Zum Ermüdungsverhalten einbetonierter Kopfbolzendübel unter realitätsnaher Beanspruchung im Verbundbrückenbau

von
Andreas Leffer, Markus Feldmann

1. Auflage

Zum Ermüdungsverhalten einbetonierter Kopfbolzendübel unter realitätsnaher Beanspruchung im Verbundbrückenbau
– Leffer / Feldmann
schnell und portofrei erhältlich bei beck-shop.de DIE FACHBUCHHANDLUNG

ibidem 2003

Verlag C.H. Beck im Internet:
www.beck.de
ISBN 978 3 89821 268 7
INHALTSVERZEICHNIS

1 EINLEITUNG ... 3
 1.1 Allgemeines .. 3
 1.2 Tragverhalten von Kopfbolzendübeln .. 9
 1.3 Zielsetzung der Arbeit ... 11
 1.4.1 Das Nachweiskonzept ... 12
 1.4.2 Spannungsberechnung im Grenzzustand der Tragfähigkeit einschließlich Ermüdung [1.13] .. 16
 1.4.3 Hintergrund und Entstehung des Nachweiskonzeptes .. 17
 1.4.4 Anwendungsvoraussetzungen und –einschränkungen ... 25
 1.4.4.1 Zur Entkopplung des statischen Nachweises und des Nachweises gegen Ermüdung .. 26
 1.4.4.2 Zur Anwendung des Nennspannungskonzeptes ... 28
 1.4.5 Konstruktive Randbedingungen nach EC 4, Teil 2 [1.13] 29
 1.5 Alternative Konzepte zur Bestimmung zur Bestimmung der Ermüdungsfestigkeit einbetonierter KD 30
 1.5.1 Das Bemessungskonzept nach Oehlers ... 30
 1.5.1.1 Zur statischen Tragfähigkeit nach Oehlers ... 34
 1.5.1.2 Zusammenfassung zum Nachweiskonzept von Oehlers 35

2 NEUERE FORSCHUNGSARBEITEN ZUM ERMÜDUNGSVERHALTEN EINBETONIERTER KOPF- BOLZENDÜBEL ... 37
 2.1 Zur Bauwerksbelastung ... 37
2.2 Zur Übertragungsfunktion und zum (zyklischen) Materialverhalten einbetonierter KD unter nicht ruhender Beanspruchung ... 39
 2.2.1 Dübelkraftbestimmung nach den Methoden der elementaren Statik .. 40
 2.2.2 Die Differenzialgleichung des elastischen Verbundes 40
 2.2.3 Dübelkraftermittlung mit Hilfe der Methode der Finiten Elemente 41
 2.2.3.1 Modellierung des zyklischen Materialverhaltens einbetonierter KD 41
 2.2.3.1.1 Bisherige Untersuchungen zum zyklischen Materialverhalten 44
 2.2.3.1.1 Bisherige Untersuchungen zum zyklischen Materialverhalten 44

2.3 Untersuchungen zur Anwendbarkeit der linearen Schadensakkumulationshypothese nach Palmgren und Miner 50

2.4 Zusammenfassung des Kapitels 2 ... 52

3 EIGENE UNTERSUCHUNGEN ZU VERBUNDTRÄGERN ... 55

3.1 Allgemeines Vorgehen .. 55

3.2 Trägerversuche ... 56
 3.2.1 Eigene Trägerversuche unter realitätsnaher Belastungsfolge 58
 3.2.2 Vordimensionierung und untersuchte Parameter 60
 3.2.2.1 Vorüberlegungen zur Aussagefähigkeit von Versuchsserien [4.1, 4.2] 61
 3.2.2.1.1 Allgemeine Statistik .. 61
 3.2.2.1.2 Differenzielle Statistik .. 61
 3.2.2.2 Vorbemessung .. 64
 3.2.2.2.1 Allgemeines .. 64
 3.2.2.2.2 Vorbemessung der Trägerversuche ... 65
 3.2.2.2.2.1 Querschnitt ... 65
 3.2.2.2.2.2 Dübelanordnung .. 68

3.3 Herstellen der Versuchsträger .. 78

3.4 Messtechnik .. 79
 3.4.1 Durchbiegungen ... 82
 3.4.2 Auflager- und Zylinderkräfte .. 82
 3.4.3 Schlupfmessungen ... 83
 3.4.4 Dehnungsmessungen im Stahlprofil .. 83
 3.4.5 Rissbildung im gezogenen Betongurt ... 84
3.5 Versuchssteuerung ... 84

