of Stacked Die Packages Containing Real Functional Dies, Subjected Prior to Accelerated Moisture and Temperature Testing 644

23.6. Conclusions 649
Acknowledgments 649
References 650

Chapter 24
Mechanical Behavior of Flip Chip Packages under Thermal Loading
Enboa Wu, Shoulung Chen, C.Z. Tsai and Nicholas Kao 651

24.1. Introduction 651
24.2. Flip Chip Packages 652
24.3. Measurement Methods 654
24.3.1. Phase Shifted Shadow Moiré Method 654
24.3.2. Electronic Speckle Pattern Interferometry (ESPI) Method 655

24.4. Substrate CTE Measurement 656
24.5. Behavior of Flip Chip Packages under Thermal Loading 661
24.5.1. Warpage at Room Temperature 661
24.5.2. Warpage at Elevated Temperatures 662
24.5.3. Effect of Underfill on Warpage 666

24.6. Finite Element Analysis of Flip Chip Packages under Thermal Loading 668

24.7. Parametric Study of Warpage for Flip Chip Packages 669
24.7.1. Change of the Chip Thickness 670
24.7.2. Change of the Substrate Thickness 670
24.7.3. Change of the Young’s Modulus of the Underfill 671
24.7.4. Change of the CTE of the Underfill 672
24.7.5. Effect of the Geometry of the Underfill Fillet 672

24.8. Summary 674

References 674

Chapter 25

Stress Analysis for Processed Silicon Wafers and Packaged Micro-devices

Li Li, Yifan Guo and Dawei Zheng 677

25.1. Intrinsic Stress Due to Semiconductor Wafer Processing 677
25.1.1. Testing Device Structure 678
25.1.2. Membrane Deformations 679
25.1.3. Intrinsic Stress 681
25.1.4. Intrinsic Stress in Processed Wafer: Summary 683

25.2. Die Stress Result from Flip-chip Assembly 685
25.2.1. Consistent Composite Plate Model 685
25.2.2. Free Thermal Deformation 687
25.2.3. Bimaterial Plate (BMP) Case 688
25.2.4. Validation of the Bimaterial Model 691
25.2.5. Flip-Chip Package Design 695
25.2.6. Die Stress in Flip Chip Assembly: Summary 697

25.3. Thermal Stress Due to Temperature Cycling 698
25.3.1. Finite Element Analysis 698
25.3.2. Constitutive Equation for Solder 699
25.3.3. Time-Dependent Thermal Stresses of Solder Joint 700
25.3.4. Solder Joint Reliability Estimation 701
25.3.5. Thermal Stress Due to Temperature Cycling: Summary 703

25.4. Residual Stress in Polymer-based Low Dielectric Constant (low-k) Materials 703

References 708

Index 711