Introduction to the Physics of Massive and Mixed Neutrinos

Bearbeitet von
Samoil Bilenky

ISBN 978 3 642 14042 6
Format (B x L): 15,5 x 23,5 cm
Gewicht: 860 g

Weitere Fachgebiete > Physik, Astronomie > Physik Allgemein > Geschichte der Physik
Zu Leseprobe

schnell und portofrei erhältlich bei

Die Online-Fachbuchhandlung beck-shop.de ist spezialisiert auf Fachbücher, insbesondere Recht, Steuern und Wirtschaft. Im Sortiment finden Sie alle Medien (Bücher, Zeitschriften, CDs, eBooks, etc.) aller Verlage. Ergänzt wird das Programm durch Services wie Neuerscheinungsdienst oder Zusammenstellungen von Büchern zu Sonderpreisen. Der Shop führt mehr als 8 Millionen Produkte.
Contents

1 Introduction .............................................................. 1

2 Weak Interaction Before the Standard Model ...................... 9
  2.1 Pauli Hypothesis of Neutrino .................................. 9
  2.2 Fermi Theory of $\beta$-Decay ................................... 11
  2.3 Fermi-Gamov-Teller Hamiltonian of $\beta$-Decay ............ 12
  2.4 Violation of Parity in $\beta$-Decay ............................ 13
  2.5 Two-Component Neutrino Theory ............................... 14
  2.6 $\mu$-e Universal Charged Current. Current $\times$ Current Theory ...... 16
  2.7 Theory with Vector W Boson .................................. 19
  2.8 First Observation of Neutrinos. Lepton Number Conservation ... 20
  2.9 Discovery of Muon Neutrino. Electron and Muon Lepton Numbers ... 22
  2.10 Strange Particles. Quarks. Cabibbo Current ................ 24
  2.11 Charmed Quark. Quark and Neutrino Mixing .................. 26
  2.12 Summary and Outlook ........................................... 27

3 The Standard Model of the Electroweak Interaction ............... 29
  3.1 Introduction ..................................................... 29
  3.2 $SU(2)$ Yang-Mills Local Gauge Invariance .................. 30
  3.3 Spontaneous Symmetry Breaking. Higgs Mechanism ........... 35
  3.4 The Standard Model for Quarks ............................... 39
  3.5 The Standard Model for Leptons ............................... 52
  3.6 Summary and Outlook ........................................... 60

4 Neutrino Mass Terms ................................................... 61
  4.1 Introduction ..................................................... 61
  4.2 Dirac Mass Term ................................................ 62
  4.3 Majorana Mass Term ............................................ 63
  4.4 Dirac and Majorana Mass Term ................................. 68
  4.5 Neutrino Mass Term in the Simplest Case of Two Neutrino Fields ... 70
  4.6 Seesaw Mechanism of Neutrino Mass Generation ............... 73
  4.7 Summary and Outlook ........................................... 76
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>Neutrino Mixing Matrix</td>
<td>5-7</td>
</tr>
<tr>
<td>5.1</td>
<td>Introduction</td>
<td>5-79</td>
</tr>
<tr>
<td>5.2</td>
<td>The Number of Angles and Phases in the Matrix $U$</td>
<td>5-79</td>
</tr>
<tr>
<td>5.3</td>
<td>CP Conservation in the Lepton Sector</td>
<td>5-82</td>
</tr>
<tr>
<td>5.4</td>
<td>Standard Parametrization of $3 \times 3$ Mixing Matrix</td>
<td>5-86</td>
</tr>
<tr>
<td>5.5</td>
<td>On Models of Neutrino Masses and Mixing</td>
<td>5-89</td>
</tr>
<tr>
<td>6</td>
<td>Neutrino Oscillations in Vacuum</td>
<td>6-95</td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>6-95</td>
</tr>
<tr>
<td>6.2</td>
<td>Flavor Neutrino States</td>
<td>6-95</td>
</tr>
<tr>
<td>6.3</td>
<td>Oscillations of Flavor Neutrinos</td>
<td>6-99</td>
</tr>
<tr>
<td>6.4</td>
<td>Two-Neutrino Oscillations</td>
<td>6-107</td>
</tr>
<tr>
<td>6.5</td>
<td>Three-Neutrino Oscillations. CP Violation in the Lepton Sector</td>
<td>6-110</td>
</tr>
<tr>
<td>6.6</td>
<td>Three-Neutrino Oscillations in the Leading Approximation</td>
<td>6-114</td>
</tr>
<tr>
<td>7</td>
<td>Neutrino in Matter</td>
<td>7-121</td>
</tr>
<tr>
<td>7.1</td>
<td>Introduction</td>
<td>7-121</td>
</tr>
<tr>
<td>7.2</td>
<td>Evolution Equation of Neutrino in Matter</td>
<td>7-121</td>
</tr>
<tr>
<td>7.3</td>
<td>Propagation of Neutrino in Matter with Constant Density</td>
<td>7-127</td>
</tr>
<tr>
<td>7.4</td>
<td>Adiabatic Neutrino Transitions in Matter</td>
<td>7-131</td>
</tr>
<tr>
<td>8</td>
<td>Neutrinoless Double Beta-Decay</td>
<td>8-139</td>
</tr>
<tr>
<td>8.1</td>
<td>Introduction</td>
<td>8-139</td>
</tr>
<tr>
<td>8.2</td>
<td>Basic Elements of the Theory of $0\nu\beta\beta$-Decay</td>
<td>8-143</td>
</tr>
<tr>
<td>8.3</td>
<td>Effective Majorana Mass</td>
<td>8-152</td>
</tr>
<tr>
<td>8.4</td>
<td>On the Nuclear Matrix Elements of the $0\nu\beta\beta$-Decay</td>
<td>8-156</td>
</tr>
<tr>
<td>8.5</td>
<td>Data of Experiments on the Search for $0\nu\beta\beta$-Decay. Future Experiments</td>
<td>8-157</td>
</tr>
<tr>
<td>9</td>
<td>On absolute Values of Neutrino Masses</td>
<td>9-159</td>
</tr>
<tr>
<td>9.1</td>
<td>Masses of Muon and Tau Neutrinos</td>
<td>9-159</td>
</tr>
<tr>
<td>9.2</td>
<td>Neutrino Masses from the Measurement of the High-Energy Part of the $\beta$-Spectrum of Tritium</td>
<td>9-160</td>
</tr>
<tr>
<td>10</td>
<td>Neutrino Oscillation Experiments</td>
<td>10-165</td>
</tr>
<tr>
<td>10.1</td>
<td>Introduction</td>
<td>10-165</td>
</tr>
<tr>
<td>10.2</td>
<td>Solar Neutrino Experiments</td>
<td>10-167</td>
</tr>
<tr>
<td>10.2.1</td>
<td>Introduction</td>
<td>10-167</td>
</tr>
<tr>
<td>10.2.2</td>
<td>Homestake Chlorine Solar Neutrino Experiment</td>
<td>10-170</td>
</tr>
<tr>
<td>10.2.3</td>
<td>Radiochemical GALLEX-GNO and SAGE Experiments</td>
<td>10-171</td>
</tr>
<tr>
<td>10.2.4</td>
<td>Kamiokande and Super-Kamiokande Solar Neutrino Experiments</td>
<td>10-173</td>
</tr>
<tr>
<td>10.2.5</td>
<td>SNO Solar Neutrino Experiment</td>
<td>10-175</td>
</tr>
<tr>
<td>10.2.6</td>
<td>Borexino Solar Neutrino Experiment</td>
<td>10-178</td>
</tr>
</tbody>
</table>