3.6 Versuchsergebnisse ... 85
 3.6.1 Materialdaten ... 85
 3.6.2 Globales Trag- und Versagensverhalten 86
 3.6.2.1 Durchbiegungen ... 87
 3.6.2.2 Dehnungsmessungen im Stahlprofil 90
 3.6.2.3 Rissentwicklung im gezogenen Betongurt 99
 3.6.3 Lokales Trag- und Versagensverhalten 100
 3.6.3.1 Vorversuche T7_1 und T7_2 100
 3.6.3.2 Entwicklung neuer Messmethoden zur exakten, automatisierten Feststellung des Dübelversagens 101
 3.6.3.3 Trägerversuche T7_3 bis T7_6 104
 3.6.3.3.1 Tatsächliches Dübelversagen 104
 3.6.3.3.2 Schlupfmessungen ... 110

3.7 Vergleich der Versuchsergebnisse mit den Bemessungsergebnissen nach Oehlers ... 115

4 ABLEITUNG EINES BEMESSUNGSKONZEPTES AUS DEN TRÄGERVERSUCHEN 119

4.1 Erarbeitung einer Träger – Wöhlerlinie auf der Grundlage elementarer statischer Methoden .. 120
 4.1.1 Überprüfung der Grundgesamtheit [4.3] 120
 4.1.2 Vorbemerkung zur Durchführung der statistischen Analysen 122
 4.1.3 Gemeinsame Auswertung aller Wertepaare der Grundgesamtheit 123
 4.1.4 Differenzierung nach der Art der Beanspruchung 124
 4.1.4.1 Wechselbeanspruchung ... 124
 4.1.4.2 Schwellbeanspruchung .. 125
 4.1.5 Ermittlung einer Ermüdungsfestigkeitskurve unter der Voraussetzung der Gültigkeit der Miner-Regel 125

4.2 FE - Modellierung der Verbundträger zur Berücksichtigung (statisch) nichtlinearer Materialeigenschaften 131
 4.2.1 Modellbildung mit dem Programmsystem SOFISTIK 131
 4.2.1.1 Diskretisierung .. 131
<table>
<thead>
<tr>
<th>Inhalt</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4.2.1.1.1 Betonplatte</td>
<td>131</td>
</tr>
<tr>
<td>4.2.1.1.2 Stahlträger</td>
<td>132</td>
</tr>
<tr>
<td>4.2.1.1.3 Abbildung der Dübel</td>
<td>133</td>
</tr>
<tr>
<td>4.2.1.1.4 Aufbringen der Lasten</td>
<td>135</td>
</tr>
<tr>
<td>4.2.1.1.5 Abbildung der Lagerung</td>
<td>135</td>
</tr>
<tr>
<td>4.2.1.2 Festigkeitswerte des Betons</td>
<td>139</td>
</tr>
<tr>
<td>4.2.1.2.1 Betondruckfestigkeit</td>
<td>139</td>
</tr>
<tr>
<td>4.2.1.2.2 Betonzugfestigkeit</td>
<td>140</td>
</tr>
<tr>
<td>4.2.1.2.2.1 Tension Stiffening</td>
<td>140</td>
</tr>
<tr>
<td>4.2.1.3 Dübelkennlinie</td>
<td>143</td>
</tr>
<tr>
<td>4.3 Ermittlung der Dübelkraftschwingbreiten auf der Grundlage einer</td>
<td>147</td>
</tr>
<tr>
<td>physikalisch nichtlinearen Berechnung</td>
<td></td>
</tr>
<tr>
<td>4.3.1 Zur Güte des FE-Modells</td>
<td>147</td>
</tr>
<tr>
<td>4.3.1.1 Vergleich der Durchbiegungen wreal - wcalt</td>
<td>148</td>
</tr>
<tr>
<td>4.3.1.2 Vergleich der Dehnungen im Stahlprofil $\varepsilon_{\text{real}} - \varepsilon_{\text{calc}}$</td>
<td>149</td>
</tr>
<tr>
<td>4.3.1.3 Vergleich der Relativverschiebungen entlang der Verbundfuge</td>
<td>152</td>
</tr>
<tr>
<td>4.3.1.4 Vergleich der Dübelkräfte</td>
<td>154</td>
</tr>
<tr>
<td>4.4 Erarbeitung einer Träger – Wöhlerlinie auf der Grundlage nicht-</td>
<td>157</td>
</tr>
<tr>
<td>linear berechneter Dübelkräfte</td>
<td></td>
</tr>
<tr>
<td>4.4.1 Schwellend und wechselnd beanspruchte Dübel</td>
<td>158</td>
</tr>
<tr>
<td>4.4.1.1 Schwellbeanspruchung</td>
<td>158</td>
</tr>
<tr>
<td>4.4.1.2 Wechselbeanspruchung</td>
<td>159</td>
</tr>
<tr>
<td>4.4.1.3 Wechselnd beanspruchte Dübel mit $</td>
<td>R</td>
</tr>
<tr>
<td>4.4.1.4 Wechselnd beanspruchte Dübel mit $R = -1$</td>
<td>161</td>
</tr>
<tr>
<td>4.4.2 Iterative Ableitung der Bestimmungsparameter der Wöhlerlinie</td>
<td></td>
</tr>
<tr>
<td>unter Berücksichtigung des nachgiebigen Verbundes und der</td>
<td></td>
</tr>
<tr>
<td>Anwendbarkeit der Miner-Regel</td>
<td>162</td>
</tr>
<tr>
<td>4.5 Zusammenfassung von Kapitel 4</td>
<td>165</td>
</tr>
<tr>
<td>5 WEGGEREGELTE PUSH-OUT VERSUCHE</td>
<td>169</td>
</tr>
<tr>
<td>5.1 Zielsetzung</td>
<td>169</td>
</tr>
<tr>
<td>5.2 Versuchsaufbau und Versuchssteuerung</td>
<td>169</td>
</tr>
<tr>
<td>5.3 Kompatibilität der Push-Out Versuche mit den Trägerversuchen</td>
<td>172</td>
</tr>
</tbody>
</table>
5.4 Ableitung einer analytischen Gesetzmäßigkeit für die Beschreibung der Entwicklung des plastischen, „kraftlosen“ Bereiches des zyklischen Materialgesetzes für R = -1.176
 5.4.1 Allgemeiner Ansatz: ...176
 5.4.2 Eingangswerte und Bestimmung der Funktionsgleichungen177
 5.4.3 Veränderlichkeit des Verhaltens im Lauf der Lebensdauer178

5.5 Ableitung einer analytischen Gesetzmäßigkeit für die Beschreibung des plastischen, „kraftlosen“ Bereiches des zyklischen Materialgesetzes für R = 0. ..182
 5.5.1 Allgemeiner Ansatz ...182
 5.5.2 Eingangswerte und Bestimmung der Funktionsgleichungen182
 5.5.3 Veränderlichkeit des Verhaltens im Lauf der Lebensdauer183

5.6 Berechnung verschiedener Lastzyklen der Trägersversuche unter Berücksichtigung des zyklischen Materialverhaltens...185

5.7 Vergleich der FE - Ergebnisse mit einer Handrechnung bei gegebenem Schlupfverlauf ...187

5.8 Erarbeitung der Grundbeziehungen eines modifizierten Örtlichen Konzeptes mit der Bezugsgröße „Schlupf“188
 5.8.1 Allgemeine Erläuterungen zum Örtlichen Konzept
 [5.2,1.3,1.5,5.1] ...188
 5.8.1.1 Dehnungskontrollierte Wöhler-Versuche188
 5.8.1.2 Zyklische Spannungs-Dehnungs-Kurve190
 5.8.1.3 Dehnungs - Wöhlerlinie [5.2] ..193
 5.8.2 Transformation der Gesetzmäßigkeiten auf die Bezugsgröße „Schlupf“ ...195
 5.8.2.1 Anwendungsvoraussetzungen ..195
 5.8.2.1.1 Anrisszeitpunkt ...195
 5.8.2.1.2 Zyklische Entfestigung und zyklische Verfestigung196
 5.8.2.1.3 Konstante elastische Steifigkeit ...197
 5.8.2.2 Ableitung einer Schlupf - Wöhlerlinie für R = -1197
 5.8.2.3 Zyklische Dübelkraft-Schlupf-Kurve nach Ramberg – Osgood201
5.9 Überprüfung der Anwendbarkeit einer linearen Schadensakkumulationshypothese auf das Ermüdungsverhalten einbetonierter KD ...204
5.9.1 Theoretische Vorüberlegungen ..204
5.9.2 Auswertung der Versuche mit linearem Schlupfwachstum207
5.9.3 Lebensdauerprognose für Trägerversuche T7_4, T7_5 und T7_6 mit der Schlupf- Wöhlerlinie nach Abschnitt 5.8.2.2211

5.10 Iterative Ableitung der Bestimmungsparameter einer Spannungs-Wöhlerlinie anhand der aufgezeichneten Dübelkraftkollektive ...212

6 ZUSAMMENFASSUNG...215

7 AUSBLICK ... 219

A UNTERSUCHUNGEN DES SCHWEIFDETAILS............ 221
A.1 Zugschwellversuche am Bolzen [6.1,6.7] ...222
A.2 Zugschwellversuche mit überlagerter Biegebeanspruchung im Blech [A.1,A.7] ...222
A.3 Biegewechselversuche am Bolzen [A.1,A.7] ...223
A.4 Biegewechsel- und Biegeschwellversuch am Blech [A.1,A.7]223
A.5 Eigene Untersuchungen mit Makroschliffen225
A.5.1 Makroschliffe aus dem Trägerversuch T7_5226
A.5.2 Makroschliffe der Testschweißungen ...230

LITERATURVERZEICHNIS..239

LEBENSLAUF.. 251